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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 326, Number 1, July 1991

 SOME MODEL THEORY OF COMPACT LIE GROUPS

 ALI NESIN AND ANAND PILLAY

 ABSTRACT. We consider questions of first order definability in a compact Lie
 group G . Our main result is that if such G is simple (and centerless) then the
 Lie group structure of G is first order definable from the abstract group struc-
 ture. Along the way we also show (i) if G is non-Abelian and connected then
 a copy of the field 11t is interpretable. in (G, ), and (ii) any "1-dimensional"
 field interpretable in (11t, +, ) is definably (i.e., semialgebraically) isomorphic
 to the ground field 11t.

 0. INTRODUCTION

 It was observed a long time ago (Cartan, van der Waerden) that if G is a

 compact (semi)simple Lie group, then the Lie group structure of G is "implic-

 itly" defined from the abstract group structure, i.e., any abstract automorphism

 of G is a homeomorphism (and is thus analytic). We show here that the Lie

 group structure is "explicitly" defined from the abstract group structure, in a

 strong sense which we will explain in this introduction. (Note that a "simple"
 proof of Cartan's theorem is given in [Pi 2].)

 We really deal here with Nash groups, namely Lie groups which are definable

 in (11t, +, *) (see §1). On the other hand it is known (Chevalley [C]) that any

 compact Lie group is Lie isomorphic to a real algebraic group which is of course
 definable in (Dt, +, *). When we speak of a compact Lie group, we always
 assume it lives as a definable object in (Dt, +, *). Given such a group G, let

 G* denote G equipped with all its structure induced from (11t, +, *). So the
 definable sets in G* are the traces in G of the definable set in (Di, +, *) . We

 prove

 Theorem 0.1. (i) Let G be a compact Lie group which is simple (and centerless).
 We assume G is a Nash group (so definable in (R, +, *)). Then there is an
 isomorphic copy (21, +, *) of the real field interpretable in (G, *), there is a
 Nash group G1 over 21 and a definable (in (G, *)) isomorphism of G with G1.
 Moreover, if u is the unique isomorphism of 21 with i, then u(Gl) and G
 are Nash isomorphic.

 Received by the editors September 12, 1988 and, in revised form, June 26, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 03C60; Secondary 22E15.
 The second author was supported by NSF grant DMS 8601289 and a fellowship from the Alexan-

 der von Humboldt Foundation.

 t 1991 American Mathematical Society
 0002-9947/91 $1.00 + $.25 per page

 453

This content downloaded from 128.176.180.55 on Fri, 21 Oct 2016 09:49:50 UTC
All use subject to http://about.jstor.org/terms
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 (ii) Under the assumptions of (i), (G, ) = G*, i.e., every definable set in G*
 is definable in (G, *).

 Our proof follows the proof of the analogous result by Poizat [Po, 4g] for al-
 gebraic groups over algebraically closed fields (stemming from a paper of Zilber
 [Z]). The main problem is just to see that various parts of the proof also hold
 in the real case.

 In §1 we show that a copy of IR is interpretable in the pure group structure
 of compact non-Abelian Lie group in a special way. We depend on general
 properties of compact Lie groups (mainly facts about tori), semialgebraic di-
 mension theory and the first author's observation [N] that a field can be found
 in a group resembling SO3(IIR). We are somewhat arbitrary in our choice of
 what general favts about compact Lie groups we assume. Of course, the more
 of the structure theory of compact Lie groups we assume, the more our proof
 tends towards a proof by inspection. However we assume nothing about roots
 and weights. (A separate issue would be to derive all the structural properties of
 (Nash) Lie groups by real algebraic-geometric (model-thP<oretic) methods. Some
 elementary things of this kind were done in [Pi 2] but this is not the purpose of
 the present paper.)

 In §2 we prove that a " 1 -dimensional" field interpretable in (11t, +, *) is defin-

 ably isomorphic to (Ilt, +, *) . (This amounts to showing that a l-dimensional
 Nash field is Nash isomorphic to 11t.)

