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ABSTRACT

Let </?, < , + , > be a real closed field, and let M be an o-minimal expansion of R. We prove here
several results regarding rings and groups which are definable in Jt. We show that every ^-definable ring
without zero divisors is definably isomorphic to R, R(V(—l)) or the ring of quaternions over R. One
corollary is that no model of 7^xp is interpretable in a model of 7^,.

1. Introduction

Our main interest here is in rings which are definable within o-minimal structures.
Basic results on the subject were obtained in [5]; for example, it was shown there that
every definable group or field can be definably equipped with a ' manifold' structure.
It followed that every definable field must be either real closed, in which case it is of
dimension 1, or algebraically closed of dimension greater than 1. In [4] the particular
nature of semialgebraic sets (that is, sets definable in <IR, < , + , • » w a s u s e d to show
that every semialgebraic real closed field is semialgebraically isomorphic to the field
of reals.

Some rich mathematical structures have been recently shown to be o-minimal (for
example, <R, < , + , -,ex)>; see [9]). In this paper we look at arbitrary o-minimal
expansions of real closed fields, and investigate the groups and rings definable there.
We show that every definably connected definable ring with a trivial annihilator is
definably isomorphic to a subalgebra of the ring of matrices over R. We then conclude
the following.

THEOREM 1.1. If K is an Jt-definable ring with no zero divisors, then K is definably
isomorphic to R, to i?(V(—1)) (the R-version of the complex field) or to the ring of
quaternions over R.

Along the way, we prove a definable analogue, in any o-minimal expansion of a
real closed field, of a theorem on uniqueness of solutions to differential equations over
the reals (see Theorem 2.3). As a corollary to Theorem 1.1, we show that no model
which is elementarily equivalent to <IR, < , + , - , exs) can be interpreted in a model of
T&n, the theory of the field of reals expanded by restricted analytic functions (see
Corollary 4.5).

It is of interest to compare Theorem 1.1 to the corresponding situation in the
strongly minimal context. (A structure Jt is called strongly minimal if every definable
subset of every elementary extension of Jt is finite or cofinite.) As in the semialgebraic
case, it is known (see [6]) that every algebraic field (that is, a field definable inside
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<C, + , •» is algebraically isomorphic to the complex field itself. However, what
follows from the work of Hrushovski on strongly minimal structures (see [3]) is that
given any two algebraically closed fields FVF2, there is a strongly minimal structure
which expands both of them. Moreover, the two fields can be put together in an
'orthogonal' way, and in particular there will be no definable isomorphism in the
expansion between the two fields. Theorem 1.1 gives an opposite result in the o-
minimal context, and, as the proof shows, if Ji is an o-minimal expansion of a real
closed field R, then definable objects in Ji are very strongly related to the structure
of R. Indeed, at the heart of the proof is the fact that every definable function in Ji
is almost everywhere differentiable with respect to the field R.

Other related work appears in [10] and [8], where an abstract characterization of
definable rings in strongly minimal (actually, in a;rcategorical) structures is given.

The first two authors began working on this paper during their visit at the
University of Illinois at Chicago in 1992. They thank Dave Marker, Laura Mayer and
John Baldwin for organizing the Model Theory year there.

We begin with some preliminaries. We say that a group (a field) is definable inside
a structure Jt if the underlying set is definable in Ji and the graph of the group (field)
operations are definable in Ji. We always take 'definable' to mean 'definable with
parameters'. We remind the reader that a linearly ordered structure Ji = <Af, <,...>
is called o-minimal if every definable subset of M is a finite union of intervals whose
endpoints lie in M U {± oo}. We are interested here only in densely ordered structures
without endpoints. For basic results on o-minimal structures, see [2].

DEFINITION 1.2. Let Ji and JV be first-order structures. We say that JV is
interpretable in Jt if the following holds. There is an ^-definable set N £ Mk for
some k, and a definable equivalence relation EonN such that for every atomic «-ary
relation in Jf, there is an ^-definable relation on (N/E)n, and for every atomic n-
ary function in Jf, there is an ^-definable function from (N/E)n into N/E such that
the structure Jf is isomorphic to the structure these relations and functions induce on
N/E.

