Characterization of (Pseudo)finite Simple Groups Based on Three Theorems of J.S. Wilson

Leon Pernak

WWU Münster

30-06-2021

Westfälische Wilhelms-Universität Münster

(日) (四) (문) (문) (문)

Motivation ●0 Finite simple groups

Pseudofinite simple groups 0000000000000 00 Solvability in (pseudo)finite groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Characterization of pseudofinite groups

• In the first half of the seminar we saw the algebraic characterization of pseudofinite fields by Ax.

Motivation	
0	

Pseudofinite simple groups 0000000000000 00 Solvability in (pseudo)finite groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- In the first half of the seminar we saw the algebraic characterization of pseudofinite fields by Ax.
- Thus it is natural to ask for such a characterization for the pseudofinite groups.

Motivation	
0	

Pseudofinite simple groups 0000000000000 00 Solvability in (pseudo)finite groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- In the first half of the seminar we saw the algebraic characterization of pseudofinite fields by Ax.
- Thus it is natural to ask for such a characterization for the pseudofinite groups.
- None is known.

Motivation	
•0	

Pseudofinite simple groups 0000000000000 00 Solvability in (pseudo)finite groups

- In the first half of the seminar we saw the algebraic characterization of pseudofinite fields by Ax.
- Thus it is natural to ask for such a characterization for the pseudofinite groups.
- None is known.
- Group theory (Jordan-Hölder theorem) tells us that "all groups are made up of simple groups" (via composition series. In particular, for finite groups these always exist).

Motivation	
•0	

Pseudofinite simple groups 0000000000000 00 Solvability in (pseudo)finite groups

- In the first half of the seminar we saw the algebraic characterization of pseudofinite fields by Ax.
- Thus it is natural to ask for such a characterization for the pseudofinite groups.
- None is known.
- Group theory (Jordan-Hölder theorem) tells us that "all groups are made up of simple groups" (via composition series. In particular, for finite groups these always exist).
- So is there an algebraic classification of the *simple* pseudofinite groups?

Motivation	
00	

Overview

Finite simple groups

- Classification of finite simple groups
- Definability of finite simple groups

2 Pseudofinite simple groups

- Algebraic characterization
- Properties

Motivation	Finite simple groups
00	•0

Solvability in (pseudo)finite groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Classification of finite simple groups

Classification of finite simple groups

Theorem

Every finite simple group is isomorphic to one of of the following:

- A cyclic group C_p of prime order.
- An alternating group Alt_n of degree at least 5.
- A simple group of Lie type.
- One of 26 sporadic groups.
- The Tits group.

Motivation	Finite simple groups	Pseudofinite sim
	00	000000000000000000000000000000000000000

Solvability in (pseudo)finite groups 0000

Classification of finite simple groups

Classification of finite simple groups of Lie type

Theorem

Every finite simple group of Lie type is isomorphic to one of the following:

- Chevalley groups:
 - A_n , $n \geq 1$
 - *B_n*, *n* ≥ 2
 - C_n, n ≥ 3
 - *D_n*, *n* ≥ 4
 - *E*₆, *E*₇, *E*₈, *F*₄, *G*₂
- Steinberg groups:
 - ${}^{2}A_{n}, n \ge 2$ • ${}^{2}D_{n}, n \ge 4$
 - ${}^{3}D_{4}, {}^{2}E_{6}$

• Suzuki and Ree groups:

• ²B₂, ²G₂, ²F₄

Motivation 00	Finite simple groups ⊙○ ●○	Pseudofinite simple groups 0000000000000 00	Solvability in (pseudo)finite groups 0000
Definability of finite simple groups			

Definition

A family of finite groups indexed by prime powers is *uniformly* definable if there exist formulas ϕ, ψ such that ϕ defines a finite subset of each finite field of prime power order, ψ defines a group operation on those sets, and the family consists of these groups for the various fields.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation 00	Finite simple groups ○○ ●○	Pseudofinite simple groups 0000000000000 00	Solvability in (pseudo)finite groups 0000
Definability of finite simple groups			

Definition

A family of finite groups indexed by prime powers is *uniformly definable* if there exist formulas ϕ, ψ such that ϕ defines a finite subset of each finite field of prime power order, ψ defines a group operation on those sets, and the family consists of these groups for the various fields.