 In 53 we show that if G is simple and centerless and K is the field found
 in §1, thell G is definably interpretable in K (with its induced structure from
 (G, *)), in other words G is contained in the defiriable closure of K, computed
 in the structure (G, *). Theorem 0.1 follows from the above, together with a
 result from [Pi 1]: a group interpretable in (R, 1, *) is definably isomorphic to
 a Nash group.

 1. FINDING THE FIELD IN THE GROUP

 To clarify matters we first recall various categories of groups with 'Sreal"
 structure:

 A Lie group is an analytic manifold equipped with analytic group structure.
 A SNash manifold [S] is an analytic manifold together with a covering by

 finitely many open sets and analytic isomorphisms from these open sets onto
 open semialgebraic sllbsets of in, with semialgebraic transition maps. A Nash
 group is a Nash manifold with Nash (analytic semialgebraic) group structure.

 A (linear) real algebraic group G is a Zariski closed subgroup of some
 GLn(R) . Such a group is also a Nash group, as is any open subgroup of G.

 These are not full subcategories; for example, two Nash groups may be Lie
 (analytically) isomorphic without being Nash isomorphic.

 Now a Nash group G is a real algebraic-geometric object (in particular it is
 definable in (R, +, *), together with the Nash group structure). We thus have
 (see[Pil])
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 Fact 1.1. Let G be a Nash group. Then

 (i) any semialgebraic (i.e., definable in (IR, +, *)) subgroup of G is closed.

 (ii) G has the DCC on semialgebraic subgroups.

 Now any semialgebraic set X C Rn has a dimension, dim X which can be

 defined in a number of ways (see, e.g. [S]); we have

 Fact 1.2.

 (i) Let X be semialgebraic. Then dimX = algebraic-geometrical dimen-

 sion of the Zariski closure of X.

 (ii) If G is a Nash group, then dim G = dimension of G as a manifold.

 (iii) Let G be a Nash group (or manifold) and X a semialgebraic subset of

 G. Then dim X = dim G =# X contains a nonempty open subset of G.

 If a E Rn and A C iR, then dim(a/A) is defined to be the maximum of
 {dim X: X C iR is semialgebraic, defined with parameters in A and a E X}.

 Fact 1.3.

 (i) If a E lIR', b E liR , A C IR and a E acl(bA) (where acl is computed in
 (IR, +, ) then dim(a/A) < dim(b/A).

 (ii) If X C iRn is semialgebraic and defined over A C IR, then there is an
 a E X with dim(a/A) = dim X.

 We should also mention a fact which can be easily deduced from results in

 [Pi 1].

 Fact 1.4. Let G be a Nash group and H a semialgebraic normal subgroup of

 G. Then there is a Nash group K and a semialgebraic isomorphism of G/H
 with K, such that the manifold topology on K corresponds to the quotient

 topology on G/H.

 We now recall some general facts about compact Lie groups.

 Fact 1.5 (Chevalley [C]). Any compact Lie group is isomorphic as a Lie group

 to a real algebraic group.

 From now on, G denotes a compact connected Lie group. T1 denotes the

 torus R/Z and Tk = T x ... x T' (k times).

 Fact 1.6 [Bou]. If G is Abelian then G is isomorphic (as a Lie group) to some
 k

 T.

 Definition 1.7. A maximal torus of G is a maximal closed connected Abelian

 subgroup of G.

 Fact 1.8 [Bou].

 (i) Any maximal torus of G is a maximal Abelian subgroup of G.

 (ii) G is covered by its maximal tori, which are, moreover, all conjugate
 in G.
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 Fact 1.9 [Bou]. The derived group G' of G has a finite center. Moreover, G
 is the almost direct product Z(G) * G' (i.e., G = Z(G) . G' and Z(G) n G' is
 finite).

 Before stating and proving the main result of this section we first observe that

 many of the data mentioned above are definable in the pure group language. We
 assume G is connected unless otherwise stated. Any other groups mentioned
 are also Lie groups.

 Lemma 1.10. Any maximal torus of G is definable in (G,*).

