Definably Amenable Approximate Subgroups

Zhengqing He*

May 23, 2022

Contents

Background	1
The main part	2

The note was written for a talk given in the seminar course *Topological Dynamics and Model Theory* at University of Münster. It is based on [MW15].

Background

To solve the Hilbert's fifth problem, Gleason and Yamabe proved the following theorem:

Theorem 1.1 (Gleason-Yamabe). Let G be a locally compact group. Then there is an open subgroup G' of G such that for every open neighborhood U of the identity of G', there is a compact open subgroup $K' \trianglelefteq G'$ such that G/K' is isomorphic to a Lie group.

Inspired by this theorem, Breuillard, Green and Tao classfied the finite approximate subgroups of local groups:

Theorem 1.2. Let A be a K-approximate subgroup. Then there is an approximate subgroup A^* and an A^* -invariant subgroup H^* such that

- finitely many left translates of A* cover A,
- $\langle A^* \rangle / H^*$ is nilpotent.

The existence of $\langle A^* \rangle / H^*$ as a Lie model was firstly shown by Hrushovski, which involves additional parameters when defining the Lie model. Our goal of this talk is to show Massicot and Wagner's result in [MW15] that this can be done without additional parameters:

Theorem 1.3. In a local group G, a definable amenable approximate subgroup A gives rise

^{*}Email: zhengqing.he@uni-muenster.de

to a type-definable subgroup $H \subseteq A^4$ such that finitely many left translates of H cover A.

The proof essentially relies on techniques from Sander's theorem.

The main part

- **Definition 2.1.** (1) (Local groups) A set closed under inverse and endowed with an associative multiplication operation defined for up to 100 elements is called a local group.
 - (2) (Symmetric sets) A subset A of a (local) group G is symmetric, if $1 \in A$ and A is closed under inverse.
 - (3) (Approximate subgroups) A symmetric subset A of G is a K-approximate subgroup for some K < ω, if A² := {aa' | a, a' ∈ A} is contained in K left cosets of A. A is called an approximate subgroup if it is a K-approximate subgroup for some K < ω.</p>
 - (4) (Definably amenable subgroups) A <u>definable approximate subgroup</u> A is *definably amenable*, if there is a left translate-invariant finitely additive measure μ on the definable subsets of (A) with μ(A) = 1.
 - (5) (Wide definable sets) A definable subset $B \subseteq \langle A \rangle$ is *wide* in A, if A is covered by finitely many left translates of B.
 - (6) (Equivalent approximate subgroups) Two approximate subgroups are called *equivalent*, if each one is wide in the other.

Remark 2.2. If A is a K-approximate subgroup of a (local) group G, then there is some $E \subseteq G$ of cardinality less than K such that $A^2 \subseteq EA$. Inductively, $A^n \subseteq E^{n-1}A$ for all $n < \omega$.

From now on, we assume that:

- The ambient structure \mathcal{G} is ω^+ -saturated and has domain G as a (local) group.
- A is definably amenable with a fixed measure μ witnessing the definable amenability.
- A is a K-approximate subgroup of G, so there exists a finite set $E \subseteq G$ with $|E| \leq K$ such that $A^2 \subseteq EA$.

We will repeatedly apply ω^+ -saturation in this section. In fact, the consequences of ω^+ -saturation are the only "model theory" that will be used.

Remark 2.3. Let *G* be a (local) group.

- (1) Assume that A is a definable symmetric subset of G. Every definable subset $X \subseteq \langle A \rangle$ is contained in A^n for some $n < \omega$.
- (2) Assume that $(A_i)_{i < \omega}$ is a sequence of definable subsets of G. Then $\bigcap_{i < \omega} A_i$ is nonempty, as long as $\bigcap_{i \in I_0} A_i$ is nonempty for any finite $I_0 \subseteq \omega$.