Proposition

The finite groups of Lie type other than ${}^{2}B_{2}$, ${}^{2}G_{2}$, ${}^{2}F_{4}$ are uniformly definable in the corresponding finite fields.

Motivation 00	Finite simple groups ○○ ●○	Pseudofinite simple groups 0000000000000 00	Solvability in (pseudo)finite groups 0000
Definability of finite s	simple groups		

Definition

A family of finite groups indexed by prime powers is *uniformly* definable if there exist formulas ϕ, ψ such that ϕ defines a finite subset of each finite field of prime power order, ψ defines a group operation on those sets, and the family consists of these groups for the various fields.

Proposition

The finite groups of Lie type other than ${}^{2}B_{2}$, ${}^{2}G_{2}$, ${}^{2}F_{4}$ are uniformly definable in the corresponding finite fields.

Proposition

The Suzuki and Ree groups ${}^{2}B_{2}$, ${}^{2}G_{2}$, ${}^{2}F_{4}$ are uniformly definable in some corresponding *difference field*, i.e. the corresponding finite field enriched by a certain automorphism.

Motivation	Finite simple groups
	00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definability of finite simple groups

Theorem (Ryten)

Any family of finite simple groups of any fixed Lie type except ²B₂,² G₂,² F₄ is uniformly bi-interpretable over parameters with the corresponding family of finite fields.

Definability of finite simple groups

Theorem (Ryten)

- Any family of finite simple groups of any fixed Lie type except ²B₂,² G₂,² F₄ is uniformly bi-interpretable over parameters with the corresponding family of finite fields.
- The Ree groups ${}^{2}F_{4}(\mathbb{F}_{2^{2k+1}})$ and the Suzuki groups ${}^{2}B_{2}(\mathbb{F}_{2^{2k+1}})$ are uniformly bi-interpretable over parameters with the difference fields $(\mathbb{F}_{2^{2k+1}}, x \mapsto x^{2^{k}})$. The Ree groups ${}^{2}G_{2}(\mathbb{F}_{3^{2k+1}})$ are uniformly bi-interpretable over parameters with $(\mathbb{F}_{3^{2k+1}}, x \mapsto x^{3^{k}})$.

Motivation	Finite simple gro
00	00

Solvability in (pseudo)finite groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic characterization

Pseudofinite groups

Recall

A group is pseudofinite if it is equivalent to an ultraproduct of finite groups, or equivalently, if every sentence holding in the group holds in some finite group.

Motivation	Finite simple gro
00	00

Solvability in (pseudo)finite groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic characterization

Pseudofinite groups

Recall

A group is pseudofinite if it is equivalent to an ultraproduct of finite groups, or equivalently, if every sentence holding in the group holds in some finite group.

Examples

•
$$(\mathbb{Q}, +) \equiv \prod_{p \in P} C_p / \mathcal{U}$$

Motivation	Finite simple gro
00	00

Solvability in (pseudo)finite groups

Pseudofinite groups

Recall

Algebraic characterization

A group is pseudofinite if it is equivalent to an ultraproduct of finite groups, or equivalently, if every sentence holding in the group holds in some finite group.

Examples

- $(\mathbb{Q}, +) \equiv \prod_{p \in P} C_p / \mathcal{U}$
- $PSL_2(F)$ for a pseudofinite field F.

Pseudofinite simple groups

Solvability in (pseudo)finite groups

Algebraic characterization

Groups of Lie type over pseudofinite fields

Theorem

If X is a Lie type and K an infinite field. Then X(K) is simple.

