Quasi-homomorphisms and connected components

Martin Bays

July 4, 2022

A talk for a seminar in Münster, on the example in [HKP22] of an approximate subgroup X for which $\langle X \rangle^{00}$ does not exist.

1 Connected components and approximate subgroups

Work in a monster model of an \mathcal{L} -theory. Definable means \emptyset -definable unless otherwise specified.

Let X be a definable approximate subgroup (i.e. X is symmetric $(e \in X = X^{-1})$ and $X^2 \subseteq FX$ for some finite F). Let $H := \langle X \rangle$ be the \bigvee -definable subgroup generated by X. Examples.

- (i) $X = [-1, 1] \subseteq (\mathbb{R}^*; +).$
 - $X + X \subseteq \{1, -1\} + X.$
 - $H = \langle X \rangle \leq \mathbb{R}^*$ is the convex hull of the standard reals.
- (ii) $X = \{-N, \dots, N\} \subseteq \mathbb{Z}^*$ where $N \in \mathbb{N}^*$ is a non-standard integer. • $X + X \subseteq \{-N, N\} + X$.
 - $H = \langle X \rangle \leq \mathbb{Z}^*$ is the smallest convex subgroup containing N.
- (iii) Let $f: G \to H$ be a quasi-homomorphism, meaning that $F := \{f(gh)^{-1}f(g)f(h): g, h \in G\} \subseteq H$ is finite. Suppose also $f(g^{-1}) = f(g)^{-1}$. (e.g. $f: \mathbb{R} \to \mathbb{Z}$ the integer part map, with $F = \{-1, 0, 1\}$.)
 - $X := \Gamma_f \leq G^* \times H^*$ ((G^*, H^*) \succ (G, H) monster model).
 - $X^2 \subseteq (e, F) \cdot X$, since $(g, f(g)) \cdot (h, f(h)) = (gh, f(g)f(h)) \in (e, F) \cdot (gh, f(gh))$, and X is symmetric.

• $H = \langle X \rangle \subseteq \{(g, \langle F \rangle \cdot f(g)) : g \in G^*\}.$

 $A \subseteq H$ is (Λ) -definable iff A is a (Λ) -definable subset of some X^n .

Definition. For H a \bigvee -definable group,

 $H^{00} \leq H$ is the smallest \bigwedge -definable subgroup of bounded index, if it exists, $H^{000} \leq H$ is the smallest invariant subgroup of bounded index if it exists.

(Bounded: cardinality bounded independently of the choice of model.)

Note that H^{00} exists iff some \wedge -definable bounded index subgroup exists. Then H/H^{00} is a locally compact group with the logic topology, and by Hilbert 5 one obtains a Lie group.

This was a key step ("Hrushovski's Lie model theorem") in the Breuillard-Green-Tao classification of finite approximate groups.

Fact (Massicot-Wagner). If X is definably amenable (exists an invariant finitely additive ("Keisler") measure on the definable subsets of H with $\mu(X) = 1$), then H^{00} exists and $H^{00} \leq X^8$.

This holds in particular when X is an ultraproduct of finite K-approximate groups for a fixed K.

Remark. This follows from [MW15], which finds an H- Λ -definable bounded index subgroup contained in X^4 ,

and [Mas, Theorem 5.2], which removes the parameters at the expense of passing to X^8 (sharpening [Hru12, Lemma 4.5]).

Wagner conjectured that definable amenability is not required. Hrushovski-Krupinski-Pillay give a counterexample. This will go via the contrapositive of the following lemma.

Lemma. Suppose H^{00} exists. Then $H^{000} \subseteq X^m$ for some m.

Proof. If H^{00} exists, then $H^{000} \leq H^{00}$. But $H^{00} \subseteq X^m$ for some m.

2 Identifying H^{000}

2.1 Thick relations and Lascar strong types

We recall some standard material on Lascar strong types.

An \mathcal{L} -formula $\phi(x, y)$ is thick if $\bigwedge_{i \neq j < \omega} \neg \phi(x_i, x_j)$ is inconsistent.

