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1. [2] Below is the vector field representation of the gradient ∇ f of a differen-
tiable function f : R2→ R.

Draw on the diagram a rough sketch of the level curve of f which passes
through (0,5). (You may wish to use pencil, so you can correct any mis-
takes).
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2. [2] Let
F(x,y) = (yex, ln(x+ y))

and
f (x,y) = ln(x)+ ycos(ex).

(a) Is f continuous at (1,0)? Is F continuous at (0,1)?

(b) What is lim(x,y)→(0,1) f (F(x,y))?
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3. [2] Let
f (x,y) = x3 + y3−3x−3y.

For what points (x,y) is the tangent plane to the surface z = f (x,y) at
(x,y, f (x,y)) parallel to the tangent plane to the surface at (2,1,2)?

4. [3] The temperature at a point of a metal plate expressed in Cartesian co-
ordinates as (x,y) is

TC(x,y) = x2 + xy− y2.

(a) [1] Express the temperature at a point (r,θ) in polar co-ordinates as a
function of r and θ.

(b) [2] Use the chain rule to find formulae in polar co-ordinates (r,θ) for the
first derivatives with respect to r and with respect to θ of the temperature
at a point. Show your working.
(You may wish to check your answer by directly differentiating the
function our found in part (a).)

[Recall: the function P converts from polar to Cartesian co-ordinates:

P(r,θ) = (r cosθ,r sinθ).]
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5. [2] Find
∂6

∂x∂y∂x∂x∂x∂x
(yx5 + ecosx).

6. [5] Let
f (x,y) = xy− (x+ y)3.

(a) [1] Give the second-order Taylor expansion of f at a point (a,b),

f (a+ x,b+ y) = ...

(b) [2] At what points of R2 does f have a local minimum? At what points
has it a local maximum?

(c) [1] Calculate f (−1,−1). Does f have a global maximum value on R2?
If so, what is it? Similarly for global minimum. Briefly explain your
reasoning.

(d) [1] WARNING: this part of the question is hard! Don’t spend time on
it until you’ve done all you can on the rest of the test.
Suppose we restrict the domain of f to the half-plane

X := {(x,y) | x+ y≥ 0}.

Does f have a global maximum value on X? If so, what is it? Similarly
for global minimum. Briefly explain your reasoning.
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