TYPES IN CONTINUOUS LOGIC for X, - categorical finile (=) continuous + Aut(m)-invoriant $Def: Def(M) = \int f(a, y) \cdot M \rightarrow IR \int f(x, y) formula, a \in M^{W} \{ \leq C(M) \}$ C définable prédicates If a E A for some A E M, y is a variable of length β , $f(x,y) \cdot M^{\omega} \times M^{\beta} \rightarrow \mathbb{R}$ a find. Then fais also called on A-definable predicate in the variable y. Def: M metric structure, A S M and y a variable of bength B. A (complete) type over A in the variable y can be defined as a maximal ideal in the unitormly closed algobra of A - definable predicates in the variable y. The type over A of $b \in M^{\beta}$ is defined by $t_{p}(b/A) = df_{a} | a \in A^{\omega}, f(x,y) f|_{a}$. with f(a,b) = 0} Def: We say that a tuple $b \in M^{(3)}$ realizes a type $p \in S_{y}^{M}(A)$ if tp(b|A) = p. <u>Recall</u>. M'is β -softmated if M realizes all $f \in S_{\omega}^{\mathsf{M}}(\beta)$ Fact: No-categorical => \$ - saturated Def. A EM is sovid to be definable if the predicate $P_A(x) = d(x, A)$ is definable.

 $\frac{De-f}{RVC(X)} = \begin{cases} f \cdot X \longrightarrow R \mid \forall \epsilon > 0 \exists U_{\epsilon} \in \mathcal{N}_{s_{\epsilon}} \mid \|gf - f\| < \epsilon \forall g \in U_{\epsilon} \end{cases}$ lf X is a metric space, $RUC_{u}(x) = RUC(x \cap q q X \rightarrow R \mid q is unif continuous)$ $Def: Def(M) = \int f(a, y) \cdot M \rightarrow R \int f(x, y) formula, a \in M^{W} \{ \leq C(M) \}$ Lemma 1: M an No-categorical metric struct, G = Aut (M). Then $\partial ef(M) = RVC_u(M)$ Proof: \subseteq actually holds in all metric structures: Let f(x,y) be a formula and $a \in M^{\omega}$ a ponometer. Let $\Delta p^{\mathbb{R}}$ be the modulus of writ. continuity for of and take UENja s.t. $d(a, ga) < \Delta_{\mathfrak{p}}(\varepsilon) \text{ for } g \in U_{\varepsilon} \text{ So}$ $\|g_{fa}^{-} - f_{a}\| = \|f_{ga}^{-} - f_{a}\| < \varepsilon \text{ for all } g \in U_{\varepsilon}.$ $f_{\alpha}(y) = f(\alpha, y)$ This shows that all fEDef(M) are also im $RUC_{\mu}(M)$. 2 Let $h \in RUC_{n}(M)$ and let $a \in M^{\omega}$ onumerate a Mol. dense subset of M. Define $f: Ga \times M \longrightarrow M \quad by$ $(ga, b) \longmapsto gh(b) = h(g^{-1}b)$

This is well defined because a is dense in M go=g'a f is G-invariant (just compute it) and unit. cont. g=g' by domity Induced $|f(ga,b) - f(g'a,b)| \le |gh(b) - gh(b')| + |gh(b') - g'h(b')|$ This is small if $b \approx b^{-1} - G$ ion $\varepsilon > 0$ we can since $d(g^{-1}b, g^{-1}b') = d(b, b')$ find $U_{\varepsilon} \in \mathcal{N}_{2G}$ s.t. + unit cont. of h. I IIgh - g'h II < 2 whenever $g^{-1}g \in U_{\epsilon}$, since here (M). Now since a is dense we can find $\xi > 0$ s.t. $d(ga, g'a) < \delta \Rightarrow g^{-1}g \in U_{\epsilon}$. Thus $d(ga, g'a) < S \Rightarrow |gh(b') - g'h(b')| < \varepsilon$ => We can control the second term as well and fis unif. continuous. Now that we have unit. continuity we can extend f to [a] × M (= Gra × M), and the extension is still G-invoriant, so we can regard f as defined on $([a] \times M) / G \subseteq (M^{\omega} \times M) / G$ By Tietze we get a continuous extension $\widehat{f} : (M^{\omega} \times M) / G \to \mathbb{R}$ and now $f(x, y) : M' \times M \longrightarrow R$ defined by $F = f \circ \tilde{u}$ is such that $F_a = h$. Since M is X. - categorical the Gimmaniant function f is in tact a formula, thus hE Def(M)