 Proof. Note first that, by Fact 1.1 (ii), for any A c G there is finite Ao C G such
 that CG(A) = CG(AO) . Thus, if T is a maximal torus of G then Z(CG(T)) is
 definable in (G, *) and is equal to T by Fact 1.8(i).

 Lemma 1.11. Let A be compact Abelian (not necessarily connected). Then A',
 the connected component of A, is definable in (A, .).

 Proof. By Fact 1.6, A' is divisible and clearly JA/A0i < co. Thus, for some
 n, AO = n * A, and so AO is definable in (A, .) .

 Lemma 1.12. Let H be compact, not necessarily connected. Then H0, the
 connected component of H, is definable in (H, .).

 Proof. Clearly Ho has finite index in H. For each maximal torus T of H0,
 Z(CH(T)) is an Abelian definable subgroup of H in which T has finite index.

 As in Lemma 1.1 1 T is definable in (H, -) By 1.8(ii), Ho = UhEH Th which
 is thus definable in (H, .).

 Lemma 1.13. The derived group G' of G is definable in (G,.).

 Proof. By [Pi 2] and Fact 1.5, G' is semialgebraic (so closed), and, moreover,
 there are al, ... , aa E G such that (aG * all) (aG * a 1) contains an open
 subset of G'. Since G' is also compact, finitely many translates of this set
 cover G', whereby G' is definable in (G, .).

 We now state the main result of this section.

 Proposition 1.14. Let G be a compact connected non-Abelian Lie group. Then
 there are, definable just in the group language, X c G, an equivalence relation
 E on X with finite classes, and a field structure on X/E. Moreover, X (and
 so X/E) is 1-dimensional (as a semialgebraic set).

 Proof. Let H be a minimal connected non-Abelian subgroup of G definable
 (in (G, *)) (where connected means topologically). By Fact 1.9 H = H' has
 finite center. Moreover, H/Z(H) is centerless (H/Z(H))' = H/Z(H) and
 thus, by Fact 1.9, H/Z(H) has finite center, the preimage of which in H is
 finite, normal and thus central). Clearly, every proper connected definable (in
 (G, .)) subgroup of H/Z(H) is Abelian (the same being true of H). Let us

 put Hi = H/Z(H). So H1 is a compact connected non-Abelian centerless
 Lie group, every definable (in H1, .)) proper connected subgroup of which is

 Abelian. We now work in H, .
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 Claim 1. Every nontrivial element a E Hl is in a unique maximal torus T
 which equals C°(a), the connected component of the centralizer of a in H.

 Proof. Let a # 1 a E H1. Let T be a maximal torus containing a (by
 (1.8(ii)). So Tc C(a). As C°(a) hasfiniteindexin C(a) and T isconnected,
 T c C°(a), and as a is not central, C°(a) C H1 . So C°(a) is Abelian, thus
 equals T.

 For a 7& 1, a E H1, we let T(a) denote the unique maximal torus containing
 a . T is an arbitrary maximal torus (of H1 ). Notice that, by Claim 1, tori are
 disjoint.

 Claim 2. C(T) = T and T has finite index in N(T).

 Proof. By 1.8(ii), T is not normal in Hl, so N(T) < Hl, (N(T))° contains T
 and is Abelian. Thus N(T)° = TS hence [N(T): T] is finite. If T + C(T), let
 a E C(T)- T. Then, as T is connected, T c C°(a) = T(a). Thus T= T(a) .
 So a E T, a contradiction.

 Claim 3. N(T) - T contains an involution. Moreover, any involution of
 N(T)-Tactson Tasxx .

 Proof. By Facts 1.6 and 1.8, Hl contains involutions i, j such that T(i) #
 T(j). Now (ij)i=(ij)j= ji=(ij) 1,so, byClaim1,both i and j normalize
 Tt i j) . If i E T( i j ) then also j E T( i j ), whereby Tt i) = T f i j ) = T( j ) ( which
 is impossible. So i E N(T(ij)) - T(ij). Without loss T(ij) = T (by Fact
 1.8(ii)).