Lemma. The thick formulas form a filter.

Proof. If ϕ is thick and $\forall x, y. (\phi(x, y) \rightarrow \psi(x, y))$, then ψ is thick.

Suppose $\phi \wedge \psi$ is not thick, so say $(c_i)_i$ with $\models \neg \phi(c_i, c_j) \lor \neg \psi(c_i, c_j)$ for $i \neq j$; colour according to the witnessing disjunct and apply Ramsey to show that either ϕ is not thick or ψ is not thick.

Write $a \sim_1 b$ to mean that there exists an infinite indiscernible sequence a, b, c_0, c_1, \ldots

Lemma. $a \sim_1 b$ iff $\vDash \phi(a, b)$ for every thick ϕ . In particular, \sim_1 is \bigwedge -definable.

Proof. a, b extends to an infinite indiscernible sequence iff $p := \operatorname{tp}(a, b)$ is in the EM-type of an infinite sequence iff for no thick ϕ is $\neg \phi \in p$ iff p contains every thick ϕ .

Let E_L be the transitive closure of \sim_1 ("same Lascar strong type").

Lemma. E_L is the finest bounded invariant equivalence relation.

Proof. E_L is invariant since \sim_1 is.

Let M be a model, and suppose $a \equiv_M b$. Let p be a global coheir of $\operatorname{tp}(a/M)$, and let $(c_i)_i$ be a Morley sequence in $p|_{Mab}$. Then a, c_0, c_1, \ldots and b, c_0, c_1, \ldots are indiscernible, so $a \sim_1 c_0 \sim_1 b$, so aE_Lb .

Hence \equiv_M refines E_L , so the latter is bounded since the former is.

Now if E is a bounded invariant equivalence relation, and $a \sim_1 b$, then we can take an unboundedly long indiscernible sequence a, b, \ldots , so we must have $a \sim b$. Hence E_L refines E.

2.2 Thick subsets and H^{000}

Definition. A definable symmetric subset $A \subseteq H$ is <u>thick</u> if

$$x, y \in X \to x^{-1}y \in A$$

is thick.

Lemma 2.1. For $n \in \mathbb{N}$, $A \subseteq H$ is thick iff

$$x, y \in X^n \to x^{-1}y \in A$$

is thick.

Proof. Suppose $x, y \in X^n \to x^{-1}y \in A$ is not thick. Say $a_i \in X^n$ and $a_i^{-1}a_j \notin A$ for any $i < j < \omega$. Now $X^n \subseteq CX$ for finite C, so by Ramsey an infinite subsequence is in some cX, so translating we get $a'_i = c^{-1}a_{j_i} \in X$ with $a'^{-1}a'_j \notin A$ for $i < j < \omega$. Hence $x, y \in X \to x^{-1}y \in A$ is not thick.

The converse is clear.

Let P be the intersection of the \emptyset -definable thick subsets of H.

Lemma 2.2. $P = \{a^{-1}b : a, b \in H, a \sim_1 b\}.$

Proof. Let $a, b \in H$ with $a \sim_1 b$. Say $a, b \in X^n$. If $A \subseteq H$ is thick, then $\vDash a, b \in X^n \to a^{-1}b \in A$ so $a^{-1}b \in A$. Hence $a^{-1}b \in P$.

Now $P' := \{a^{-1}b : a, b \in X, a \sim_1 b\}$ is \bigwedge -definable (since \sim_1 is) and symmetric, so say $P' = \bigwedge_k D_k$ where $D_k \subseteq H$ is symmetric definable.

Suppose D_k is not thick, say $c_i \in X$ and $c_i^{-1}c_j \notin D_k$ for $i < j < \omega$; by Ramsey and compactness, we can assume $(c_i)_i$ is indiscernible. Then $c_0 \sim_1 c_1$, so $c_0^{-1}c_1 \in P' \subseteq D_k$, contradiction.

So $P \subseteq P' \subseteq \{a^{-1}b : a, b \in H, a \sim_1 b\}.$

Proposition. $H^{000} = \langle P \rangle$.