Proof. (1) Since A is definable, A^n is definable for any $n < \omega$. Then the type defining $x \notin X \setminus \langle A \rangle = X \setminus (\bigcup_{n < \omega} A^n)$ is not realizable, so by ω^+ -saturation, the type is inconsistent, which implies that $X \subseteq A^{n_1} \cup \cdots \cup A^{n_k}$ for some $k < \omega$. Note that $A^i \subseteq A^j$ for i < j, since $1 \in A$. Hence X is contained in A^n for some $n < \omega$.

(2) Since $\bigcap_{i \in I_0} A_i$ is nonempty, for any finite $I_0 \subseteq \omega$, $\bigcap_{i < \omega} A_i$ is consistent by compactness. Then by ω^+ -saturation, $\bigcap_{i < \omega} A_i$ must be realizable, i.e. nonempty.

Stated from the model-theoretic point of view, under the ω^+ -saturation assumption, a definable approximate subgroup is just a symmetric *generic* subset of $\langle A \rangle$, i.e. every definable subset of $\langle A \rangle$ is covered by finitely many left translates of A.

Remark 2.4. Assume that X is a definable subset of $\langle A \rangle$. By Remark 2.3, $X \subseteq A^n$ for some $n < \omega$. Since A is K-approximate for some $K < \omega$,

$$\mu(X) \leqslant \mu(A^n) \leqslant K^{n-1}\mu(A) < \infty.$$

The second inequality follows from Remark 2.2.

Remark 2.5. If $\lim_{n\to\infty} \mu(A^n) < \infty$, then there is some $n < \omega$ with $A^n = \langle A \rangle$.

Proof. Suppose not. Then we can take $a_n \in A^{n+1} \setminus A^n$ for any $n < \omega$. In fact, $a_n A \cap a_m A = \emptyset$ for n < m - 2. Assume that $x \in a_n A \cap a_m A$. Then $x = a_n a = a_m a'$ for a, a' in A, so $a_m = a_n a a'^{-1} \in a_n A^2 \subseteq A^{n+2} \subseteq A^{m-1}$, contradicted to that $a_m \in A^m \setminus A^{m-1}$. Fix $n < \omega$. Then $(a_{3k}A \mid k \leq n)$ is a sequence of disjoint left translates of A inside A^{3n+2} . We have

$$\mu(A^{3n+2}) \ge \mu(\bigcup_{k \le n} a_{3k}A) = \sum_{k \le n} \mu(a_{3k}A) = \sum_{k \le n} \mu(A) \stackrel{\mu(A)=1}{=} n+1.$$

Since *n* is arbitrary here, $\lim_{n\to\infty} \mu(A^n) = \infty$, contradiction.

By Remark 2.5, we can assume that $\lim_{n\to\infty} \mu(A^n) = \infty$.

Fact 2.6 (Ruzsa's covering lemma). Let $X, Y \subseteq G$ be definable such that $\mu(XY) \leq K\mu(Y)$. Then $X \subseteq ZYY^{-1}$ for some finite set $Z \subseteq X$ with $|Z| \leq K$.

Proof. Assume WLOG that $X \neq \emptyset$, since otherwise the conclusion is trivial. Lt Z be a finite subset $Z \subseteq X$ such that $zY \cap z'Y = \emptyset$ for all $z \neq z' \in Z$. Then

$$|Z|\mu(Y) = \mu(ZY) \leqslant \mu(XY) \leqslant K\mu(Y),$$

so $|Z| \leq K$. Hence, we can choose Z to be a <u>maximal</u> such set. For $x \in Z$, clearly, $x \in Z \subseteq ZYY^{-1}$. For $x \in X \setminus Z$, there exists $z \in Z$ such that $zY \cap xY \neq \emptyset$, otherwise it contradicts the maximality of Z. Then $x \in ZYY^{-1}$. Therefore, $X \subseteq ZYY^{-1}$.

Lemma 2.7. Let $B \subseteq \langle A \rangle$ be definable.

- (1) If $\mu(B) > 0$, then BB^{-1} is wide in A and symmetric.
- (2) If B is wide in A and symmetric, then B is an approximate subgroup equivalent to A.