 Now let a E N(T) - T be an involution. Let A = C(a) n T and B = {x E
 T: xa = x l}. A and B are subgroups of T. Moreover, as T is divisible,
 T = T2 and every element of T can be written in the form ttat(ta) 1. But
 tta E A and t(ta)-l E B. Thus T= AB. But C(a)nT isfinite, for, otherwise,
 clearly T(a) = T, which is impossible. Thus B (which is definable) has finite
 index in T. So B = T and Claim 3 is proved.

 Claim 4. T has a unique involution, dimT= 1 and IN(T)/TI = 2.

 Proof. Let i, j be involutions of T. Let a e N(T) - T be an involution
 (by Claim 3). By Claim 3 again, ia = i, ja = j. Thus both i andj are in
 N(T(a)). By Claim 3 again ij E C(T(a)) = T(a) # T. But ij E T. Thus
 ij = 1, i = j. So T has a unique involution. As T is a torus, its dimension
 (as a manifold or as semialgebraic set) must be 1. Since the only nontrivial Lie
 automorphism of Tl is x > x l, it follows that IN(T)/TI = 2.

 At this point (in fact earlier) it is known that Hl is S03(2). In any case,
 as in [N], we easily find a projective plane on the set of involutions I of Hl .
 The lines are sets of the form N(T) - T for T a maximal torus. If T = T(i)
 we call such a line L(i). One easily checks from the above that L(ij) is the
 unique line containing i and j and that k is the unique point in L(i) n Lf j) (
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 where k is the unique involution of T(ij). By Bachman [B] this projective

 plane is the projective plane of a field K which is thus definable on any line

 N(T) - T, minus a point. Thus dim K = 1 (as a semialgebraic set). Noting
 that H1 arose from G as the quotient of a definable (in (G, .)) subgroup by
 its finite center, we see that Proposition 1.14 is proved.

 2. CLASSIFYING SEMIALGEBRAIC FIELDS

 In this section we prove

 Theorem 2.1. Let K be afield interpretable in (R, +) such that dimK = 1.

 Then there is an isomorphism of K with R that is definable in (R, +, *).

 Remark. (IR, +, *) has so-called elimination of imaginaries, which amounts to
 saying that, for any definable X C iRn and definable equivalence relation E on
 X, there is a definable y C in and a definable bijection f: X/E -4 Y. This
 enables us to talk about dim X/E, as definable bijections preserve dimension.

 We will need the following fact, pointed out to us by L. van den Dries.

 Lemma 2.2. Let G be a Nash group, with dim G = n. Then the adjoint repre-

 sentation Ad: G -* GLn(R) is semialgebraic.

 Outline of proof. Identify semialgebraically an open neighborhood of 1 in G
 with an open subset of Rin . For x E G, Intx is the map g -, gx and Adx
 is the Jacobian matrix of Int x at 1. As G is covered by a finite number of
 open semialgebraic sets, Adx is uniformly semialgebraic in x, which proves
 the lemma.

 Corollary 2.3. Let G be a centerless group, interpretable in (R, +, *). Then

 there is a semialgebraic isomorphism of G with a subgroup of some GLn (R) .

 Proof. By [Pi 2], G can be semialgebraically equipped with Nash group struc-
 ture, i.e., G has a semialgebraic covering by a finite number of open semialge-
 braic subsets of IRn (where n = dim G) such that the transition maps are Nash
 and group multiplication is Nash. Namely, we can identify G semialgebraically
 with a Nash group. Now the kernel of Ad is Z(G). As G is centerless, by

 Lemma 2.2, we see G is semialgebraically isomorphic to a (semialgebraic) sub-

 group of GLn (R) .

