
Characterization of (Pseudo)finite Simple Groups
Based on Three Theorems of J.S. Wilson

Leon Pernak

WWU Münster

30-06-2021



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Characterization of pseudofinite groups

In the first half of the seminar we saw the algebraic
characterization of pseudofinite fields by Ax.

Thus it is natural to ask for such a characterization for the
pseudofinite groups.
None is known.
Group theory (Jordan-Hölder theorem) tells us that "all
groups are made up of simple groups" (via composition series.
In particular, for finite groups these always exist).
So is there an algebraic classification of the simple
pseudofinite groups?
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Classification of finite simple groups

Classification of finite simple groups

Theorem
Every finite simple group is isomorphic to one of of the following:

A cyclic group Cp of prime order.
An alternating group Altn of degree at least 5.
A simple group of Lie type.
One of 26 sporadic groups.
The Tits group.
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Classification of finite simple groups

Classification of finite simple groups of Lie type

Theorem
Every finite simple group of Lie type is isomorphic to one of the
following:

Chevalley groups:
An, n ≥ 1
Bn, n ≥ 2
Cn, n ≥ 3
Dn, n ≥ 4
E6,E7,E8,F4,G2

Steinberg groups:
2An, n ≥ 2
2Dn, n ≥ 4
3D4, 2E6

Suzuki and Ree groups:
2B2, 2G2, 2F4

We write X (K ) for the group of Lie type X over the field K .
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Definability of finite simple groups

Definition
A family of finite groups indexed by prime powers is uniformly
definable if there exist formulas φ, ψ such that φ defines a finite
subset of each finite field of prime power order, ψ defines a group
operation on those sets, and the family consists of these groups for
the various fields.

Proposition
The finite groups of Lie type other than 2B2, 2G2, 2F4 are
uniformly definable in the corresponding finite fields.

Proposition
The Suzuki and Ree groups 2B2, 2G2, 2F4 are uniformly definable
in some corresponding difference field, i.e. the corresponding finite
field enriched by a certain automorphism.



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Definability of finite simple groups

Definition
A family of finite groups indexed by prime powers is uniformly
definable if there exist formulas φ, ψ such that φ defines a finite
subset of each finite field of prime power order, ψ defines a group
operation on those sets, and the family consists of these groups for
the various fields.

Proposition
The finite groups of Lie type other than 2B2, 2G2, 2F4 are
uniformly definable in the corresponding finite fields.

Proposition
The Suzuki and Ree groups 2B2, 2G2, 2F4 are uniformly definable
in some corresponding difference field, i.e. the corresponding finite
field enriched by a certain automorphism.



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Definability of finite simple groups

Definition
A family of finite groups indexed by prime powers is uniformly
definable if there exist formulas φ, ψ such that φ defines a finite
subset of each finite field of prime power order, ψ defines a group
operation on those sets, and the family consists of these groups for
the various fields.

Proposition
The finite groups of Lie type other than 2B2, 2G2, 2F4 are
uniformly definable in the corresponding finite fields.

Proposition
The Suzuki and Ree groups 2B2, 2G2, 2F4 are uniformly definable
in some corresponding difference field, i.e. the corresponding finite
field enriched by a certain automorphism.



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Definability of finite simple groups

Theorem (Ryten)
1 Any family of finite simple groups of any fixed Lie type except

2B2,
2 G2,

2 F4 is uniformly bi-interpretable over parameters
with the corresponding family of finite fields.

2 The Ree groups 2F4(F22k+1) and the Suzuki groups
2B2(F22k+1) are uniformly bi-interpretable over parameters
with the difference fields (F22k+1 , x 7→ x2k ). The Ree groups
2G2(F32k+1) are uniformly bi-interpretable over parameters
with (F32k+1 , x 7→ x3k ).
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Algebraic characterization

Pseudofinite groups

Recall
A group is pseudofinite if it is equivalent to an ultraproduct of
finite groups, or equivalently, if every sentence holding in the group
holds in some finite group.

Examples
(Q,+) ≡

∏
p∈P Cp/U

PSL2(F ) for a pseudofinite field F .
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Algebraic characterization

Groups of Lie type over pseudofinite fields

Theorem
If X is a Lie type and K an infinite field. Then X (K ) is simple.

In particular, groups of Lie type over pseudofinite fields are
simple.
The theorem in fact also holds for finite fields, with a few
small exceptions.
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Algebraic characterization

Proposition (Point)
Let {X (Ki )|i ∈ I} a familiy of finite groups of the same Lie type.
Then for any non-principal ultrafilter U it holds that∏

i∈I
X (Ki )/U ∼= X (

∏
i∈I

Ki/U)

The Ultrapower theorem (Shelah, Keisler)
Two L-structures are elementarily equivalent if and only if they
have isomorphic ultrapowers.
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Algebraic characterization

Lemma
Let X be a Lie type. There is an integer kX such that each element
of each finite group X (K ) is a product of at most kX commutators.