As we know (see [2]), if Ji is an o-minimal expansion of an ordered group, then
every structure of the form N/E above is definably isomorphic to a structure which
is definable in Ji, namely, we may assume that the equivalence relation E is just
equality. Thus every characterization that we give below of .//-definable groups or
rings holds also for the corresponding interpretable objects.

Unless otherwise stated, we shall assume from now on that </?, < , + , • ) is a real
closed field and M = (R, <,+,-,...} is an o-minimal expansion of it. All definable
objects are assumed to be definable in Ji. Since R is an ordered field, the usual
definition of derivative makes sense there. We always use 'differentiable' in this sense.

We make extensive use of the following fact (see [2]).

LEMMA 1.3. Iff: Rm -> Rn is a definable function, andk is a natural number, then
there is a definable open and dense set D <= Rm, such that F is k-differentiable on D.
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2. Uniqueness of solutions to differential equations

Over the reals, there are some well-known existence and uniqueness theorems for
differential equations. We prove here a definable analogue, for o-minimal expansions
of real closed fields, of such a uniqueness theorem. Clearly, an existence theorem for
definable solutions to such equations fails under any reasonable assumptions. The
uniqueness theorem for functions of one variable is rather easy to state and prove, but
as we prove here a multi-variable version, we need some earlier results on o-minimal
structures.

As is shown in [2], if 0: Rm -»• R is a definable continuous function and D £ Rm

is a definable closed and bounded set, then 0 is bounded on D and attains a maximum
there. For xeRm, we define the norm of x to be |jc| = max{|xt|: 1 ̂  / < m), and use
from now on x instead of x. For T a linear transformation from Rm into Rn, we put
the norm of T, \T\, to be

\T\ = max{|7*1:1x1 ^ \,xeRm}.

For such T, let [T] be the n x m matrix which represents it over the standard basis. The
norm of T as a linear transformation is at most m x (the norm of [T] as a vector in
Rnm).

For U £ Rm an open set, if 0: U-> Rn is a differentiable function (that is, all
partial derivatives of 0 with respect to R exist and are continuous), we denote by dx(<p)
the linear transformation given by the nxm matrix of partial derivatives of 0
evaluated at JC.

LEMMA 2.1 [2]. If U s Rm is an open rectangular box, aeU, and 0: U^Rn is
differentiable on U, then for every xeU we have

\x-a\mzx{\dy</>\: \y-a\ \x-a\

From now on we always think of dy 0 as an n x m matrix and take \dy 0| to be the
norm of the corresponding vector in Rnm. The above lemma can be adjusted through
multiplication by a constant on either side of the inequality.

LEMMA 2.2. Let 0, U and a be as in the above lemma, <f>(a) = 0, and assume that
there is CeR+ such that for all xeU we have \dx<f>\ ^ C\<p(x)\. Then </>(x) = 0 for all
xeU.

Proof To simplify notation, we shall assume that a = 0. We shall show first that
there is some neighbourhood of 0 on which 0 vanishes. Assume that this fails, so in
particular there is no neighbourhood of 0 on which dx(f> vanishes. Let S = {xeU:
m&x{\dy<f>\: \y\ ^ \x\} = \dx<p\}, namely, 5 contains all points x which realize the
maximum of d{_} <f> on the rectangle determined by x. By the fact that such a maximum
is indeed realized inside every closed and bounded rectangle, it is easy to see that 0
is a limit point of S. By Lemma 2.1, there is a nonzero c' such that, given any xsS,
we have \<f>(x)\ ^ \x\ \dx<f>\ c'. Taken together with our assumption on dx</>, we obtain

\dx<p\ ^ C'|JC| 1*401 for some nonzero C" independent of x.

But if we pick x e S close enough to 0 so that |JC| C < 1, we must have \dx 0| = 0, which
implies that dy</> = 0 for all y in the box {yeRm: \y\ ^ |JC|}. Contradiction.



10 MARGARITA OTERO, YA'ACOV PETERZIL AND ANAND PILLAY

To show that 0 vanishes everywhere, just notice that Z = {xeU: <f>(x) = 0} is a
closed set (clearly) and open (by applying the above argument to any point of Z). But
U is definably connected (that is, has no definable clopen subset), so Z = U.