Proof. (1) Clearly, BB^{-1} is symmetric. Since AB is a definable subset of $\langle A \rangle$, $\mu(AB) < \infty$ by Remark 2.4. Since B is a definable subset of $\langle A \rangle$, $\mu(B) < \infty$. Hence there exists some L > 0 such that $\mu(AB) \leq L\mu(B)$. By Fact 2.6, there exists some finite set $Z \subseteq A$ with $|Z| \leq L$

	_

such that $A \subseteq ZBB^{-1}$, so BB^{-1} is wide in A.

(2) Assume that *B* is wide in *A* and symmetric. By (1) in Remark 2.3, there exists some $n < \omega$ such that $B \subseteq A^n$, so $B^2 \subseteq A^{2n} \subseteq E^{2n-1}A$. Since *B* is wide in $\langle A \rangle$, there exists some finite set $Y \subseteq \langle A \rangle$ such that $A \subseteq YB$, so $B^2 \subseteq A^2 \subseteq E^{2n-1}A \subseteq E^{2n-1}YB$, where $E^{2n-1}Y$ is a finite set. Hence *B* is an approximate subgroup. Moreover, since $B \subseteq A^n \subseteq E^{n-1}A$, *A* is wide in *B*. Therefore, *A* and *B* are equivalent.

Lemma 2.8 (Sander). Let $f : (0, 1] \rightarrow [1, K]$ and $\epsilon > 0$. Then there exists $n < \omega$ depending on K, ϵ , and $t > \frac{1}{(2K)^{2^n-1}}$ such that $f(\frac{1}{(2K)^{2^n-1}}) \ge (1-\epsilon)f(t)$.

Proof. Assume WLOG that $0 < \epsilon < 1$, since otherwise $(1 - \epsilon)f(t) \leq 0$, so the inequality holds trivially. Construct $(t_n) \subseteq (0, 1]$ inductively by letting $t_0 = 1$ and $t_{n+1} = \frac{t_n^2}{2K}$ for $n < \omega$. Then $t_n = \frac{1}{(2K)^{2^n-1}}$ for all $n < \omega$. For a fixed $n < \omega$, if for all i < n, $f(t_{i+1}) < (1 - \epsilon)f(t_i)$, then $f(t_n) < (1 - \epsilon)^n f(t_0) \leq (1 - \epsilon)^n K$. But since $f(t_n) \ge 1$, $K \ge 1$, there exists some $n < \omega$ such that $(1 - \epsilon)^n K < 1 \leq f(t_n)$, which means that there exists some i < n such that $f(t_{i+1}) \ge (1 - \epsilon)f(t_i)$. Since $t_i = \frac{1}{(2K)^{2^i-1}} > \frac{1}{(2K)^{2^n-1}}$ by i < n, t_i is the desired t in the conclusion.

Theorem 2.9. For every $m < \omega$, there is a definable *L*-wide (in *A*) approximate subgroup *S* with $S^m \subseteq A^4$, where *L* depends only on *K* and *m*.

Proof. Recall that A is a K-approximate subgroup of G. Firstly we prove this claim.

Claim 2.10. If $B \subseteq A$ is definable with $\mu(B) \ge t\mu(A)$ for some $0 < t \le 1$ and $s = \frac{t}{2K}$, then A is covered by $N := \lfloor \frac{1}{s} \rfloor$ many translates of $X = \{g \in A^2 \mid \mu(gB \cap B) \ge st\mu(A)\}$ by elements of A.

Proof. Suppose not. We can find $(g_i : i \leq N) \subseteq A$ such that $g_j \in (A \setminus \bigcup_{i < j} g_i X)$, so for all $j \leq N$ and i < j, $g_j \notin g_i X$ implies $\mu(g_i B \cap g_j B) < st\mu(A)$. Then

$$\begin{split} \mathcal{K}\mu(A) &\ge \mu(A^2) \ge \mu(\bigcup_{i \le N} g_i B) \\ &\ge (N+1)\mu(B) - \sum_{i < j \le N} \mu(g_i B \cap g_j B) \\ &> (N+1)t\mu(A) - \frac{N(N+1)}{2}st\mu(A) \\ &= (1 - N\frac{s}{2})(N+1)t\mu(A) \\ &\ge (1 - \frac{1}{s}\frac{s}{2})\frac{1}{s}t\mu(A) = \frac{1}{2s}t\mu(A) = \mathcal{K}\mu(A), \end{split}$$

contradiction.