Proof
Suppose not. Then for each d > 0 there is a finite field Ed
and gd ∈ X (Ed ) such that gd is not a product of at most d
commutators.
Then (gd ) ∈

∏
d∈N X (Ed )/U =: G is not a product of

commutators.
Using the proposition of point, G is a group of Lie type X ,
thus simple �

Proposition
There is an integer k such that each element of each finite
non-abelian group G is a product of k commutators.
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Algebraic characterization

Lemma
The finite simple groups of a fixed Lie type are boundedly simple,
i.e. if X is a Lie type, there is an integer cX such that for each
finite group X (K ) and elements g , h ∈ X (K ) the element g is a
product of at most cX conjugates of h.

The proof is analogous to the previous lemma.
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Algebraic characterization

Theorem (Wilson)
A group is pseudofinite and simple if and only if it is elementarily
equivalent to a simple group of Lie type over a pseudofinite field.

Remark
Later work of Ryten showed that elementary equivalence can be
replaced by isomorphy.

Remark (Ugurlu)
In the theorem, "simple" can be replaced by "definably simple of
finite centraliser dimension".



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Algebraic characterization

Theorem (Wilson)
A group is pseudofinite and simple if and only if it is elementarily
equivalent to a simple group of Lie type over a pseudofinite field.

Remark
Later work of Ryten showed that elementary equivalence can be
replaced by isomorphy.

Remark (Ugurlu)
In the theorem, "simple" can be replaced by "definably simple of
finite centraliser dimension".



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Algebraic characterization

Theorem (Wilson)
A group is pseudofinite and simple if and only if it is elementarily
equivalent to a simple group of Lie type over a pseudofinite field.

Remark
Later work of Ryten showed that elementary equivalence can be
replaced by isomorphy.

Remark (Ugurlu)
In the theorem, "simple" can be replaced by "definably simple of
finite centraliser dimension".



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Algebraic characterization

Proof "⇐"

Let G be a group elementarily equivalent to a simple group of
Lie type X (F ) over a pseudofinite field.

F is elementarily equivalent to an ultraproduct F̄ of finite
fields.
By the ultrapower theorem, F and F̄ have isomorphic
ultrapowers, say F ∗ and F̄ ∗.
F̄ ∗ is still an ultraproduct of finite fields, say F̄ ∗ =

∏
j∈J Fj/U .

G ≡ X (F ) ≡ X (F )∗ ∼= X (F ∗) ∼= X (F̄ ∗) ∼=
∏
j∈J

X (Fj)/U

⇒ G is pseudofinite.
The X (Fj) are boundedly simple, so X (F )∗ is boundedly
simple and thus G is simple.
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Algebraic characterization

Proof "⇒"

Proposition
Every simple pseudofinite group is elementarily equivalent to an
ultraproduct of finite simple groups.

Recall: If G =
∏

j∈J Gj/U is any ultraproduct, and
J = J1 t ... t Jn, then G ∼=

∏
j∈Ji Gj/Ui for some i where

Ui = {X ∩ Ji |X ∈ U}.
⇒ Can limit ourselves to ultraproducts of finite simple groups
all having the same category.
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Algebraic characterization

Proof "⇒"

Remark
If P is the set of all prime numbers and U is some non-principal
ultrafilter, then ∏

p∈P
Cp/U ≡ (Q,+)

Proposition
No infinite group elementarily equivalent to an ultraproduct of
alternating groups Altn can be simple.

Proposition
If G is simple and elementarily equivalent to an ultraproduct of
groups Yn(Fn), where each Y is one of A,B,C ,D,2 A,2D, then G
is elementarily equivalent to such an ultraproduct in which the
integers n are bounded.
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Algebraic characterization

Definition
The socle socG of a group G is the subgroup of G generated by
the minimal normal subgroups of G .

Lemma (Felgner)
There is a sentence in the group language which holds in every
non-abelian simple group. Moreover, if the sentence holds in a
finite group G , then socG is non-abelian and simple.

The sentence has the form
∀x∀y : [(x 6= 1∧CG(x , y) 6= 1)→

⋂
g∈G

(CG(x , y)CG(CG(x , y))))g 6= 1]

Lemma
If G is a finite group such that socG is a non-abelian simple group,
and every element of socG is a product of m commutators, then
every element of [G ,G ] is a product of m + 3 commutators.
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Every simple pseudofinite group is elementarily equivalent to an
ultraproduct of finite simple groups.