THEOREM 2.3. Let F(x,y) be a definable function, defined on a closed rectangular
box U = /x x /2 in Rm+n, which for every (x,y) gives an nxm matrix over R. Assume
that F is differentiable (as a function from U into Rnm). For (a, b)elnt(U), consider the
system of equations given by

dM = F[x,ftx)), (1)

<K«) = b. (2)
If (f>v 02: Ix -»• /2 are two definable solutions to the system, then there is an open

neighbourhood V c= Ix of a such that ^>1 = 02 on V.

Proof For JCE/J let Fx be the function on I2 given by Fx(y) = F(x,y). Since dy(Fx)
is continuous in (x,y), there is CeR such that C ^ \dy(Fx)\ for all (x,y)eU. By Lemma
2.1, if (x,yi),(x,y2)eInt(U), then \F(x,yi)-F(x,y2)\ ^ C\yx-yt\.

Assume that 01}02
 a r e b°tii solutions to the system. Let V a Ix be an open

rectangular box which contains a, such that for every xeV we have <f>1(x),<f>2(x)elz.
Given xeV, we have then

We apply now Lemma 2.2 to the function <px — <f>2, and so <f>x must equal 02 on V.

REMARK. By Lemma 1.3, given any definable F : F g Rm+n -• Rmn, there is an
open U^ V on which F is differentiable, and hence the assumptions of the above
theorem hold there.

3. Embedding centreless groups in GLn(/?)

For (G, •> an ^-definable group, we say that G admits a definable (k-
differentiable) group-manifold structure over M if there are open definable sets
U1,...,Ur^Rn for some n and definable injective maps nt: U^G, such that
G = \J KiiUi) and the transition maps are continuous (fc-differentiable) with respect
to the underlying real closed field structure. Moreover, the maps ( ) - 1 , • o n G are
continuous (^-differentiable) when read through the charts. We similarly define the
notion of a ring-manifold, now ensuring that the additive group operation, its inverse
and the multiplication function are (continuous) fc-differentiable. The following is
proved in Proposition 2.5, Remark 2.6 and Proposition 3.1 of [5].

PROPOSITION 3.1. Every definable group or field in an o-minimal structure admits
a definable (k-differentiable) manifold.

Actually, one can show that the manifold structure in the proposition is unique
in the sense that given any two such manifold structures, the identity map gives a
homeomorphism between the two.

LEMMA 3.2. Let <G, e, •> be a definable group equipped with a differentiable group-
manifold G, definably connected with respect to the manifold topology. Let a, x be M-
definable group homomorphisms of G. Then
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(i) the maps a, x are differentiate everywhere on G;
(ii) if a # T, then de{o) * de(x).

Proof, (i) By Lemma 1.3, every definable map on G is differentiable, with respect
to the manifold structure, on an open and dense subset of G. Assume that a is
differentiable on a neighbourhood of some point h. For aeG, denote by la the
function on G given by x i—• a * x. We can factor a as

o(x) = aC/r1) * a(h * x) = U-i,(ff(/»W)).
As was shown in [2], basic calculus is still true for definable maps. In particular,

the multi-variable chain rule holds for such maps, so the differentiability of left-
multiplication everywhere and of a at h implies the differentiability of a at e. We can
show similarly the differentiability of a on all of G.

(ii) Given g, we can factor a as the composition

o{x) = a(g) * aig'1 *x) = loW(o(lg-i(x))).

We fix now (U,n) in the manifold chart such that, without loss of generality,
e G U £ G and n — id. Given h e U, h close enough to e, dh is well-defined and we have

rf*(ff) = rf.(U)-^)-^(/»-0.
Let D = de{a), annx« matrix (say, assuming that G is of dimension n), and define

F(x,y) as a (partial) function from GxG into jRnxn by

F(x,y) = de(ly)Ddx(lx-l).

(For F to be well-defined, we need to restrict it to x and y in a small neighbourhood
of e.) F is clearly a differentiable function on a neighbourhood of (e, e), and by the
argument above, if de{x) = de{a), then both x and a, on a neighbourhood of e, are
solutions to the system

dx(</>) = F(x,^x)),
<j>(e) = e.