Since the measure μ is not supposed to be definable, X need not be definable neither, but we would like to get a definable one.

Let $P_n(X)$ $(n < \omega, 0 < t \le 1)$ be a predicate on definable subsets of A defined recursively: for a definable subset B of A

- $P_0^t(B)$ if $B \neq \emptyset$,
- $P_{n+1}^t(B)$ if $P_n^t(B)$ and A is covered by $\lfloor \frac{2K}{t} \rfloor$ many translates of

$$X_{n+1}^{t}(B) = \{ g \in A^{2} \mid P_{n}^{t^{2}/(2K)}(gB \cap B) \land P_{n}^{t^{2}/(2K)}(g^{-1}B \cap B) \}.$$

If $(B_x)_x$ is uniformly definable by $\psi(y; x)$, then $P_n^t(B_x)$ is defined by some formula $\theta_n^t(x)$, which can be seen inductively. For $0 < t \le 1$, let \mathfrak{B}_t be the family of definable subsets B of A with $P_n^t(B)$ for all $n < \omega$. Then the following properties hold:

(1) If B is a definable subset of A and $\mu(B) \ge t\mu(A)$, then $P_n^t(B)$ for all $n < \omega$, so $B \in \mathfrak{B}_t$.

- (2) From (1), $A \in \mathfrak{B}_t$, so $\mathfrak{B}_t \neq \emptyset$.
- (3) $\mathfrak{B}_{t_1} \subseteq \mathfrak{B}_{t_2}$ for $t_1 \ge t_2$.

For (1), we will prove by induction on *n* that for all *B* definable in $\langle A \rangle$ and $0 < t \leq 1$, $\mu(B) \ge t\mu(A)$ implies $P_n^t(B)$.

- n = 0: $\mu(B) \ge t\mu(A) \Leftrightarrow B \ne \emptyset \Leftrightarrow P_0^t(B)$.
- n + 1 when assuming it holds for n: Assume that $\mu(B) \ge t\mu(A)$. By the induction hypothesis and $\mu(B) \ge t\mu(A)$, we have $P_n^t(B)$. Let $N = \lfloor \frac{2K}{t} \rfloor$. By Claim 2.10, A is covered by N-translates of

$$X := \{g \in A^2 \mid \mu(gB \cap B) \ge st\mu(A)\}.$$

Hence, there exist $(g_i | 1 \le i \le N)$ in A such that for all $a \in A$, there exists some $g_i \in A$ for $1 \le i \le N$ such that $g_i^{-1}a \in X$. So $\mu((g_i^{-1}a) \cdot B \cap B) \ge st\mu(A)$ and by induction hypothesis, $P_n^{st}((g_i^{-1}a) \cdot B \cap B)$ holds. Similarly, $P_n^{st}((a^{-1}g_i) \cdot B \cap B)$ holds. Then the same $(g_i | 1 \le i \le N)$ satisfies that for all $a \in A$, there exists some g_i for $1 \le i \le N$ such that

$$g_i^{-1}a \in X_{n+1}^t(B) = \{g \in A^2 \mid P_n^{st}(gB \cap B) \land P_n^{st}(g^{-1}B \cap B)\}.$$

Hence A is covered by N-translates of $X_{n+1}^t(B)$ in A, so $P_{n+1}^t(B)$ holds.