 We are now set for the proof of Theorem 2.1. The main point is to show that

 (K, +) is semialgebraically isomorphic to (R, +). (Note that by [Pi 1], K is
 real closed and in fact by [Pon], is abstractly isomorphic to IR.) Let K+ be
 the additive group of K and K+ the "positive" elements of the multiplicative

 group of K. Both K+ and K+ have no proper subgroups of finite index. Thus
 also the centerless group K+ x K* (where K* acts on K+ by multiplication),
 which is also interpretable in (IR, +, *), has no proper subgroups of finite index.

 By Corollary 2.3, K+ X K+* is semialgebraically isomorphic to a semialgebraic
 linear group G. G is clearly connected as a Lie group. Let H be the image
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 of K+ in G. By [Pi 2], G has finite index in a real algebraic (linear) group
 Gl which is connected as an algebraic group. Let Hl be the Zariski closure of
 H in Gl . Then, by Fact 1.2, the algebraic-geometrical dimension of Hl is 1.
 Hl is also connected as an algebraic group (because H has no subgroups of
 finite index). Let now (Gl),: be the complexification of G1, i.e., the smallest
 complex algebraic group containing Gl, and similarly for (Hl ),:, with (Hl ), <
 (G1 )¢ . Both (H1 )<:, (G1),: are by [B1] connected algebraic groups, defined over
 X, and, moreover, the real points of (Hl)¢, (Gl) are Hl, Gl, respectively.
 Furthermore, (Hl)¢ is l-dimensional as an algebraic (and also the dimension
 of (Gl ) is 2). It is easy to see that (Hl ) is normal in (Gl ) (if g E G then
 g normalizes H, so (H1)¢ n (H1)¢ is infinite and equals (Hl) as the latter
 is connected. The normalizer of (H1),: in (G1)<: is algebraic and contains G,
 so must be all of (G1),:). As H is not central in G, (Hl),C is not central in

 (Gl)C. Thus

 (*) An infinite algebraic group acts faithfully on (Hl)<: .

 Now, as (Hl?¢ is a 1-dimensional connected complex algebraic group, it is
 [B2, 10.9] isomorphic as an algebraic group to C+ or to C . As C* does not
 have an infinite group of automorphisms, by (*), it must be C+ . By [B2, 10.9]
 as (H1)¢ is defined over IR, the isomorphism of (Hl)C with ¢+ (which is a
 polynomial map f, say) can be taken to be defined over Ill. But then f takes
 the real points of (H1)¢ to the real points of ¢:+ . Namely, H1 and Di+ are
 isomorphic by a polynomial map in Di . As R+ has no subgroup of finite index,
 the same is true for Hl . Then H = Hl and we see that K+ is semialgebraically
 isomorphic to Di+ .

 Let us now identify K+ with IFi+ . First note that any definable (in (11t, + S *))

 endomorphism of Ili+ is linear: for if f is such, then R = {a E R: f(a * x) =
 a * f(x) Vx E R} is a definable infinite subgroup of 11t+ t so equals Di.

 Now let a E R be the 1 of K (so a + O), and let o be the multiplication

 of K. By the above note, axy = ax o ay, and so the map x ax is a 1-1 onto map R K, which is an isomorphism of (Ilt, +, *) with the field K . We

 have shown that K is definably isomorphic to (R, +, *).

 5. FINDING THE GROUP IN THE FIELD

 We begin with some definitions. Let M be an L-structure, and X, Y
 subsets of AI (or Meq). We will say Y Cu acl(X) (Y is uniformly in the
 algebraic closure of X) if there is a formula (y, x) of the language L such
 that, for some n E , M l= VxH'ny(y, x), and, for all b E Y, there is
 a c X such that M l= (b, a). We will say Y Cu dcl(X) (Y is uniformly in
 the definable closure of X) if (y, x) can be chosen as above but with n = 1 .
 We prove

 Theorem 3.1* Let G be a compact simple (centerless) Lie group. Then there is a
 l-dimensionalfield K interpretable in (G, ) and somefinite c c G such that
 G Cu dcl(K u c) in the sense of the structure (G, *) .
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 We first observe

 Lemma 3.2. Under the assumptions of 3.1, K and c can be found with G cu
 acl(K u c).