By Theorem 2.3, the above system has at most one definable solution, hence on
some neighbourhood of e, x = a. Since G is definably connected, x = a everywhere
on G.

COROLLARY 3.3. Let G be as above and centreless (Z(G) = {e}). Then G can be
definably embedded into GLn(R), the general nxn linear group over the field R.

Proof Let n be the dimension of G, and fix U as in the last proof. Consider the
(definable) adjoint map Ad: G -• GLn(R), given by Ad(g) = de{a^), where ag is the
automorphism G: hy-+g~xhg. Ad is a homomorphism, and by Lemma 3.2, the kernel
of Ad is Z(G), so by our assumption it is an injective map.

4. On rings

We first prove some basic results for any ring definable in an o-minimal structure,
omitting the assumption that the structure is an expansion of a real closed field.

LEMMA 4.1. Let (K, +, •, 0> be a definable ring in an o-minimal structure Jf, and
assume that the group (K, + > admits a definable group-manifold structure M. Then M
makes K into a ring-manifold. If Jf is an o-minimal expansion of a real closed field and
M is a k-differentiable group-manifold, then it is also a k-dijferentiable ring-manifold.
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Proof. We shall show the latter, that is, we assume that Jf is an o-minimal
expansion of a real closed field and that M induces a A>differentiable group-manifold
on <#,+>.

For aeK, the functions x\-+a-x and x\-+xa are /c-differentiable with respect to
M (see (i) of Lemma 3.2). Since definable functions on M are &-differentiable almost
everywhere with respect to the underlying field of JV, such functions on K are k-
differentiable almost everywhere with respect to M. In particular, there are open sets
U, V £ /f such that multiplication in A is fc-differentiable on Ux Kwith respect to M.
Fix (xo,yo)eUx V. Then given (x^yJeK2, let x2 = xt-x0 and y2 = yx-yQ. For
every x,yeK, we have then

x-y = (x-x2)-(y-y2) + x2-y + x-y2 + x2-y2.

Each of the summands is a fc-differentiable function of (x,y) on a neighbourhood of
( ^ j j ) , hence the function x-y is also differentiate there.

COROLLARY 4.2. If <AT, +, • > is a definable ring in an o-minimal structure JV,

then it admits a definable ring-manifold structure. If Jf is an o-minimal expansion of a
real closed field and k is a natural number, then K admits a definable k-differentiable
ring-manifold.

Proof. This is immediate from Proposition 3.1 and Lemma 4.1.

We now return to the assumption that M is an o-minimal expansion of a real
closed field R.

LEMMA 4.3. Let (K, + , : ) be an Jt'-definable ring of dimension n, definably
connected with respect to the manifold topology, such that either the left or right
annihilator ofKis trivial, that is, {aeK: a:x - Ofor allxeK} = {0} or {asK: x"a = 0
for all xe K} = {0}. Then there is an Jt-definable ring isomorphism between K and a
subalgebra of Mn(R), the nxn ring of matrices over R.

Proof By Corollary 4.2, K admits a definable differentiate manifold structure.
Denote by e the zero of the ring K. Without loss of generality, there is an open set
l / c Mn, eeU^K, such that + and • are differentiable on U. Without loss of
generality, the left annihilator is trivial.

For aeK and JCGA ,̂ define Xa(x) = a~x. We have then de(Aa(Ab)) = dJ^X^-dJ^X^).
So, for every a,b,ceK,

(a-b = c) => (de(Xa)-de(Xb) = de(Xc)),

where the multiplication on the right is the matrix multiplication induced from R.
Now consider the map P(x,y) = x+y. Since P is continuous, it sends a

neighbourhood of (e,e) in Ux U'mto a neighbourhood of e in U. For every xsK, we
have P(e,x) = x = P{x,e), so d(e e)(P) = (1,1), where / is the n xn identity matrix.
Again, using the multi-variable chain rule, we obtain, for every a,b,ceK,

where the rightmost addition is now the usual matrix addition over the field R.
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We showed then that the map a i—• de(Xa) is a ring homomorphism from K into the
ring of matrices Mn(R). In the case that K is a field, this must be an embedding. In
the case that K is not a field, our assumptions on K imply that the map a \-> Xa is
injective, hence by Lemma 3.2, the map a\-*de(Aa) is also injective. Note that if Khas
an identity element 1, then the image of K in Mn{K) has the identity matrix I = de(k^)
as its identity element.