M			

Pseudofinite simple groups

Solvability in (pseudo)finite groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic characterization

Groups of Lie type over pseudofinite fields

Theorem

If X is a Lie type and K an infinite field. Then X(K) is simple.

• In particular, groups of Lie type over pseudofinite fields are simple.

Pseudofinite simple groups

Solvability in (pseudo)finite groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic characterization

Groups of Lie type over pseudofinite fields

Theorem

If X is a Lie type and K an infinite field. Then X(K) is simple.

- In particular, groups of Lie type over pseudofinite fields are simple.
- The theorem in fact also holds for finite fields, with a few small exceptions.

Motivation	Finite simple grou
00	00

Algebraic characterization

Pseudofinite simple groups

Solvability in (pseudo)finite groups

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition (Point)

Let $\{X(K_i)|i \in I\}$ a familiy of finite groups of the same Lie type. Then for any non-principal ultrafilter U it holds that

$$\prod_{i\in I} X(K_i)/\mathcal{U} \cong X(\prod_{i\in I} K_i/\mathcal{U})$$

Motivation	Finite simple grou
00	00

Algebraic characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition (Point)

Let $\{X(K_i)|i \in I\}$ a familiy of finite groups of the same Lie type. Then for any non-principal ultrafilter U it holds that

$$\prod_{i\in I} X(K_i)/\mathcal{U} \cong X(\prod_{i\in I} K_i/\mathcal{U})$$

The Ultrapower theorem (Shelah, Keisler)

Two \mathcal{L} -structures are elementarily equivalent if and only if they have isomorphic ultrapowers.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000●000000000 00	Solvability in (pseudo)finite groups 0000
Algebraic charact	erization		

Lemma

Let X be a Lie type. There is an integer k_X such that each element of each finite group X(K) is a product of at most k_X commutators.

Motivation	Finite simple groups	Pseudofinite simple groups	
	00	000000000000000000000000000000000000000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic characterization

Lemma

Let X be a Lie type. There is an integer k_X such that each element of each finite group X(K) is a product of at most k_X commutators.

Proof

• Suppose not. Then for each d > 0 there is a finite field E_d and $g_d \in X(E_d)$ such that g_d is not a product of at most d commutators.

Motivation	Finite simple groups	Pseudofinite simple groups
00	00	00000000000

Algebraic characterization

Lemma

Let X be a Lie type. There is an integer k_X such that each element of each finite group X(K) is a product of at most k_X commutators.

Proof

- Suppose not. Then for each d > 0 there is a finite field E_d and $g_d \in X(E_d)$ such that g_d is not a product of at most d commutators.
- Then (g_d) ∈ ∏_{d∈N} X(E_d)/U =: G is not a product of commutators.

Motivation	Finite simple groups	Pseudofinite simple groups
00	00	0000000000000

Algebraic characterization

Lemma

Let X be a Lie type. There is an integer k_X such that each element of each finite group X(K) is a product of at most k_X commutators.

Proof

- Suppose not. Then for each d > 0 there is a finite field E_d and $g_d \in X(E_d)$ such that g_d is not a product of at most d commutators.
- Then (g_d) ∈ ∏_{d∈N} X(E_d)/U =: G is not a product of commutators.
- Using the proposition of point, G is a group of Lie type X, thus simple 4

Motivation	Finite simple groups	Pseudofinite simple groups
00	00	0000000000000
	00	00

Algebraic characterization

Lemma

Let X be a Lie type. There is an integer k_X such that each element of each finite group X(K) is a product of at most k_X commutators.

Proof

- Suppose not. Then for each d > 0 there is a finite field E_d and $g_d \in X(E_d)$ such that g_d is not a product of at most d commutators.
- Then (g_d) ∈ ∏_{d∈ℕ} X(E_d)/U =: G is not a product of commutators.
- Using the proposition of point, G is a group of Lie type X, thus simple 4

Proposition

There is an integer k such that each element of each finite non-abelian group G is a product of k commutators.