For (3), we can prove by induction on *n* that $P_n^{t_1}(gB \cap B)$ implies $P_n^{t_2}(gB \cap B)$ if $t_1 \ge t_2$, because the induction hypothesis will imply $X_{n+1}^{t_1}(B) \subseteq X_{n+1}^{t_2}(B)$ due to $\lfloor \frac{2K}{t_1} \rfloor \le \lfloor \frac{2K}{t_2} \rfloor$ at the induction step. Then it follows that $\mathfrak{B}_{t_1} \subseteq \mathfrak{B}_{t_2}$ for $t_1 \ge t_2$.

Define $f: (0,1] \to \mathbb{R}$ by $f(t) = \inf\{\frac{\mu(BA)}{\mu(A)} | B \in \mathfrak{B}_t\}$. Fix $\epsilon > 0$. Note that $1 \leq f(t) \leq K$ for $0 < t \leq 1$. By Lemma 2.8, there is some t > 0 depending on K and ϵ such that $f(\frac{t^2}{2K}) \geq (1-\epsilon)f(t)$. Choose $B \in \mathfrak{B}_t$ with $\frac{\mu(BA)}{\mu(A)} \leq (1+\epsilon)f(t)$. Let

$$X_n = X_n^t(B) = \{g \in A^2 \mid P_n^{st}(gB \cap B) \land P_n^{st}(g^{-1}B \cap B)\}.$$

Let $X = \bigcap_{n < \omega} X_n$. Note that each X_n is definable, so X is type-definable. For all $n < \omega$,

- X_n is symmetric by definition.
- $X_{n+1} \subseteq X_n$, because $P_{n+1}^{st}(B)$ implies $P_n^{st}(B)$ for all definable $B \subseteq A$.
- *N*-translates of X_n cover A for all $n < \omega$, because $B \in \mathfrak{B}_t$ and $X_n = X_n^t(B)$.

Every finite intersection of $\{X_n\}_{n < \omega}$ is nonempty, because $X_{n+1} \subseteq X_n$ for all $n < \omega$ implies that every finite intersection is just some element in $\{X_n\}_{n < \omega}$. By (2) in Remark 2.3, X is

nonempty. Moreover, for $g \in X$, we have $gB \cap B \in \mathfrak{B}_{st}$, so

$$\mu(gBA \cap BA) \ge \mu((gB \cap B) \cdot A) \ge f(\frac{t^2}{2K})\mu(A)$$
$$\ge (1-\epsilon)f(t)\mu(A) \ge \frac{1-\epsilon}{1+\epsilon}\mu(BA).$$

Hence, for $g \in X$, we have

$$\mu(gBA \triangle BA) = \mu(gBA \cup BA) - 2\mu(gBA \cap BA)$$
$$\leq 2\mu(BA) - \frac{2(1-\epsilon)}{1+\epsilon}\mu(BA)$$
$$= \frac{4\epsilon}{1+\epsilon}\mu(BA) < 4\epsilon\mu(BA).$$

Hence, for $g_1, \cdots, g_m \in X$,

$$\mu(g_1 \cdots g_m BA \triangle BA)$$

$$\leq \mu((BA \triangle g_1 BA) \cup g_1(BA \triangle g_2 BA) \cup \cdots \cup g_1 \cdots g_{m-1}(BA \triangle g_m BA)))$$

$$\leq \mu(BA \triangle g_1 BA) + \mu(BA \triangle g_2 BA) + \cdots + \mu(BA \triangle g_m BA)$$

$$< 4m\epsilon\mu(BA),$$

where the first inequality is because for any sets $C, D, E, C \triangle E \subseteq (C \triangle D) \cup (D \triangle E)$ and it can be generalized to arbitrarily many sets by induction. In particular, if $\epsilon \leq \frac{1}{4m}$, then