We may assume, then, that K is a definable subring of Mn(R). For A eK, define
G = {reR: rAeK}. G is an infinite subgroup of <i?, + >, so by o-minimality, G = R.
But then K is an algebra over R.

The last part of the above proof shows that every definable subring of Mn(R) is
actually a finite dimensional algebra over R.

REMARK. Since every definable group can be made into a ring by defining a
trivial multiplication, we cannot hope to totally omit the assumptions on the
annihilator of K.

If K is not definably connected, then one can show that the definable component
J of 0 (in the manifold topology) is an ideal in K, and that K/J is finite (see [5] for
similar results). If one of the annihilators of the ring J is trivial, then, by the above,
J can be definably embedded in Mn(R).

The lemma below uses only the fact that (K, + > has the DCC property on
definable subgroups, namely that there is no descending chain of definable subgroups.
As was shown in [5, Remark 2.13], every definable group in an o-minimal structure
has this property.

LEMMA 4.4. If K= (K, +, •, 0> is a definable ring in an o-minimal structure and
K has no zero divisors, then it is a division ring (and in particular it has an identity
element).

Proof. Let K* = K\{0}. For aeK*, consider the (injective) map x\-*ax. We
have a-K= K, since otherwise we should obtain a descending chain of subgroups by
applying this map repeatedly. So there is b1eK* such that a-bx = a. Similarly, there
is b2 e K* such that b1-b2 = bv But then a-b2 = ab1-b2 = a-bv Since a is not a zero
divisor, b2 = bv and hence b1b1 = bv

But now, given any ceK*, we have c-bx = c-by-b^ hence cb1 = c. Also,
blc = blb1c, hence bx-c = c. So bx is the identity element of K, and since
c K* = K* = K*c for every ceK*, the set K* is a group under multiplication.

We are ready now to prove Theorem 1.1. Let K be an ^-definable ring with no
zero divisors. By Lemma 4.4, K is a division ring and hence, just like Lemma 3.3 in
[5], definably connected. By Lemma 4.3 and its proof, we may assume that A!" is a
division ring of n x n matrices, with addition and multiplication induced from R, and
/ as its identity element. Moreover, K is a finite dimensional vector space over R. It
then contains a definable copy of R, R = R • I, as a subfield. If A" is a field, it is a finite
field extension of A, and since R is a real closed field, K equals R or R(V(—1))> the
algebraic closure of R. If AT is a division ring but not a field, then R is contained in
the centre of the multiplicative group ofK, so by Frobenius' Theorem (see [7]) it must
be the ring of quaternions over R. (In particular, it is of dimension 4.)
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Theorem 1.1 implies that questions about definable, or more generally
interpretable, fields in M can be reduced to questions about definable expansions of
R or R(\/(— 1)). One example is the following.

We let Tan be the theory of Jt&n, the real field expanded by restrictions to [— 1,1]",
neN, of all functions which are analytic on some open set containing this interval.
It was shown by van den Dries [1] that every function of one variable that is definable
in J?an grows asymptotically like some rational power of x, and hence the function ex

is not definable in Mm. We let 7^xp be the theory of the real field expanded by the
function ex, and conclude now a strong version of the above.

COROLLARY 4.5. No model of TeKV is interpretable in a model of T&n.

Proof. Assume that there are formulas which interpret a real closed field AT in a
model M of Tan, and a formula <j>(x,y) which defines the graph of the exponential
function on K. By Theorem 1.1, there is a definable field isomorphism in M between
K and the underlying real closed field of M. Hence there is in Jt a definable order-
preserving isomorphism of the additive group and the positive multiplicative group
in M. But then such an isomorphism is definable in every model of T&n, contradicting
the fact that ex is not definable in Jtw.

One can show similarly that if T = Th((U, < , + , • , . . . » and for some irrational
a the function xa is definable in T, then no model of T can be interpreted in a model
of Tm.
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