Motivation	Finite simple group
00	00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic characterization

Lemma

The finite simple groups of a fixed Lie type are *boundedly simple*, i.e. if X is a Lie type, there is an integer c_X such that for each finite group X(K) and elements $g, h \in X(K)$ the element g is a product of at most c_X conjugates of h.

The proof is analogous to the previous lemma.

Motivation	Finite simple groups
	00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic characterization

Theorem (Wilson)

A group is pseudofinite and simple if and only if it is elementarily equivalent to a simple group of Lie type over a pseudofinite field.

Motivation	Finite simple group
00	00

Algebraic characterization

Pseudofinite simple groups

Solvability in (pseudo)finite groups 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Wilson)

A group is pseudofinite and simple if and only if it is elementarily equivalent to a simple group of Lie type over a pseudofinite field.

Remark

Later work of Ryten showed that elementary equivalence can be replaced by isomorphy.

Motivation	Finite simple group
00	00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic characterization

Theorem (Wilson)

A group is pseudofinite and simple if and only if it is elementarily equivalent to a simple group of Lie type over a pseudofinite field.

Remark

Later work of Ryten showed that elementary equivalence can be replaced by isomorphy.

Remark (Ugurlu)

In the theorem, "simple" can be replaced by "definably simple of finite centraliser dimension".

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000
Algebraic characte	rization		

• Let G be a group elementarily equivalent to a simple group of Lie type X(F) over a pseudofinite field.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000●0000000 00	Solvability in (pseudo)finite groups 0000
Algebraic characteriz	ation		

• Let G be a group elementarily equivalent to a simple group of Lie type X(F) over a pseudofinite field.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• F is elementarily equivalent to an ultraproduct \overline{F} of finite fields.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000●0000000 00	Solvability in (pseudo)finite groups 0000
Algebraic characteriz	ation		

• Let G be a group elementarily equivalent to a simple group of Lie type X(F) over a pseudofinite field.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- F is elementarily equivalent to an ultraproduct \overline{F} of finite fields.
- By the ultrapower theorem, F and \overline{F} have isomorphic ultrapowers, say F^* and \overline{F}^* .

	Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000	
Algebraic characterization	Algebraic characteri	zation			

- Let G be a group elementarily equivalent to a simple group of Lie type X(F) over a pseudofinite field.
- F is elementarily equivalent to an ultraproduct \overline{F} of finite fields.
- By the ultrapower theorem, F and \overline{F} have isomorphic ultrapowers, say F^* and \overline{F}^* .
- \overline{F}^* is still an ultraproduct of finite fields, say $\overline{F}^* = \prod_{j \in J} F_j / \mathcal{U}$.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Solvability in (pseudo)finite groups 0000
Algebraic characteriza	tion		

- Let G be a group elementarily equivalent to a simple group of Lie type X(F) over a pseudofinite field.
- F is elementarily equivalent to an ultraproduct \overline{F} of finite fields.
- By the ultrapower theorem, F and \overline{F} have isomorphic ultrapowers, say F^* and \overline{F}^* .
- \overline{F}^* is still an ultraproduct of finite fields, say $\overline{F}^* = \prod_{j \in J} F_j / \mathcal{U}$.

$$G \equiv X(F) \equiv X(F)^* \cong X(F^*) \cong X(\overline{F}^*) \cong \prod_{j \in J} X(F_j) / \mathcal{U}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000
Algebraic characteriza	tion		

Proof "⇐"

- Let G be a group elementarily equivalent to a simple group of Lie type X(F) over a pseudofinite field.
- F is elementarily equivalent to an ultraproduct \overline{F} of finite fields.
- By the ultrapower theorem, F and \overline{F} have isomorphic ultrapowers, say F^* and \overline{F}^* .
- \overline{F}^* is still an ultraproduct of finite fields, say $\overline{F}^* = \prod_{j \in J} F_j / \mathcal{U}$.

