
NOTES ON HRUSHOVSKI’S “DEFINABILITY PATTERNS AND

THEIR SYMMETRIES”

PIERRE SIMON

Those are notes written for the Berkeley model theory seminar, in which we read
Hrushovski’s paper. They are based on the talks I gave there.

I give a slightly different presentation of the paper and introduce my own ter-
minology. The difference is that whereas Hrushovski considers a positive theory
of patterns, we work here entirely in a space of types Sx(M), which is a monster
model (saturated and homogeneous) for that theory. So this is the same difference
between working with the category of models of a complete theory T and working
only with elementary substructures of a fixed monster model. Here, it allows us
to never mention positive logic. We just need to define a notion of morphism and
work in the category of subsets of Sx(M) equipped with those morphisms. This
might make the constructions easier to understand, although I don’t think it actu-
ally makes anything shorter. Hrushovski mentioned to me a few reasons why the
point of view taken in the paper of defining the core as an e.c. model of a positive
theory could be useful, one of them being that it makes it easier to talk about
imaginary elements. For me, it is still easier to first understand the constructing
inside Sx(M), and then it is a relatively small step to see it as an e.c. model of a
positive theory. I might include that at some point in those notes.

On the other hand, one advantage (for me) of this approach is that it makes it
very similar to what is done it topological dynamics. In the ω-categorical case, the
construction is essentially that of a minimal ideal of the Ellis semi-group and seeing
it in this way was for me a big help in making sense of it. I presented this in my
first talk at the seminar, but it is not included in those notes. That might happen
later.

I restrict here to the case of a complete first order theory and do not consider
finite sets of formulas as Hrushovski does. Again, I might add some words about
this in future versions.

Thanks to the participants of the seminar and to Krzysztof Krupinski for com-
ments on those notes.

1. The pattern structure on type space and the core

Let T be a complete first order theory in a language L, fixed throughout. Let
M be a model of T .

We define a relational structure on any type space Sx(M), or more generally
on products of type spaces Sx1(M) × · · · × Sxn(M), where the xi’s are variables
ranging in possibly different sorts.

Let φ1(x1; t), . . . , φn(xn; t), θ(t) be L-formulas without parameters (t a tuple of
variables). Write φ̄ = (φ1, . . . , φn) and define R(φ̄,θ) to be the subset of Sx1

(M)×
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· · ·×Sxn
(M) consisting of tuples (p1, . . . , pn) for which there does not exist b ∈M t

with:
– M |= θ(b);
– pi ` φi(xi; b) for all i ≤ n.

Some observations:

(1) We could do without θ and replace each φi by φi ∧ θ. However, it is more
natural to have θ around and also we might later want to put restrictions on
φ (such as being quantifier free) to define variations on this, while putting
different, or no restrictions on θ.

(2) If φ(x) is a formula over ∅, then the set of p ∈ Sx(M) containing φ(x) is
p-closed (even p-clopen).

(3) The union of two sets R• is again of this form. More precisely R(φ̄,θ) ∪
R(φ̄′,θ′) = R(φ̄′′,θ′′), with φ′′i (xi; t1 t̂2) = φi(xi; t1)∧φ′i(xi; t2) and θ′′(t1 t̂2) =

θ(t1) ∧ θ(t2).
(4) The set R(φ̄,θ) is a closed subset of Sx1

(M)× · · · ×Sxn
(M) (equipped with

the product topology). It is invariant under all automorphisms of M .
(5) If T is ω-categorical and M is the countable model, then any closed subsets

of Sx1(M)× · · · × Sxn(M) invariant under automorphisms of M is a finite
intersection of sets of the form R(φ̄,θ). I like to think of the sets R(φ̄,θ) as

being in some sense the 0-definable closed subset of Sx1(M)×· · ·×Sxn(M).

We will call a subset of the form R(φ̄,θ) an atomic p-closed set. A p-closed set is
an intersection of atomic p-closed sets. By observation 3 above, p-closed sets form
a topology on Sx1(M)× · · · × Sxn(M), though that will not be very important. If
we say closed or open, without the p-, then we always mean according to the usual
topology.

Remark 1.1. Note that an open subset C ⊆ Sx(M) is p-open if and only if the
following holds: whenever the clopen set defined by φ(x; b) is included in C, there
is θ(t) ∈ tp(b) such that C contains all types which contain a formula φ(x; b′) with
b′ |= θ(t). (So this expresses that C is ∅-invariant in a strong way.) There is a
similar condition for p-open subsets of product of type spaces.

Remark 1.2. Equality, as a subset of Sx(M)2 is p-closed as it is the intersection of
the sets R(φ(x;t),¬φ(x′;t);t=t) for φ ∈ L.