$$\mu(g_1\cdots g_m BA \triangle BA) < \mu(BA),$$

so $g_1 \cdots g_m BA \cap BA \neq \emptyset$, because otherwise $\mu(g_1 \cdots g_m BA \triangle BA) = 2\mu(BA)$, contradiction. Whence, $X^m \subseteq A^4$, because for any g_1, \cdots, g_n from X, if x is in $g_1 \cdots g_m BA \cap BA$ and $g_1 \cdots g_m x' = x$, then $g_1 \cdots g_m = x(x')^{-1} \in A^4$. By ω^+ -saturation, $X^m \subseteq A^4$ implies that $X_n^m \subseteq A^4$ for some $n < \omega$, because by compactness, we have $\bigcap_{n < \omega} X_n^m = (\bigcap_{n < \omega} X_n)^m$ and by compactness again we get that $X_n^m \subseteq A^4$ for some $n < \omega$. $S := X_n$ is N-wide in A, symmetric and definable, so it is an approximate subgroup equivalent to A by Lemma 2.7.

Lemma 2.11. Let X_1, \dots, X_n be definable subsets of A with $N_i \mu(X_i) \ge \mu(A)$ for some $N_i < \omega$. Then there is a definable subset $D \subseteq A$ such that

- $D^{-1}D \subseteq (X_1^{-1}X_1) \cap (X_2^{-1}X_2)^2 \dots \cap (X_nX_n^{-1})^2$,
- $K^{n-1}N_1\cdots N_n\mu(D) \ge \mu(A).$

Proof. Since $\mu(AX_2) \leq K\mu(A) \leq KN_2\mu(X_2)$, by Fact 2.6, there are g_1, \dots, g_{KN_2} such that $A \subseteq \bigcup_{i=1}^{KN_2} g_i X_2 X_2^{-1}$. Then there is some $i < \omega$ such that

$$KN_1N_2\mu(X_1 \cap g_iX_2X_2^{-1}) \ge \mu(A),$$

since otherwise for all $1 \leq i \leq KN_2$, $KN_1N_2\mu(X_1 \cap g_iX_2X_2^{-1}) < \mu(A)$, so

$$\mu(A) \leqslant N_1\mu(X_1) \leqslant N_1KN_2\mu(g_iX_2X_2^{-1} \cap X_1) < \mu(A),$$

contradiction. The second inequality comes from $A \subseteq \bigcup_{i=1}^{KN_2} g_i X_2 X_2^{-1}$ intersecting X_1 on both side. Observe that Fact 2.6 can be applied generally:

If *B* is a definable subset of *A* with $\mu(A) \leq N\mu(B)$ and *C* is a definable subset of *A* with $\mu(A) \leq N'\mu(C)$, then

- $KNN'\mu(C \cap g_iBB^{-1}) \ge \mu(A)$ for some $i \le KN$.
- Let D be $C \cap g_i BB^{-1}$. Then $D^{-1}D \subseteq (C^{-1}C) \cap (BB^{-1})^2$ and $KNN'\mu(D) \ge \mu(A)$.

Now, we iterately use our observation:

• $B := X_2$, $C := X_1$: the observation yields D_0 such that $D_0^{-1}D_0 \subseteq X_1^{-1}X_1 \cap (X_2X_2^{-1})^2$ and $KN_1N_2\mu(D_0) \ge \mu(A)$.

Suppose D_i has been constructed with $K^{i+1}N_1 \cdots N_{i+2}\mu(D_i) \ge \mu(A)$ and $D_i^{-1}D_i \subseteq (X_1^{-1}X_1) \cap (X_2X_2^{-1})^2 \cap \cdots \cap (X_{i+2}X_{i+2}^{-1})^2$.

• $B := X_{i+3}, C := D_i$: the observation yields D_{i+1} such that $K^{i+2}N_1 \cdots N_{i+3}\mu(D_i) \ge \mu(A)$ and $D_{i+1}^{-1}D_{i+1} \subseteq (X_1^{-1}X_1) \cap (X_2X_2^{-1})^2 \cap \cdots \cap (X_{i+3}X_{i+3}^{-1})^2$.

This procedure ends when we get D_{n-2} . Then let $D = D_{n-2}$ and it satisfies the requirement for D in the statement.