$$G \equiv X(F) \equiv X(F)^* \cong X(F^*) \cong X(\overline{F}^*) \cong \prod_{j \in J} X(F_j) / \mathcal{U}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• \Rightarrow *G* is pseudofinite.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000
Algebraic characteriza	tion		

Proof "⇐"

- Let G be a group elementarily equivalent to a simple group of Lie type X(F) over a pseudofinite field.
- F is elementarily equivalent to an ultraproduct \overline{F} of finite fields.
- By the ultrapower theorem, F and \overline{F} have isomorphic ultrapowers, say F^* and \overline{F}^* .
- \overline{F}^* is still an ultraproduct of finite fields, say $\overline{F}^* = \prod_{j \in J} F_j / \mathcal{U}$.

$$G \equiv X(F) \equiv X(F)^* \cong X(F^*) \cong X(\overline{F}^*) \cong \prod_{j \in J} X(F_j) / \mathcal{U}$$

- \Rightarrow *G* is pseudofinite.
- The X(F_j) are boundedly simple, so X(F)* is boundedly simple and thus G is simple.

Motivation	Finite simple g	
	00	

Solvability in (pseudo)finite groups

Algebraic characterization

Proposition

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

Motivation	Finite simple grou
	00
	00

Solvability in (pseudo)finite groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic characterization

Proposition

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

• Recall: If $G = \prod_{j \in J} G_j / \mathcal{U}$ is any ultraproduct, and $J = J_1 \sqcup ... \sqcup J_n$, then $G \cong \prod_{j \in J_i} G_j / \mathcal{U}_i$ for some *i* where $\mathcal{U}_i = \{X \cap J_i | X \in \mathcal{U}\}.$

Motivation	Finite simple grou
00	00

Solvability in (pseudo)finite groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic characterization

Proposition

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

- Recall: If $G = \prod_{j \in J} G_j / \mathcal{U}$ is any ultraproduct, and $J = J_1 \sqcup ... \sqcup J_n$, then $G \cong \prod_{j \in J_i} G_j / \mathcal{U}_i$ for some *i* where $\mathcal{U}_i = \{X \cap J_i | X \in \mathcal{U}\}.$
- ⇒ Can limit ourselves to ultraproducts of finite simple groups all having the same category.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000
Algebraic characteriz	ation		

Remark

If P is the set of all prime numbers and ${\mathcal U}$ is some non-principal ultrafilter, then

r

$$\prod_{p\in P} C_p/\mathcal{U} \equiv (\mathbb{Q},+)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000
Algebraic characteriza	ation		

Remark

If P is the set of all prime numbers and \mathcal{U} is some non-principal ultrafilter, then

$$\prod_{p\in P} C_p/\mathcal{U} \equiv (\mathbb{Q},+)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Proposition

No infinite group elementarily equivalent to an ultraproduct of alternating groups Alt_n can be simple.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000
Algebraic characteriza	ation		

Remark

If P is the set of all prime numbers and \mathcal{U} is some non-principal ultrafilter, then

$$\prod_{p\in P} C_p/\mathcal{U} \equiv (\mathbb{Q},+)$$

Proposition

No infinite group elementarily equivalent to an ultraproduct of alternating groups Alt_n can be simple.

Proposition

If G is simple and elementarily equivalent to an ultraproduct of groups $Y_n(F_n)$, where each Y is one of A, B, C, D,² A,² D, then G is elementarily equivalent to such an ultraproduct in which the integers n are bounded.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000
Algebraic characteriza	ation		

Definition

The **socle** soc_G of a group G is the subgroup of G generated by the minimal normal subgroups of G.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation	Finite simple groups	Pseudofinite simple groups	Solvability in (pseudo)finit
	00	000000000000000000000000000000000000000	

Algebraic characterization

Definition

The **socle** soc_G of a group G is the subgroup of G generated by the minimal normal subgroups of G.