Proposition 1.3. The projection of a p-closed set is p-closed.

Proof. Say that R ⊆ Sx(M)×Sy(M) is p-closed and let π be the projection to the
first coordinate. By compactness, the projection of an intersection of closed set is
the intersection of the projections. We can therefore assume that R is an atomic
p-closed set, say R = R(φ(x,t),ψ(y;t);θ(t)).

Let p ∈ Sx(M) \ π(R). As π(R) is closed in the usual topology, there is a
formula φ(x; b) ∈ L(M) such that no type containing that formula lies in π(R). By
compactness, there is a formula ψ(y; b′) ∈ L(M) such that any (p′, q′) ∈ Sx(M) ×
Sy(M) such that p(x) ` φ(x; b) and q(y) ` ψ(y; b′) lies in the complement of R.
Since R is p-closed, there is θ(t̂ t′) ∈ tp(b̂ b′) such that R ⊆ R(φ(x;b),ψ(y;b′);θ(tˆt′)).

Let
φ′(x; t) = φ(x; t) ∧ (∃y, t′)(θ(t̂ t′) ∧ ψ(y; t′)).

Then R(φ′(x;t);θ(t)) contains π(R) and does not contain p. This shows that π(R) is
p-closed. �
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In fact, more generally, we can project a p-closed set from a set of types in several
variables.

Proposition 1.4. The image of a p-closed set under the canonical map Sx1,...,xn
(M)→

Sx1(M)× · · · × Sxn(M) is p-closed.

Proof. The argument is the same as that for the previous proposition. �

Fix a variable x and we define a new relational language Lp(x). For each
tuple φ̄ = (φ1(x; t), . . . , φn(x; t)) and formula θ(t) (all without parameters), let
R(φ̄;θ)(x1, . . . , xn) be a relation symbol. Let Lp(x) consist of all those symbols as

the formulas φi and θ vary in L. The space Sx(M) is made into an Lp(x)-structure
with the natural interpretation. We can similarly define a language for a product
of type spaces Sx1

(M) × · · · × Sxn
(M). From now on, we will write Lp(x) as just

Lp, the variable being deduced from the context.
If A,B are Lp-structures (in particular, subsets of S(M)), a morphism from A

to B is a map f : A→ B which is an Lp-morphism: if some relation R•(ā) holds for
ā ∈ A, then also R•(f(ā)) holds. (Note that we do not say p-morphism, as those
are the only kind of morphisms we will consider.) Morphisms need not be injective.

In the case of interest to us, where A,B ⊆ S(M), we have that f : A → B
is a morphism if and only if: for any finite ā ∈ An and R ⊆ Sx(M)n p-closed, if
ā ∈ R, then f(ā) ∈ R. Hence, one might want to think of morphisms as a form of
specializations, since they preserve p-closed sets.

Given ā ∈ Sx(M)n, defines the locus of ā, written loc(ā), as the intersection of
all the p-closed subsets of Sx(M)n containing ā (equivalently, the smallest p-closed
subset containing ā). A map f : A→ B is a morphism

Remark 1.5. Let A,B ⊆ Sx(M) and let f : A→ B be a map. Fix an enumeration
ā of A. So ā lies in some Sx(M)I , for some index set I (or we could use A itself as
index set). Then f is a morphism if and only if loc(f(ā)) ⊆ loc(ā), where f(ā) lies
in the same product space. Equivalently, f is a morphism if and only if we have
loc(f(ā′)) ⊆ loc(f(ā)) for every finite tuple ā′ from A.

Remark 1.6. Morphisms preserve types over ∅: more precisely, let f : A→ Sx(M)
be a morphism and p ∈ A, then the restriction of p and f(p) to ∅ are equal. This
follows from observation 2 above.

Proposition 1.7. The Lp-structure Sx(M) is homogeneous for morphisms: if A ⊆
M and f : A → Sx(M) is a morphism, then f extends to an endomorphism of
Sx(M).

Proof. Let p∗ ∈ Sx(M) and say we want to extend f to A ∪ {p∗}. Let ā be an
enumeration of A, indexed by some α. Let R be the locus of ā̂ p∗ in Sx(M)α ×
Sx(M). Let R′ be the projection of R to Sx(M)α. By Proposition 1.3, R′ is p-
closed. As ā ∈ R′, also f(ā) ∈ R′. By definition of R′, there is q ∈ Sx(M) such
that f(ā)̂ q ∈ R. Then we can extend f by sending p∗ to q. �

Definition 1.8. A subset A ⊆ Sx(M) is p-minimal if any morphism f : A →
Sx(M) is an Lp-isomorphism on its image.

Note in particular that any morphism defined on a p-minimal set is injective.

