Mathematics 3Q03: Mid-Term Test 1 Instructor: Dr. D. Pelinovsky Date: October 4, 2012, 9:30-10:20

NAME: \qquad STUDENT NUMBER: \qquad

Instruction: Textbooks, lecture notes, and McMaster calculators are allowed on the test. The duration of this test is 50 minutes. The test paper has 4 questions, where the marks are specified next to each question. Total marks $=20$. For full mark, show all your work.

Problem	Points	Score
$\mathbf{1}$	6	
$\mathbf{2}$	6	
$\mathbf{3}$	6	
$\mathbf{4}$	2	
Total	20	

Page 2 of 8

1. Consider the function

$$
f(x, y)=\frac{x y\left(x^{2}+y^{4}\right)}{x^{2}+y^{2}}, \quad(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}
$$

[2] (a) Show that f is continuous at $(0,0)$ and find the limit

$$
f(0,0):=\lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

[2] (b) Compute the x-partial derivative at $(0,0)$ by using the definition

$$
\frac{\partial f}{\partial x}(0,0):=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h} .
$$

[2] (c) Compute $\frac{\partial f}{\partial x}(x, y)$ by using chain rule and prove that it is continuous at $(0,0)$.

Page 3 of 8

Page 3 of 8

Page 4 of 8

2. Consider the function

$$
f(x, y)=x^{4}-2 x^{2}+y^{2}+3,
$$

in the disk $D=\left\{(x, y) \in \mathbb{R}^{2}: \quad x^{2}+y^{2} \leq 1\right\}$.
[2] (a) Find critical points by using the first derivative test.
[2] (b) Identify local minima and maxima in D by using the second derivative test.
[2] (c) Find the global minimum and global maximum in D.

Page 5 of 8

Page 5 of 8

Page 6 of 8

3. Consider the function

$$
f(x, y)=e^{x} \sin (2 x-y), \quad(x, y) \in \mathbb{R}^{2} .
$$

[2] (a) Find the gradient vector of f at any point (x, y).
[2] (b) Find the directional derivative of f at the point $(1,2)$ in the direction of the line $y=3 x-1$, for increasing values of x.
[2] (c) Find the unit direction vector \mathbf{u} at the point (1,2), along which the function has the maximal increase.

Page 7 of 8

Page 7 of 8

Page 8 of 8

4. TRUE or FALSE:

[1] (a) The function $Q(x, y)=3 x y+x$ is the quadratic approximation of the function $f(x, y)=x(1+y)^{3}$ at the point $(0,0)$.
[1] (b) If a function $f(x, y)$ is continuous at the point $\left(x_{0}, y_{0}\right)$ in its domain, then it is differentiable at the point $\left(x_{0}, y_{0}\right)$.