Lemma (Felgner)

There is a sentence in the group language which holds in every non-abelian simple group. Moreover, if the sentence holds in a finite group G, then soc_G is non-abelian and simple.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation	Finite simple groups	Pseudofinite simple groups	Solvability in (p
	00	00000000000000000000000000000000000000	

Algebraic characterization

Definition

The **socle** soc_G of a group G is the subgroup of G generated by the minimal normal subgroups of G.

Lemma (Felgner)

There is a sentence in the group language which holds in every non-abelian simple group. Moreover, if the sentence holds in a finite group G, then soc_G is non-abelian and simple.

The sentence has the form

$$\forall x \forall y : [(x \neq 1 \land C_G(x, y) \neq 1) \rightarrow \bigcap_{g \in G} (C_G(x, y) C_G(C_G(x, y))))^g \neq 1]$$

Motivation	Finite simple groups	Pseudofinite simple groups	
	00	000000000000000000000000000000000000000	

Solvability in (pseudo)finite groups

Algebraic characterization

Definition

The **socle** soc_G of a group G is the subgroup of G generated by the minimal normal subgroups of G.

Lemma (Felgner)

There is a sentence in the group language which holds in every non-abelian simple group. Moreover, if the sentence holds in a finite group G, then soc_G is non-abelian and simple.

The sentence has the form

$$\forall x \forall y : [(x \neq 1 \land C_G(x, y) \neq 1) \rightarrow \bigcap_{g \in G} (C_G(x, y) C_G(C_G(x, y))))^g \neq 1]$$

Lemma

If G is a finite group such that soc_G is a non-abelian simple group, and every element of soc_G is a product of m commutators, then every element of [G, G] is a product of m + 3 commutators.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000	
Algebraic characterization				

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000	
Algebraic characterization				

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

Proof

• Let G be simple and $G \equiv \prod_{j \in J} G_j / U$ where the G_j are finite groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000	
Algebraic characterization				

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

Proof

• Let G be simple and $G \equiv \prod_{j \in J} G_j / \mathcal{U}$ where the G_j are finite groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Let σ be the sentence from lemma of Felgner, so $G \models \sigma$.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000	
Algebraic characterization				

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

Proof

- Let G be simple and $G \equiv \prod_{j \in J} G_j / U$ where the G_j are finite groups.
- Let σ be the sentence from lemma of Felgner, so $G \models \sigma$.
- By Łos we may assume $G_j \models \sigma$ for all j, so by Felgner each soc_{G_i} is a non-abelian simple subgroup.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000	
Algebraic characterization				

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

Proof

- Let G be simple and $G \equiv \prod_{j \in J} G_j / \mathcal{U}$ where the G_j are finite groups.
- Let σ be the sentence from lemma of Felgner, so $G \models \sigma$.
- By Łos we may assume G_j ⊨ σ for all j, so by Felgner each soc_{G_i} is a non-abelian simple subgroup.
- Let k be the integer such that all elements of finite simple groups are products of at most k commutators.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups ooooooooooooooooooooooooooooooooooo	Solvability in (pseudo)finite groups 0000	
Algebraic characterization				

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

Proof

- Let G be simple and $G \equiv \prod_{j \in J} G_j / \mathcal{U}$ where the G_j are finite groups.
- Let σ be the sentence from lemma of Felgner, so $G \models \sigma$.
- By Łos we may assume $G_j \models \sigma$ for all j, so by Felgner each soc_{G_i} is a non-abelian simple subgroup.
- Let k be the integer such that all elements of finite simple groups are products of at most k commutators.
- If G_j is non-simple, then $[G_j, G_j]$ is a proper normal subgroup which as seen above consists of all products of k + 3 commutators.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000	
Algebraic characterization				

Every simple pseudofinite group is elementarily equivalent to an ultraproduct of finite simple groups.