Lemma 1.9. A subset A ⊆ Sx(M) is p-minimal if and only if every finite A0 ⊆ A
is p-minimal. In particular, an increasing union of p-minimal sets is p-minimal.
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Proof. It follows at once from the definitions that if every finite A0 ⊆ A is p-
minimal, then A is p-minimal, since if a map is not an isomorphism, there is a
finite subset of the domain that witnesses it.

Conversely, assume that A is p-minimal and let A′ ⊆ A. If there is a morphism
f : A′ → Sx(M) that is not an Lp-isomorphism, then by Proposition 1.7 f can
be extended to an endomorphism of Sx(M) which by restriction to A contradicts
p-minimality of A. �

Remark 1.10. Let A ⊆ Sx(M) and let ā be an enumeration of A indexed by some α.
Then A is p-minimal if and only if loc(ā) is a minimal (under inclusion) non-empty
p-closed subset of Sx(M)α. Indeed, if there is R ( loc(ā) p-closed and ā′ ∈ R, then
the map sending ā to ā′ defines a morphism on A which is not an Lp-isomorphism.

We now state the main theorem, which defines the core of T . By a retraction,
we mean a morphism which is the identity on its image.

Theorem 1.11. There exists a p-minimal J ⊆ Sx(M) and a retraction f : Sx(M)→
J . Furthermore, J is unique up to Lp-isomorphism and its Lp-isomorphism type
does not depend on the choice of the model M .

We prove the theorem in several steps.

Lemma 1.12. There exists a p-minimal K ⊆ Sx(M) and a morphism g : Sx(M)→
K.

Proof. Let m̄ be an enumeration of Sx(M), indexed by some ordinal λ. Let R ⊆
Sx(M)λ be a minimal non-empty p-closed set containing loc(m̄). This exists as p-
closed sets are closed in the usual product topology and that topology is compact.
Let m̄′ ∈ R. Write m̄ = (mi : i < α) and m̄′ = (mi : i < α). Then the map f
defined by sending mi to m′i is a morphism from Sx(M) to Sx(M). Its image K is
p-minimal. �

Let J ⊆ Sx(M) be a p-minimal set, which is maximal under inclusion (amongst
p-minimal subsets of Sx(M)). This exists by Lemma 1.9 and Zorn’s lemma.

Lemma 1.13. Let f : J → L be a morphism, with L ⊆ Sx(M) p-minimal. Then
f is onto L (and hence is an Lp-isomorphism).

Proof. Assume not and let J ′ ⊆ L be the image of f . Then f : J → J ′ is an
Lp-isomorphism as J is p-minimal. Let g : J ′ → J be the inverse of that map. By
Proposition 1.7, g extends to an endomorphism g̃ of Sx(M). Let L′ = g̃(L). As
L is p-minimal, g̃ is injective on L and L′ is isomorphic to L. Hence L′ strictly
contains J and is p-minimal. This contradicts maximality of J . �

Let now g : Sx(M) → K a morphism, with K p-minimal. The restriction of
f to J gives a map σ := g|J : J → K. By the previous lemma, it is an Lp-
isomorphism. Hence J is Lp-isomorphic to K and this proves uniqueness of J . Let
f = σ−1 ◦ g : Sx(M)→ J . Then f is a retraction from Sx(M) to J .

It remains to prove independence from the choice of M .

Lemma 1.14. Let N |= T , then there is a morphism f : Sx(M)→ Sx(N).

Proof. As N and M are elementarily equivalent, there is an index set I and an
utrafilter U on I such that N embeds elementarily in the utrapower MU of M . For
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p ∈ Sx(M), we can define the ultrapower pU ∈ Sx(MU ) as:

pU ` φ(x; [ai]) ⇐⇒ {i ∈ I : p ` φ(x; ai)} ∈ U .

Now the map p 7→ pU is easily seen to be a morphism from Sx(M) to Sx(MU ).
Having identified N with its image in MU , the restriction map Sx(MU ) → Sx(N)
is also a morphism (this follows at once from the definitions). Composing them, we
get a morphism from Sx(M) to Sx(N). �

Now independence from the model is just a diagram-chasing argument.
Take morphisms σ : Sx(M) → Sx(N) and τ : Sx(N) → Sx(M). Let JM and

JN be the p-minimal sets constructed above for M and N respectively, and f :
Sx(M) → J , g : Sx(N) → J ′ be retractions. Let J ′ = σ(JM ). Restricting g to
J ′ gives a morphism J ′ → JN . Composing with τ and then with f gives us a
morphism J ′ → J .