Theorem 2.12. Let *R* be a definable *N*-wide symmetric subsets with $R^4 \subseteq A^4$. Then there exists a definable *L*-wide symmetric subset $(S^8)^A \subseteq R^4$, where *L* depends only on *K* and *N*.

Proof. If $A \subseteq XR$, then $R^2 \subseteq A^4 \subseteq E^3A \subseteq E^3XR$, so R is a K^3N -approximate subgroup. By Theorem 2.9, there is some definable approximate subgroup $T \subseteq R^4$ equivalent to R with $T^{48} \subseteq R^4$ and T is $\{a_1, \dots, a_n\}$ -wide in A, which means that $A \subseteq \bigcup_{i=1}^n a_i T$. Define $\overline{\mu}$ on definable subsets of $\langle A \rangle$ by $\overline{\mu}(X) := \frac{1}{n} \sum_{i=1}^n \mu(Xa_i)$. Then

- $\overline{\mu}$ is left-invariant,
- $\overline{\mu}(A) = \frac{1}{n} \sum_{i=1}^{n} \mu(Aa_i) \leq \mu(A^2) \leq K\mu(A),$
- $\overline{\mu}(a_iTa_i^{-1}) \ge \frac{1}{n}\mu(T) \ge \frac{1}{n^2}\mu(A) \ge \frac{1}{Kn^2}\overline{\mu}(A)$, where the second inequality is because $\mu(A) \le \sum_{i=1}^n \mu(a_iT) = n\mu(T)$ and the last inequality is because $\overline{\mu}(A) \le K\mu(A)$ from the last clause.

Since all the $a_i T a_i^{-1}$ $(1 \le i \le n)$ are subsets of A^6 . Because $A^6 \subseteq E^5 A$ and $|E| \le K$, we have

$$\mathcal{K}^6 n^2 \overline{\mu}(a_i T a_i^{-1}) \ge \mathcal{K}^5 \overline{\mu}(A) \ge \overline{\mu}(A^6).$$

Apply Lemma 2.11 to $a_i T a_i^{-1} \subseteq A^6$ $(1 \leq i \leq n)$ with $K^6 n^2 \overline{\mu}(a_i T a_i^{-1}) \geq K^5 \overline{\mu}(A) \geq \overline{\mu}(A^6)$. Let X_i be $a_i T a_i^{-1}$. There exists $D \subseteq A^6$ such that $S := D^{-1}D \subseteq (X_1^{-1}X_1) \cap (X_2X_2^{-1})^2 \cap \cdots \cap (X_nX_n^{-1})^2$ and $K^{n-1}N_1 \cdots N_n\mu(D) \geq \mu(A)$. Since $S \subseteq X_i^{-1}X_i$ for any $1 \leq i \leq n$, $S^{a_i} = a_i^{-1}Sa_i \subseteq T^4$ for any $1 \leq i \leq n$. Since $A \subseteq \bigcup_{i=1}^n a_i T$, $S \subseteq T^6$, so $(S^8)^A \subseteq T^{48} \subseteq R^4$.

Corollary 2.13. There is a type-definable normal subgroup H of $\langle A \rangle$ contained in A^4 such that every definable superset of H contained in $\langle A \rangle$ is wide in A.

Proof. Recall that as long as

- A is K-approximate,
- *R* is a definable *N*-wide symmetric subset with $R^4 \subseteq A^4$,

there exists some definable *L*-wide symmetric subset *S* with $(S^8)^A \subseteq R^4$. Take $S_0 = R$. Assume S_i has been constructed. Let S_{i+1} satisfy that $(S^8_{i+1})^A \subseteq S^4_i$ by Theorem 2.12. Let $H = \bigcap_{i < \omega} (S^4_i)^A$. *H* is normal, type-definable, and every definable superset of *H* contained in $\langle A \rangle$ is wide in *A*.

Reference

[MW15] Jean-Cyrille Massicot and Frank O. Wagner. "Approximate subgroups". In: *Journal de l'École polytechnique* 2 (2015), pp. 55–63. DOI: 10.5802/jep.17.