Proof
Let G be simple and G ≡

∏
j∈J Gj/U where the Gj are finite

groups.
Let σ be the sentence from lemma of Felgner, so G |= σ.
By Łos we may assume Gj |= σ for all j , so by Felgner each
socGj is a non-abelian simple subgroup.
Let k be the integer such that all elements of finite simple
groups are products of at most k commutators.
If Gj is non-simple, then [Gj ,Gj ] is a proper normal subgroup
which as seen above consists of all products of k + 3
commutators.
Thus, U-many Gj being non-simple contradicts simplicity of
G , and we can disregard any lesser amount of non-simple Gj .
The result follows.
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Algebraic characterization

Proposition
No infinite group elementarily equivalent to an ultraproduct of
alternating groups Altn can be simple.

Proposition
There is a formula φAlt(x , y) such that if n ≥ 9 then
Altn |= φAlt(u,w) if and only if u is a product of two disjoint
transpositions and w is an involution which fixes at most four
points.



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Algebraic characterization

Proposition
No infinite group elementarily equivalent to an ultraproduct of
alternating groups Altn can be simple.

Proposition
There is a formula φAlt(x , y) such that if n ≥ 9 then
Altn |= φAlt(u,w) if and only if u is a product of two disjoint
transpositions and w is an involution which fixes at most four
points.



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Algebraic characterization

Proposition
No infinite group elementarily equivalent to an ultraproduct of
alternating groups Altn can be simple.

Proposition
There is a formula φAlt(x , y) such that if n ≥ 9 then
Altn |= φAlt(u,w) if and only if u is a product of two disjoint
transpositions and w is an involution which fixes at most four
points.



Motivation Finite simple groups Pseudofinite simple groups Solvability in (pseudo)finite groups

Algebraic characterization

Proposition
No infinite group elementarily equivalent to an ultraproduct of
alternating groups Altn can be simple.

Proof

Suppose G ≡
∏

j∈J Altnj/U and let d be some integer.
There is some n ≥ 4d + 5 such that Altn |= φAlt(u,w).
A product of d conjugates of u moves at most 4d points, so
fixes at least 5, so w is not a product of d conjugates of u.
The latter statement can be expressed in a formula ψd (x , y).
Altn |= (∃u,w : φAlt(u,w)) ∧ ∀u,w : φAlt(u,w)⇒ ψd (u,w)
for n ≥ 4d + 5.
The nj are unbounded (otherwise the ultraproduct would be
finite), so G shows the above sentence.
Since d can be chosen arbitrarily, there would be elements
u,w in G such that w is not a product of conjugates of u, so
G cannot be simple.
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Algebraic characterization

Proposition
If G is simple and elementarily equivalent to an ultraproduct of
groups Yn(Fn), where each Y is one of A,B,C ,D,2 A,2D, then G
is elementarily equivalent to such an ultraproduct in which the
integers n are bounded.

Wilson splits this in the cases of even and odd characteristic.
Then he proceeds similar to the Altn case, finding a formula
which holds in all groups of the concerned type and deriving
the result.
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Properties

We denote by Cm,n,p the class of finite difference fields of the form
(Fpkn+m ,Frobk) for some k.

Theorem
Let p be a prime and let m, n, m ≥ 1, n > 1 and gcd(m, n) = 1.
Then any non-principal ultraproduct of Cm,n,p has supersimple rank
1 theory.

Corollary (Hrushovski)
Any simple pseudofinite group has supersimple finite rank theory.
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Properties

Proof

By the classification theorem of Wilson, any simple
pseudofinite group is a simple group of Lie type over a
pseudofinite field.

By the bi-interpretability result of Ryten such a group is
elementarily equivalent to one either interpretable in a
pseudofinite field or in an ultraproduct of the the class C1,2,2
or C1,2,3.
By the theorem stated above, such ultraproducts are
supersimple of SU rank 1.
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Theorem (Wilson)
There is a sentence in the group language which holds for a finite
group if and only if the group is solvable.

The sentence states that there is no non-trivial element g
which is a product of 56 commutators [x , y ] where each x , y
is a conjugate of g .
Proof "⇐": Any solvable group satisfies this sentence for any
n.

Suppose not, i.e. there is some element g which is a product
of n commutators as above.
Let N be the normal subgroup generated by g . Then
g ∈ [N,N] ≤ N, so N = [N,N], i.e. N is perfect and not
solvable.
Groups with non-solvable subgroups cannot be solvable.

Proof "⇒": Uses classification of minimal finite groups which
are not solvable by Thompson.
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Attention
It is not true that any pseudofinite group is solvable iff the above
sentence holds.

A pseudofinite group may be an ultraproduct of finite groups
which are solvable but of unbounded length of the derived
series.
By Łos, such a group satisfies the sentence above.
However, it clearly is not solvable.
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Definition
The radical R(G) of a group G is the subgroup of G generated by
the solvable normal subgroups of G .

Theorem
In finite groups the radical is ∅-definable.
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Thank you for your attention!
Are there questions?
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