The composition f ◦σ−1 ◦g◦σ : Sx(M)→ Sx(M) maps Sx(M) to J . Restricting
to JM , we see that it must be onto JM and an Lp-isomorphism on JM . The image
of g ◦ σ is a subset of JN , hence f(σ−1(JN )) = JM . Similarly, g(σ(JM )) = JN .
Hence f ◦ σ−1 is an isomorphism on JN (otherwise f ◦ σ−1 ◦ g ◦ σ would not be an
isomorphism on JM ). Therefore JN and JM are isomorphic.

This finishes the proof of the theorem.

Definition 1.15. The Lp-isomorphism type of the set J given by the theorem is
called the core of T , denoted core(T ).

We will write J = core(T ), thinking of J as an Lp-structure and write J for
a subset of Sx(M) isomorphic to J (equivalently, the image under a morphism
f : J → Sx(M)).

Note that any J ′ ⊆ Sx(M) isomorphic to the core satisfies the conclusion of the
theorem: this follows from homogeneity (Proposition 1.7). We will refer to such a
set as a core.

2. Properties of the core

2.1. Types in the core. Let J ⊆ Sx(M) be a core.

Lemma 2.1. Let A ⊆ Sx(M)n. Then there exists A′ ⊆ J , Lp-isomorphic to A if
and only if A is p-minimal.

Proof. If A is p-minimal, then any retraction f : Sx(M) → J restricts to an Lp-
isomorphism on A. This shows one direction; the converse follows from Lemma
1.9. �

Lemma 2.2. The core is homogeneous: any morphism f : A→ J , A ⊆ J extends
to an (Lp-)automorphism of J .

Proof. Identify J with an image J of it in Sx(M). Then by homogeneity of Sx(M),

f extends to an endomorphism f̃ of Sx(M). Let g : Sx(M) → J be a retraction.

Then g ◦ f̃ sends J to J and extends f . Its restriction to J is an automorphism. �

Proposition 2.3. Let p, q ∈ J with p 6= q. Then there is are formulas φ1(x; t), . . . , φn(x; t)
and θ(t) such that there does not exist b ∈ θ(M) with

p ` φi(x; b)↔ q ` φi(x; b) for all i.
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Proof. As {p, q} is p-minimal, loc(p, q) ⊆ Sx(M)2 is a minimal p-closed set and
hence does not intersect the diagonal. Write loc(p, q) = R(x, x′), thinking of it as
a partial type in two variables. The following partial type over M is inconsistent:

R(x, x′) ∧ tp(x/M) = tp(x′/M).

By compactness, there is some finite b ∈ M and formulas φ1(x; t), . . . , φn(x; t)
such that

R(x, x′) ∧
∧
i

φi(x; b)↔ φi(x
′; b)

is inconsistent. As R is p-closed and using Remark 1.1 (on the complement of R),
there is some θ(t) ∈ tp(b) such that

R(x, x′) ∧
∧
i

φi(x; b′)↔ φi(x
′; b′)

is inconsistent for any b′ ∈ θ(M). This gives what we want. �

2.1.1. Definable types.

Proposition 2.4. Any type in Sx(M) which is definable over acleq(∅) is in J .
Furthermore (at least if M is sufficiently saturated), the acleq(∅)-definable types are
precisely the types which are in all the cores of Sx(M).

Proof. If p ∈ Sx(M) is definable over ∅, then {p} is a p-closed set: it is defined as
the intersection of the sets R(φ,¬dpφ), for all φ, where

p ` φ(x; b) ⇐⇒ M |= dpφ(b).

Hence loc(p) = {p} is p-closed and minimal under inclusion (amongst non-empty
p-closed sets). Therefore J must intersect {p} and hence contain p.

If p is acleq(∅)-definable, then the set of conjugates of p is minimal p-closed.
(Some of this will be more clear later on.)

For the furthermore part, simply note that any type which is not acleq(∅)-
definable has unboundedly many conjugates under the automorphism group of M
(if M is homogeneous and saturated enough), hence cannot be in all the cores.
Probably this also works for smaller M ’s, but I didn’t check. �

2.2. The pp-topology. Given a core J ⊆ Sx(M), we have two induced topologies
on J : the standard one and the p-topology. Only the p-topology survives to J
(and its cartesian powers), since the standard topology might depend on the choice
of embedding. The p-topology is not in general T1 (recall that a topology is T1 if
singletons are closed). We now define a third topology which is T1.

Definition 2.5. A subset C(u) ⊆ J is pp-closed if it is an intersection of sets of
the form R(u, q1, . . . , qn), with R ⊆ J 1+n p-closed and (q1, . . . , qn) ∈ J n.

We similarly define a pp-closed subset of J k as an intersection of sets of the
form R(u1, . . . , uk, q1, . . . , qn) with R ⊆ J k+n p-closed and (q1, . . . , qn) ∈ J n.

