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1. [5] Let f :R3→R be a differentiable map. Let r :R2→R3 be the following
parametrisation of the plane x+ y+ z = 0:

r(u,v) = (u, v−u, −v).

(i) [2] Compute, in terms of the partial derivatives of f , the partial deriva-
tives gu and gv of the composition

g = f ◦ r.

Now let f (x,y,z) = x+ y2

2 + z2.

(ii) [1] Compute ∇ f .

(iii) [2] Using your answers to parts (i) and (ii), or otherwise, find the min-
imal value that f (x,y,z) takes on the plane x+ y+ z = 0. You may
make use of the fact that such a minimal value exists.

2. [5] Let c be the path c : [0,1]→ R3

c(t) = (t2− t, t3− t2, t3).

Suppose F : R3→ R3 is a C1 vector field, defined on the whole of R3, and
suppose curlF = 0 everywhere on R3.

However, you only know the value of F(x,y,z) when x= y= 0: for all t ∈R,
the value at (0,0, t) is

F(0,0, t) = (t2, t2, t2).

(i) [3] Find ∫
c
F ·ds.

(ii) [2] Suppose now that F has all the properties described above, except
that now it is defined only everywhere but the line x = y = 2. In nota-
tion: domF = R3 \{(2,2,z) | z ∈ R}.
Can you still conclude that your answer in part (i) is correct? Briefly
explain your answer.
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3. [5] Using the spherical change of co-ordinates map

T (ρ,φ,θ) = (ρcosθsinφ,ρsinθsinφ,ρcosφ),

find the integral
∫∫∫

V f dV of

f (x,y,z) = z2

over the unit ball

V = {(x,y,z) | x2 + y2 + z2 ≤ 1}.

4. [5] A flying saucer hovers overhead at noon, casting a sinister shadow. We
model the situation as follows: a horizontal disc of radius 1 centred above
(x,y) = (0,0) casts a shadow directly downwards onto a surface which is
the graph of the continuously differentiable function f (x,y).

(a) [3] Express, as an integral over the unit disc, the area of the surface
which is in shadow - i.e. the area of that part of the graph of f which
lies directly below the disc.

(b) [2] What is the minimum possible area of the shadow? Give an exam-
ple of a function f for which the shadow has this minimal area.

5. [5] Let
F(x,y,z) = (x, y, (z2−1)ex2

+ z2).

By integrating over its boundary, find the average divergence of F in the
cylinder centred at 0 with unit radius and height 2,

V = {(x,y,z) | x2 + y2 = 1, −1≤ z≤ 1}.

(Do not attempt to directly integrate divF over V ; you will fail.)

3


