Hebitalicity of universal minimal flows * (Blaise)
Recall: GoX Continuous night action
Go(X,Xo) with GXo SX dense
given YEX closed of G-invariant, we get a
militow by nertriction
A minimal flow is a flow with no molflow (a) all
subits are dense).
A minimal flow (X,G) is universal of for any
other minimal flow Y, there is a continuous
X ->>Y. (Gr. with the universal minimal audit).
=> any minimal helfow of the universal minimal
G-audit is an universal minimal flow.
FACT. all universal minimal flows are issues place.
Recall that for a modul M,

$$\sum_{n=1}^{m} \frac{1}{2} \frac{1}{6^{2n!}(\sigma(\overline{n}))} \frac{1}{\sigma \in G^{+}}$$

where $m - (H,G)$ in the full language, $(H^{+},G^{+}) \ge (H,G)$
monotes undel. For any $\overline{a} \in H_{1}$
 $\sum_{\overline{a}}^{m} = \frac{1}{2} \frac{1}{6^{n!}(\sigma(\overline{a}))} \frac{1}{\sigma \in G^{+}}$
gives a projection $\pi_{\overline{a}} : \sum_{n=1}^{m} - \sum_{n=1}^{m} - \frac{1}{2} \lim_{n \to \infty} \overline{\pi}$
FACT. $\sum_{\overline{a}}^{m} : \beta(\overline{a},G)$

pI. Metnisalility

DEF. we say that M has separately finite embedding Ramsey depres, witnessed by $(k_{\bar{a}})_{\bar{a}\in M}$, if fin any $B \leq M$ finite and $\bar{a}\in B$, for any $C: (M) \rightarrow n \in W$, there is $B' \in (M)$ such that $C\left[\begin{pmatrix} B'\\ a \end{pmatrix} \right] \leq k_{\bar{a}}$.

LEMMA. if M has SFERD, witnessed by $(k\bar{a})\bar{a}\in M$, then for every finite A \in B and all $r\in N$ there is B $\leq C \leq M$ finite much that for any $(C\bar{a})\bar{a}\in A$, where $C\bar{a}: \begin{pmatrix} C \\ a \end{pmatrix} \rightarrow V$, there is $B'\in (C)$ much that $C\bar{a} \begin{bmatrix} B' \\ a \end{bmatrix} \leq R_{\bar{a}}$.

Proof: (by induction) $\forall \overline{a}_{1} \dots \overline{a}_{n}$, $\forall B \ni \overline{a}_{1} \dots \overline{a}_{n}$ we want a finite $B \le C$ s.that $\forall r \in \mathbb{N}$, $\forall C_{\overline{a}} : \begin{pmatrix} C \\ a_{\overline{i}} \end{pmatrix} \rightarrow v$, there is $B' \in \begin{pmatrix} C \\ B \end{pmatrix}$ s.that $C_{\overline{a}_{1}} [(B')] \le \mathbb{R}_{\overline{a}_{1}}$ For n = 1, this is just definition of SFERD. Suppose $\overline{a}_{1} \dots \overline{a}_{n+1} \in B$, $r \in \mathbb{N}$

 $\begin{array}{c} apply to \overline{a_{n+n}} & first : C_{n+1} \supseteq B & s. that for any \\ C_{\overline{a_{n+1}}} & \left(\begin{array}{c} C_{n+1} \\ \overline{a_{n+1}} \end{array}\right) \xrightarrow{} r & there is B^{1} \in \begin{pmatrix} C \\ B \end{pmatrix} & such \\ C_{\overline{a_{n+1}}} & C_{\overline{a_{n+1}}} & C_{\overline{a_{n+1}}} & \left[\begin{pmatrix} B' \\ \overline{a_{n+1}} \end{matrix}\right] \leq k_{\overline{a_{n+1}}} \\ \end{array}$

apply to $\overline{a_1}$, $\overline{a_n}$: there is C finite, $C_{n+1} \subseteq C$ such that for all $(\overline{a_i}; (\begin{array}{c} C \\ \overline{a_i} \end{array}) \longrightarrow r$ there is C'_{n+1} ,

 $C_{nFI} \in (C_{nFI})$, Mich that $C_{\overline{\alpha_i}} [(C_{nII})] \leq e_{\overline{\alpha_i}}$ THEOREM. for M countable, G = Aut(M), then the universal minimal G-flow is metnizable iff M has SFERD. Proof: ashime SFERD witnessed by $(k_{\overline{a}})_{\overline{a} \in M}$. Take $\{U_{1}(\overline{\pi_{1}}), \dots, U_{n}(\overline{\pi_{n}})\}$ full formulal, $A \subseteq M$ finite. =: Alet $C_{\overline{\alpha}}(\overline{\alpha}')$; = $\begin{cases} 1 & \text{if } M = \Psi_{i}(\alpha') \\ -1 & \text{if } M = -\Psi_{i}(\alpha') \\ 0 & \text{otherwise} \end{cases}$ defining Ca: (M/a) -> h-1,0,1) Apply Lemma with A=B: let C be finite with A'E (L) situat HareA, Ca. (A')] Ska-Let $\overline{\nabla q}_{A} \in G$ be meh that $\overline{\nabla q}_{A} (A) = A'$. For any $g_{1}, \dots, g_{m} \in G$ meh that $g_{i}(\overline{a}) \in A$, the tuples $(\overline{\nabla q}_{A} A (g_{i} | \overline{a})) | i \leq m$ have at most $k_{\overline{a}}$. <u>A-types</u> $\Rightarrow (by compactions) \quad \sigma \in G^* \text{ mil that} \\ \# \{ +p_{\Delta'} (\sigma(g(\bar{a})) \mid g \in G_i \} \leq k_{\bar{a}} , \bar{a} \in M \}$ If we let $X_{\overline{a}} = \frac{1}{p^{\text{full}}} \left(\tau(g(\overline{a})) \right) | g \in G \}$, then # $X_{\overline{a}} \leq \frac{1}{p^{\text{full}}} \left(\tau(g(\overline{a})) \right) | g \in G \}$

 $t_{p}^{full}(\sigma(\overline{m})) \cdot G := \{ t_{p}^{full}(\sigma(g(\overline{m}))) \mid g \in G \}$ Now recall Then Tra profinte compact, Hausdonff of I countable => h [tp^{full}((m)) · G] ⊆ X=lim Xā is dense ⇒ X is metrizalle