In other words, a pp-closed set is a fiber of a p-closed set. One can check that
the family of pp-closed sets is closed under finite unions (this follows from the fact
that p-closed sets are closed under finite union and adding dummy variables), hence
they are the closed sets of a topology. Note that similarly to the Zariski topology,
the topology on J 2 say is not defined as the product topology from J . (This is
also related to the fact that a 2-type is not a product of 1-types.)
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Hrushovski really thinks of J as being a multi-sorted structure with each carte-
sian power being its own sort (and in fact, he has one sort for each finite set of
formulas, but we do not do this here). This point of view that is useful to define
the topology on G below, but we will try to do things without explicitly taking that
approach.

Proposition 2.6. The pp-topology on J n is compact and T1.

Proof. For simplicity of notations, assume n = 1. Let p ∈ J . Since equality is
p-closed in J 2, the set x = p is pp-closed by definition of the pp-topology. Hence
J is T1. (Note that equality in J 2 is p-closed, but need not be closed in the product
topology in J 2, when J is equipped with the pp-topology. This is why we do not
get that J is Hausdorff.)

Let Ci(u) be a family of pp-closed subsets of J such that any finite subfamily
has non-empty intersection. Without loss, Ci(u) = Ri(u, q̄i) for some p-closed Ri
and tuple q̄i ∈ J . Fix an image J of J in Sx(M) and identify them. Then we
can see each Ri(u, q̄i) as defining a closed subset of Sx(M). By compactness of the
standard topology, there is a type p ∈ Sx(M) in the intersection

⋂
iRi(u, q̄i). Let

f : Sx(M)→ J be a retraction. Then we also have Ri(f(p), f(q̄i)) for each i. As f
is a retraction, f(q̄i) = q̄i. Therefore Ri(f(p), q̄i) holds for each i and p ∈

⋂
i Ci(u)

as required. �

Let G = Aut(J ) be the group of Lp-automorphisms of the core. Since we
know that any endomorphism of the core is an automorphism, G is also the set of
endomorphisms of J .

We equip G with the topology for which a basic open subset has the form {g ∈ G :
¬R(ga1, . . . , gak, b1, . . . , bn)} for some a1, . . . , ak, b1, . . . , bn in J and R a p-closed
set in J k+n.

Remark 2.7. By Lemma 2.2, G is non-trivial if and only if there are two types
p, q ∈ J such that {p} and {q} are Lp-isomorphic.

Proposition 2.8. The group G is compact T1. For g ∈ G, left and right translation
by g are continuous on G; also inversion is continuous.

Proof. Let g ∈ G. Then the singleton {g} is equal to the intersection
⋂
a∈J {σ ∈

G : σ(a) = g(a)}. As equality is p-closed, all those sets are closed in G, hence G is
T1.

Let us show compactness. Let (gi)i∈I be a family of elements of G and U an
ultrafilter on I. We are looking for a limit to the family (gi) along U . Fix an
embedding J ⊆ Sx(M) of J . By homogeneity of Sx(M), we can extend each gi to
an endomorphism g̃i of Sx(M). See each g̃i as living in the product

Sx(M)
Sx(M)

,

where Sx(M) is equipped with its usual compact Hausdorff topology. Let g̃∗ be the
limit limU g̃i in this product space (which is compact). Then g̃∗ is an endomorphism
is Sx(M) (this is a closed condition on Sx(M)Sx(M) as each p-closed subset of
Sx(M)n is closed in the product topology). Let f : Sx(M) → J be a retraction
and define g∗ = (f ◦ g̃∗)|J . Then g∗ is an automorphism of J . It is also a limit of
the family gi along U : if say ¬R(g∗a1, . . . , g∗ak, b1, . . . , bn) holds for R p-closed in
Sx(M), then also ¬R(g̃∗a1, . . . , g̃∗ak, b1, . . . , bn) holds as f is a morphism, and then
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¬R(gia1, . . . , giak, b1, . . . , bn) is true for almost all i since R ⊆ Sx(M)k+1 is closed
in the product topology.

Fix g ∈ G. For any ā ∈ J k, h ∈ G, and p-closed R(x̄, d̄), we have

R((g · h)ā, d̄) ⇐⇒ R(hā, g−1(d̄)).

This shows that left-multiplication by g is continuous: the preimage of the open set
{σ ∈ G : ¬R(σā, d̄)} is the open set {τ ∈ G : ¬R(τ ā, g−1(d̄))}. Similarly, for right
multiplication write:

R((h · g)ā, d̄) ⇐⇒ R(h · (gā), d̄).

Finally, inversion is continuous as

R(g−1ā, d̄) ⇐⇒ R(ā, gd̄).

�

Let gEG be the set of infinitesimal elements of G that is the set

{g ∈ G : gU ∩ U 6= ∅ for all non-empty pp-open subsets U ⊆ J}.
This is a closed normal subgroup of G.