 Proof. Let K be as given by Proposition 1.14 (i.e., K c X/E), where X c G is
 definable in (G, *) and E is a definable equivalence relation with finite classes.
 Let Y c X be the union of the E-classes which are members of K. G being
 real algebraic and simple, we can apply Remark 3.6 of [Pi 2] which implies that
 there is an open neighborhood of 1 in G and finitely many elements c c G
 such that U cu dcl(Y u c). As G is compact, we extend c to -c such that
 G cu dcl(Y u c ) computed in (G, *)). This proves the lemma.

 Proof of Theorem 3.1. We want to use the fact that G has no finite normal
 subgroups to see that we can add finitely many additional parameters to the c
 from Lemma 3.2 to obtain d with G cu dcl(K u d) .

 First, by Lemma 3.2, we can choose a finite set c c G, a formula p(y, x)
 of the pure group language and some k < w such that G l= V - 3<ky(y, y),
 and, for all b E G, there is a a c K u c with G l= (g, a) and k smallest
 possible.

 Before continuing the proof we introduce some notation. Remember that G
 is a real algebraic group, thus any subset of G defined in the group language
 is also a semialgebraic set and therefore has a dimension (Fact 1.2). Suppose
 dim G = n, and let V/ (y) be a formula in the group language (maybe with
 parameters). We will say that, for almost all b E G, G VI (b) if {b E G: G t
 -1g(b)} has dimension < n, and we observe

 Remark 3.3. Either, for almost all b E G, G t yi(b) or {b E G: G l (b)}
 contains a nonempty open set.

 For A c G and b E G we will say that b is generic over A if dim(b/A) = n .

 We now return to our choice of ip and k. Let y,(y, x) be 9(y, x) A
 3= y(Py, x)

 Claim 3.4. For almost all b E G there is an a c K u c with G l= Vy(b, z)).

 Proof. If not, then, by 3.3, there is a nonempty open set U c G such that, for

 all b E U, there is an a c K U c with G l= (b, a) A 3 <ky(p(y, a). As G is
 compact, finitely many translates of U cover G, so, by adding a finite number
 of parameters to c, we easily contradict least choice of k.

 Claim 3.5. For almost all b E G, if G l= q(b, al) A yi(b, a2)' where al, a2 c
 K u c, then G l= Vy(VI(y, al) , V/(y , ZY))

 Proof. Again by using 3.3, we see that, if not, there is a nonempty open set
 U c G such that, for all b E U, there are al, a2 C K u c such that G l
 VI(b, al) A y(b, a2) andG l= -Vy(Vy(y, al) + y(y, Z9) . Note that then G l
 3 <ky(V/(y, al ) A V'(y, a2)); so, again by compactness of G, we contradict least
 choice of k.
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 Let now A c G be a finite set including c and the parameters defining K.

 Let Z = {b E G: 3a c KU c, G l= (b, a), and, Va' a2 c KUc, if G =
 qI(b, al) A yg(b, a2) then G = Vy(ig(y, al) Y(y, 92)}. Z is A-definable
 (in the group language) and, by the previous two claims, dim(G - Z) < n.
 In particular, note that if b is generic over A then b E Z. We can define an

 equivalence relation E on Z by yIEy2 if 3a c KUc G l= y/(yI, a)Aig(y2, a)
 Note that E is A-definable and, for b E Z, the E-class of b has exactly k

 elements.

 Claim 3.6. For all g E G, almost all b e Z, "gb E Z and for all bl, blEb
 implies gb1 E Z and bg1Egb" (*).

 Proof. If not, there is a g E G and an open set U of b e G which fail to

 satisfy (*) . Choose b E U which is generic over A U {g} . Now, for any b1, if
 blEb then b E acl(b1 U A) and thus, by Fact 1.3, b1 is generic over A U {g}.
 So, by Fact 1.3 again, gb1 is generic over A and gb1 E Z. So, as (*) fails,
 thereis b1 Eb with gb1 eZ but -n(gb1Egb). Let al cKUc besuchthat

 G F yv(b, al), and let Z2 c K U c be such that G = yl(gb, 2). Thus the
 formula yg(y, al) A yi(gy, a2) is satisfied by b but not by b1, and hence it is
 satisfied by < k elements.