Proof. $\langle P \rangle$ is invariant since P is.

We show $\langle P \rangle$ has bounded index. Suppose $a, b \in H$ and aE_Lb . Then say $a = a_0 \sim_1 a_1 \sim_1 \ldots \sim_1 a_n = b$ with $a_i \in H$. Then $a_i^{-1}a_{i+1} \in P$ for each i by Lemma 2.2, so $a^{-1}b \in \langle P \rangle$. So since E_L is bounded, $\langle P \rangle$ has bounded index. Now let $K \leq H$ be an invariant subgroup of bounded index. Let $p \in P$. By Lemma 2.2, $p = a^{-1}b$ for some a, b with $a \sim_1 b$. The equivalence relation $x^{-1}y \in K$ is bounded invariant and aE_Lb ,

so $p = a^{-1}b \in K$. Hence $P \subseteq K$, so $\langle P \rangle \leq K$.

3 The example

 $F_2 := \langle a, b \rangle =$ free group.

$$f: F_2 \to \mathbb{Z}; a^{n_1} b^{n_2} \dots a^{n_{k-1}} b^{n_k} \mapsto \sum_i \operatorname{sgn}(n_i).$$

Fact 3.1. f is a quasi-homomorphism: $f(xy) - f(x) - f(y) \in \{-1, 0, 1\}$.

Examples 3.2. • f(abab) = f(ab) + f(ab)

- f(abbab) = f(ab) + f(bab) 1
- $f(abb^{-2}ab) = f(ab) + f(b^{-2}ab) 1$
- $f(abb^{-1}ab) = f(ab) + f(b^{-1}ab)$
- $f(abb^{-1}a^{-1}b) = f(ab) + f(b^{-1}a^{-1}b)$

Also $f(x^{-1}) = -f(x)$.

Work in monster model $(F_2^*; \mathbb{Z}^*; f) \succ (F_2; \mathbb{Z}; f)$. So $X := \Gamma_f \subseteq F_2^* \times \mathbb{Z}^*$ is an approximate subgroup, $X^{n+1} \subseteq (e, [-n, n]) \cdot X$. $H := \langle X \rangle = (e, \mathbb{Z}) \cdot X$. Let $A \subseteq H$ be thick. Then $(a^k, 0) \in A$ for some k > 0. Indeed, using symmetry of A, otherwise $(a^k, 0)^{-1} \cdot (a^l, 0) = (a^{l-k}, 0) \notin A$ for any $k \neq l$, contradicting thickness. Similarly, $(b^l, 0) \in A$ for some l > 0. Note that $f((a^k b^l)^n) = 2n$ for $n \in \mathbb{N}$.

By saturation, we find $(s, 0), (t, 0) \in P = \bigwedge \{A : A \text{ thick}\},\$ with f(s) = 1 = f(t) and $f((st)^n) = n$ for $n \in \mathbb{N}$.

So for $n \in \mathbb{N}$, $((st)^n, 0) = ((s, 0), (t, 0))^n \in \langle P \rangle = H^{000}$, but $((st)^n, 0) = ((st)^n, n) - (0, n) \notin X^n$. So $H^{000} \not\subseteq X^n$. So H^{00} does not exist.

References

- [HKP22] Ehud Hrushovski, Krzysztof Krupiński, and Anand Pillay. Amenability, connected components, and definable actions. *Selecta Math.* (N.S.), 28(1):Paper No. 16, 56, 2022.
- [Hru12] Ehud Hrushovski. Stable group theory and approximate subgroups. J. Amer. Math. Soc., 25(1):189–243, 2012.

- [Mas] Jean-Cyrille Massicot. Groupes approximatifs en théorie des modèles. PhD Thesis, https://tel.archives-ouvertes.fr/tel-01912992.
- [MW15] Jean-Cyrille Massicot and Frank O. Wagner. Approximate subgroups. J. Éc. polytech. Math., 2:55–64, 2015.