Proposition 2.9. The group G := G/g is compact Hausdorff.

Proof. See Lemma C.1 in Appendix C of the paper. �

Proposition 2.10. We have the following cardinality bounds:

(1) |J | ≤ 2|T |;

(2) |G| ≤ 22|T |
;

(3) |G| ≤ 2|T |.

Proof. The first point follows from the fact that J embeds in any given model.
The second is a direct consequence of it. To see the third point, fix an embedding
J ⊆ Sx(M) inside some M of size |T |. Then in the usual topology on Sx(M), J
admits a dense subset D ⊆ J of size ≤ |T |. Then D is also dense in the pp-topology
on J since a pp-open set is open in the usual topology. Let g ∈ G and assume that
g fixes D pointwise. Let U ⊆ J be pp-open, non-empty. Then by density, there is
d ∈ U ∩D and then since g(d) = d, d ∈ U ∩g(U) and U ∩g(U) is not empty. Hence
g ∈ g. This proves that G is at most as large as the set of bijections of D which has
size at most 2|T |. �

3. Lascar strong types

Let M̄ be a monster model of T . We define the lascar neighbor relation L1
2 on

pairs of tuples of M̄ as follows.
For a, b ∈ M̄x, say that L2

1(a, b) holds if there is a small model M0 ≺ M such
that tp(a/M0) = tp(b/M0).

Fix some small model M0 ≺M . Assume that a, b ∈ M̄x are such that there is no
M ′0 ≺ M isomorphic to M0 such that tp(a/M ′0) = tp(b/M ′0). Then this translates
to a certain partial type over ab being inconsistent. By compactness, we get the
following:

There is a formula θ(ȳ) and a finite set ∆ of formulas such that there is no
b̄ ∈ θ(M̄) with tp∆(a/b̄) = tp∆(a′/b̄).

Conversely, if this holds, then there cannot be any submodel M1 ≺ M̄ for which
tp(a/M1) = tp(a′/M1). From this it follows that in the definition of L1

2, we could
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impose that M0 has a fixed isomorphism type and obtain an equivalent definition.
This also shows that L2

1(x, x′) is type definable over ∅.
Given a model M of T , define L1(x, x′) as a binary relation on Sx(M) by

L1(p, q) ⇐⇒ (∃r)(L2
1(r) ∧ r|x = p ∧ r|x′ = q).

So L1 is the projection of L2
1 under the canonical projection Sx,x′(M)→ Sx(M)×

Sx′(M). Since L2
1 is type-definable over ∅, it is in particular p-closed in Sx,x′(M)

and by Proposition 1.4, L1 is p-closed in Sx(M)2. It follows in particular, that L1

is also well-defined on J .
Finally, note that L1(p, q) holds if and only if for each θ(ȳ) and each finite ∆,

there are a |= p, b |= q in M̄x and d̄ ∈ θ(M̄) such that tp∆(a/d̄) = tp∆(b/d̄).

Lemma 3.1. Let f : Sx(M)→ Sx(M) be a morphism. Let p, q ∈ Sx(M) such that
f(p) = f(q), then L1(p, q) holds.

Proof. Assume ¬L1(p, q). Then there is a consistent θ(ȳ) and a finite ∆ such that
we cannot find a |= p, b |= q and d̄ ∈ θ(M̄) with tp∆(a/d̄) = tp∆(b/d̄). It follows in
particular, that we cannot find such a d̄ in θ(M). This is now saying that something
is not represented in (p, q), hence is a p-closed condition. As f is a morphism, the
same is true of f(p) and f(q). Pick d̄ ∈ θ(M). Then f(p) and f(q) have a different
restriction to d̄, hence f(p) 6= f(q). �

Corollary 3.2. Let r : Sx(M) → J be a retraction, then for any p ∈ Sx(M), we
have L1(p, r(p)).

Proof. This follows from the previous lemma taking q = r(p) there, as r(q) = q. �

We define Lascar equivalence L∞, first as a relation on pairs of tuples of M̄ : say
that L2

∞(a, b) holds for a, b ∈ M̄x if there exists a finite sequence a = a0, a1, . . . , an =
b with L2

1(ak, ak+1) for each k. Define similarly L∞(x, x′) as a binary relation on
Sx(M) by a similar condition: L∞(p, q) holds if there exist p = p0, p1, . . . , pn = q
such that L1(pk, pk+1) holds for each k.

The following expresses that the two notions coincide.

Lemma 3.3. Given a, b ∈ M̄x and M0 ≺ M̄ , a and b are Lascar-equivalent if and
only if L∞(tp(a/M0), tp(b/M0)) holds in Sx(M).