 As b is generic over A u {g}, there is, by Fact 1.2, an open set V c G

 such that, for all y e V, there are Xl X C KUc such that G l= y(y, x) A

 Y(gy, x2) and G ]= 3<ky(ig(y, xl) A Yi(gy, x2)). Again by compactness of
 G, after adding g and finitely many additional parameters to c, we contradict
 the least choice of k. This proves Claim 3.6.

 Now let L = {g E G: for almost all b E Z, if b satisfies (*) then b E gb}.
 It is easy to see that L is a (finite) normal subgroup of G, and thus L = { 1 }.

 We can now conclude the proof of Theorem 3.1. Let g E G be generic

 over A. Let a c K u c be such that G l= y(g, a), and let g/E = {g =

 91l 9 2 ' . . . I gkl -
 For i = 2,..., k, let hi = g g. As L = {I}, we can, for each i =

 2, ..., k, choose ai generic over A u {g, gi} such that -'(hiai E ai). Let
 Ci, di, for i=2,... ,=k, be such that G F yI(a1,ci) A yl(gai, di) i,di c
 K U C . It is then clear that g e dcl(ah, C2 . ..., Ck, d 2, . . . , d k ); in fact g is the
 unique y E G such that G l= qi(y, a) and such that, whenever G 1= yi(a, ci),
 then also G l y(ya, d1). (Note that g satisfies these conditions. If g' does

 also then g' = gi, some i = 2, ..., k; but, then giaiEgai so g 'giaiEai,
 contradicting the choice of ai .)

 Thus we have a formula X(Y, I 2) such that

 G l= bz- ,Z- Yx(Yv - I z2)

 and

 G 7 f K v(g,f Z
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 As g was generic over A there is an open set U of g' such that G l=

 3zl c KX(g', z1 c). Again by compactness of G, we can add finitely many

 parameters to c to get c such that G Cu dcl(K u c ), which proves Theorem

 3.1.

 We now prove Theorem 0.1.

 Proof of Theorem 0.1. (i) Let G be our simple centerless compact Lie group

 which we assume to live in (Di +, *) as a real algebraic group. Let, by Theorem

 3.1, K be a 1-dimensional field (as a semialgebraic set) which is interpretable in

 (G, *) such that G ca dcl(lCuc) (some c c G) in the sense of (G, *) . Easily,

 G is definably isomorphic (in (G, *)) to a group G1 C Kn/E, where E is a

 definable equivalence relation in (G, *) on Kn. Now K (being interpretable

 in (1R, +, *) and 1-dimensional) is, by Theorem 2.1, definably (in (I1t, +, *))

 isomorphic to (Di, +, *) by an isomorphism u, say. So u(Gl) is interpretable

 in (Dt, +, *). It follows that G1 is interpretable also in (K, +, *). By [Pi 1]

 G1 is definably isomorphic in (K, +, *) to a Nash group G2 over K. As

 the operations + and * of K are definable in (G,*) and Gl is definably

 isomorphic (in (G, *)) to (G, *), we conclude that a Nash group structure can

 be found on (GX) definably in (G,*). That this Nash group structure is

 the same as the original can be deduced from the fact that u(G2) and G are

 definably (in (Di, +, )) isomorphic and that any definable isomorphism of Nash

 groups is a Nash isomorphism.

 (ii) We have an isomorphism f: G > G2 definable in (G, *) and an iso-

 morphism u: G2 u(G2) definable in (R, +, *). Let g = u o f . Let X

 be a semialgebraic set in G. Then g(X) is a semialgebraic set in u(G2), so

 u-l o g(X) is a semialgebraic set in G2 (when we view G2 as definable in kS).

 Now X = t l(u l og(X)). But f l is definable in (G, *). Thus, also X is

 definable in (G f *) .

 This completes the proof of Theorem 0.1.
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