Pap/Def (Alacody in Monhin's talk) Let M be \$-saturated, f: Mx MB - IR a formula, $A \subseteq M^{\alpha}$, $B \subseteq M^{\beta}$ be β -definable. If $M \preccurlyeq \widetilde{M}$ we unite A, B, F for the interpretations in M TFAE: 1) \overline{A} n \neq s $\in \mathbb{R}$, (a;) i c $\omega \subset A$, $(b_{I})_{J \subseteq \{i, \omega\}} \subset B$ Such that $\widetilde{f}(a; b_{I}) = \begin{cases} \pi & \text{iel} \\ s & \text{iel} \end{cases}$ 2) For every indiscernible sequence (a:); cw CA and bEB, lim f(a:, b) exists. 3) Every septence (a:):== CA admits a subsequence $(Q_{i_{j}})_{j \in \omega}$ s.f. lim $\widehat{f}(Q_{i_{j}}, b)$ exists $\forall b \in \widehat{B}$ We say that f is <u>NIP</u> on A×B if any of those Conditions is satisfied. Corollony Let M be \$ - saturated and A SMª, B SMB be Ø-definable. Then f is NLP on AxB iff $\{\tilde{f}_{a}\}_{B^{*}} \mid a \in A\}$ is seq precompact in $\mathbb{R}^{B^{*}}$, where $fa_{B^{*}}$ is the extension of $fa_{B^{*}}$ to $B^{*} = \int pe S_{y}(M) \left[P_{B} \in P \right]$ definable predicate that coincides with d(x,B)

If A'CA is dense, it is enough to check that fals lack's is sep precompact in R^{B*} Fact: Let I be a compact G-space. Then $f \in C(I)$ is tome iff GFER is seq. precompact. If Y is not compact we say that f is tome if its extension to one (any) G-compactification of Y is tome We finally obtain the connection between Tome and NIP: hoposition Let M be on Xo-contegorical structure. Then $h \in Tanne_{\mu}(M)$ iff h = fa for a formula f(x,y) that is NIP on [a] × M. More generally if f(x,y) is a finda, a ∈ M[×], BCM^B is definable, we have $f_{a|B} \in Tarme(B) \Leftrightarrow f(x,y)$ is NIP on (a) × B hoof: The first fact follows from the second by Comma 1. For fixed f(x,y), a and B, the function fa ERUC_n(B) is tome iff its extension to B is tame, where B is the closure of B in Sy(M) under the compactification M^B - Sy(M). Now take A = Ga and use the condlary, after shaving that B=B". BEB is eary if bEB, since B is definable, PB(b)=0 B'EB: fix pEB and bet b realize p in a sejarable elementary extension $M \leq M$. (et $\varphi(2, y)$ be a formula, $c \in M^{|2|}$ and $\varepsilon > 0$.

By No-categonicity, since M' is sepanable, there is an isomorphism $\sigma: M' \longrightarrow M$. Then $fp(c) = fp(\sigma c)$, which means by homogeneity, that there is gEANT(M) with $d(c,goc) < \Delta_{\varphi}(\varepsilon)$. Hence $gob \in B$ and $\int W_{M}$? . modulur of unit-continuity. $|q(c,b) - q(c,gob)| \leq \Rightarrow p \in B$ Since Mis Xo- categorical the projection MP - MP//Gris a compactification, and the functions company from it are the continuous G-invortional onves, that is the Ø-definable predicates. We can thus identify $M^{p} \longrightarrow M^{p}/(G \longrightarrow W^{k}) \xrightarrow{f} S_{g}(\emptyset)$ This gives the following homogeneity property: if the (a) = the (b), for a, bEMP and E>O, three is gEANT(M) with d(a, gb)< E.