Proof. We may assume that L1(tp(a/M0), tp(b/M0)) holds. Then there are a′ ≡M0

a and b′ ≡M0
b such that L2

1(a′, b′) holds. But then we have L2
1(a, a′) ∧ L2

1(a′, b′) ∧
L2

1(b′, b) and therefore L2
∞(a, b) holds. The converse is clear by definition of L1. �

Let Lasx,M be the set of L∞-equivalence classes in Sx(M). Define similarly
Lasx,J as the set of L∞-classes in J .

Note that for M ≺ N , the restriction map gives an identification of Lasx,N and
Lasx,M . Hence more generally, if we have a fixed monster model M̄ , then Lasx,M
can be canonically identified with Lasx,N for any two M,N ≺ M̄ , and is also
canonically identified with the quotient of M̄x by L2

∞.

Lemma 3.4. An embedding j : J → J ⊆ Sx(M) defines a bijection between Lasx,J
and Lasx,M .

Proof. We have an injection Lasx,J → Lasx,M , since the relation L1 on J is the
same as the restriction of L1 on Sx(M) to J . The fact that this is a bijection follows
from the existence of a retraction r : Sx(M)→ J and Corollary 3.2. �



10 PIERRE SIMON

Lemma 3.5. There exists an embedding J ⊆ M∗ of J in a saturated model M∗

and a small model M ≺M∗ such that for any g ∈ G, seen as a set of bijections of
J , there is σ ∈ Aut(M∗) such that σ(p)|M = g(p)|M for all p ∈ J .

Proof. Fix a small model M and a core J0 ⊆ Sx(M). Let M ′ � M containing a
realization of each type in J0: for each p ∈ J0, say that ap ∈ M ′ realizes p. Let
(M ′,M) be the structure obtained by expanding M ′ with a new unary predicate
naming the subset M . Let (M ′,M) ≺ (M ′′,M∗) be a sufficiently saturated ele-
mentary extension. For each p ∈ J0, let p∗ = tp(ap/M

∗). Let J = {p∗ : p ∈ J0}.
By elementarity of the extension, one can see that J is Lp-isomorphic to J0 (note
also that the restriction map Sx(M∗)→ Sx(M) sends J to J0). Let g ∈ G and see
g as a bijection of J . Fix some p ∈ J and we construct σ ∈ Aut(M∗) such that
σ(p)|M = g(p)|M . We can do the same with all p’s in J at once to obtain what we
want.

Given any b̄ ∈M and φ(x; b̄) ∈ g(p), we can find b̄′ ∈M∗ such that p |= φ(x; b̄′).
This follows from the fact that p 7→ g(p) is an Lp-isomorphism, so the same formulas
are represented in p and g(p). By saturation of the pair (M ′′,M∗), this also holds
for φ(x; b̄) replaced by an arbitrary conjunction of formulas and for b̄ an infinite
tuple. In particular, taking b̄ to be an enumeration of M we obtain that there is
some M0 ≺M∗ isomorphic to M such that σ(p|M0) = g(p)|M , where σ ∈ Aut(M∗)
is any automorphism extending the given isomorphism from M0 to M . This gives
σ(p)|M = σ(p)|σ(M0) = σ(p|M0

) = g(p)|M as required. �

Let GalJ be the group G quotiented by the group of elements that preserve all
Lascar strong types in J .

Define also Galx to be the group of automorphisms of M̄ quontiented by the
subgroup of automorphisms inducing the identity on Lasx,M̄ .

Proposition 3.6. Fix a retraction r : Sx(M̄) → J to a core and identify J with
J . The map α : Aut(M̄)→ G, σ 7→ rσ induces an isomorphism of groups Galx →
GalJ .

Proof. We identify Lascar strong types in J and in M̄ using the identification of
J with J . Let us first assume that J is chosen so that the conclusion of Lemma
3.5 holds. Let g ∈ G, seen as a bijection of J . Then there is a small model M ≺ M̄
and σ ∈ Aut(M̄) such that σ(p)|M = g(p)|M for each p ∈ J . It follows that
L1(σ(p), g(p)) holds, hence L1(rσ(p), rg(p)) also since L1 is p-closed and r preserves
p-closed sets. But rg(p) = g(p) since g(p) ∈ J , so we have L1(α(σ)(p), g(p)). Since
this is true for all p ∈ J and all Lascar strong types have a representative in J ,
this shows that α(σ) and g induce the same permutation on Lascar strong types.
Hence the quotient map ᾱ : Aut(M̄)→ GalJ is surjective.

Next, we show that ᾱ is a group homomorphism. Given p ∈ Sx(M) and τ ∈
Aut(M̄), we have L1(rτ(p), τ(p)) by Corollary 3.2. Thus L1(σrτ(p), στ(p)) as σ is
an automorphism and L1(rσrτ(p), rστ(p)) as L1 is p-closed and r preserves p-closed
sets. This implies that ᾱ is a homomorphism of groups.

Now by the first paragraph of this proof, the kernel of ᾱ consists precisely of
the elements which act as the identity on the set of Lascar strong types. Hence ᾱ
induces an isomorphism Galx → GalJ .

Finally, take another core J ′ ⊆ Sx(M̄) and a retraction r′ : Sx(M̄) → J ′.
We have that r′ = r′fr for some automorphism f of J . Since r and r′ preserve
Lascar strong types, so does f . Define α′ : σ 7→ r′σ. Then α′(σ) = r′fα(σ)
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since r′ = r′fr. Now r′f induces an isomorphism between Aut(J) and Aut(J ′) (as
Lp-automorphisms) and preserves Lascar strong types. It follows that r′f induces
an isomorphism between the quotients of Aut(J) and Aut(J ′) respectively by the
subgroup of elements preserving Lascar strong types. Therefore α′ also induces an
isomorphism Galx → GalJ . �

Proposition 3.7. If g ∈ g then g maps to the identity in GalJ .

Proof. Identify J with some J ⊆ Sx(M). Let g ∈ g and take p ∈ Sx(M). Fix some
consistent formula θ(ȳ) and finite set ∆ of formulas in variables (x; ȳ). Let R(u, v)
be the relation on Sx(M) that holds of a pair (p, q) if there does not exist b̄ ∈ θ(M)
over which p and q have the same ∆-part. Then R is p-closed. Thus ¬R(p, v) is a
pp-neighborhood of p consisting of types q ∈ Sx(M) for which there is b̄ ∈ θ(M)
such that p and q have the same ∆-part over b̄. As g ∈ g, there is r ∈ Sx(M) such
that ¬R(p, r) ∧ ¬R(p, g(r)) holds. We also have ¬R(g(p), g(r)). Let a |= p and
b |= g(p). We can find c ∈ M̄x such that L2

1(a, c)∧L2
1(b, c) hold: indeed, for a finite

θ(ȳ) and ∆, we can just take c realizing g(r) as above and then use compactness
to find c as required. This shows that L2

∞(a, b) holds, hence so does L∞(p, g(p)).
Therefore g acts as the identity on Lascar types. �

Putting the last two results together, we get an epimorphism G → Galx.
Note that usually, the Lascar group is defined as the quotient of Aut(M̄) by the

subgroup generated by the automorphisms fixing a model. It is well known that
this is the same as Galx for x large enough, but we include a proof for completeness.

Proposition 3.8. Assume that x is large enough to be able to enumerate a model.
Let Autf (M̄)EAut(M̄) be the subgroup generated by automorphisms fixing a model
pointwise. Then Aut(M̄)/Autf (M̄) is equal to Galx.

Proof. It is clear that the elements of Autf (M̄) map to the identity in Galx. It
remains to show the converse. Let σ ∈ Aut(M̄) act as the identity on Lascar strong
types for the variable x. Let a ∈ M̄x contain the enumeration of a submodel. Then
L2
∞(a, σ(a)) holds, hence there is a sequence a = a0, a1, . . . , an = σ(a) such that

L2
1(ak, ak+1) holds for all k. For each such k, by definition of L2

1, there is a model
Mk ≺ M̄ such that ak ≡Mk

ak+1. Let σk be an automorphism fixing Mk pointwise
and sending ak to ak+1. Then σk ∈ Autf (M̄). Define σ′ = σn−1 ◦ · · · ◦ σ0. So
σ′ ∈ Autf (M̄) and σ′(a) = σ(a). Now σ′−1σ fixes a and since a contains a model,
this implies σ−1σ ∈ Autf (M̄). So finally σ ∈ Autf (M̄). �

4. Examples

• If T is stable, then there is a unique core J ⊆ Sx(M) consisting of all
acleq(∅)-definable types (equivalently types that do not fork over ∅). Indeed,
we know from Proposition 2.4 that those types are in the core. Furthermore
a retraction to this set is given by sending any type to the unique non-
forking extension of its strong type over ∅. (One way to see that is that
given p ∈ Sx(M), the non-forking extension q of p|∅ is an average type of
an indiscernible sequence of realizations of p and hence must be larger in
the fundamental order, or in other words p 7→ q is a an Lp-morphism. The
same argument works for several types at once, taking realizations of all of
them and a non-forking extension of the type of the whole tuple of ∅.)
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• If T is DLO and |x| = 1, then J consists of the two 0-definable types. The
same thing holds for the random graph.

If we take a circular order, then there are no 0-definable type. In this
case, J is a singleton, and can be any non-realized type.
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