Proof

- Let G be simple and $G \equiv \prod_{j \in J} G_j / \mathcal{U}$ where the G_j are finite groups.
- Let σ be the sentence from lemma of Felgner, so $G \models \sigma$.
- By Łos we may assume $G_j \models \sigma$ for all j, so by Felgner each soc_{G_i} is a non-abelian simple subgroup.
- Let k be the integer such that all elements of finite simple groups are products of at most k commutators.
- If G_j is non-simple, then $[G_j, G_j]$ is a proper normal subgroup which as seen above consists of all products of k + 3 commutators.
- Thus, U-many G_j being non-simple contradicts simplicity of G, and we can disregard any lesser amount of non-simple G_j.

Motivation	Finite simple group
00	00

Solvability in (pseudo)finite groups

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Algebraic characterization

Proposition

No infinite group elementarily equivalent to an ultraproduct of alternating groups $A l t_n$ can be simple.

Motivation	Finite simple grou
00	00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic characterization

Proposition

No infinite group elementarily equivalent to an ultraproduct of alternating groups Alt_n can be simple.

Proposition

There is a formula $\phi_{Alt}(x, y)$ such that if $n \ge 9$ then $Alt_n \models \phi_{Alt}(u, w)$ if and only if u is a product of two disjoint transpositions and w is an involution which fixes at most four points.

Motivation	Finite simple grou
00	00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic characterization

Proposition

No infinite group elementarily equivalent to an ultraproduct of alternating groups Alt_n can be simple.

Proposition

There is a formula $\phi_{Alt}(x, y)$ such that if $n \ge 9$ then $Alt_n \models \phi_{Alt}(u, w)$ if and only if u is a product of two disjoint transpositions and w is an involution which fixes at most four points.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 0000000000000000 00	Solvability in (pseudo)finite groups 0000	
Algebraic characterization				

No infinite group elementarily equivalent to an ultraproduct of alternating groups $A l t_n$ can be simple.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000
Algebraic characterization			

No infinite group elementarily equivalent to an ultraproduct of alternating groups $A l t_n$ can be simple.

Proof

• Suppose $G \equiv \prod_{i \in J} Alt_{n_i} / U$ and let d be some integer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation 00	Finite simple groups oo oo	Pseudofinite simple groups 000000000000000 00	Solvability in (pseudo)finite groups 0000
Algebraic characteriz	ation		

No infinite group elementarily equivalent to an ultraproduct of alternating groups Alt_n can be simple.

Proof

- Suppose $G \equiv \prod_{i \in J} Alt_{n_i} / U$ and let d be some integer.
- There is some $n \ge 4d + 5$ such that $Alt_n \models \phi_{Alt}(u, w)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite groups 0000
Algebraic charac	terization		

No infinite group elementarily equivalent to an ultraproduct of alternating groups Alt_n can be simple.

Proof

- Suppose $G \equiv \prod_{i \in J} A l t_{n_i} / U$ and let d be some integer.
- There is some $n \ge 4d + 5$ such that $Alt_n \models \phi_{Alt}(u, w)$.
- A product of d conjugates of u moves at most 4d points, so fixes at least 5, so w is not a product of d conjugates of u.
 The latter statement can be expressed in a formula \u03c6_d(x, y).

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)fi 0000
Algebraic charac	terization		

No infinite group elementarily equivalent to an ultraproduct of alternating groups Alt_n can be simple.

Proof

- Suppose $G \equiv \prod_{i \in J} Alt_{n_i} / U$ and let d be some integer.
- There is some $n \ge 4d + 5$ such that $Alt_n \models \phi_{Alt}(u, w)$.
- A product of d conjugates of u moves at most 4d points, so fixes at least 5, so w is not a product of d conjugates of u.
 The latter statement can be expressed in a formula \u03c6_d(x, y).
- $Alt_n \models (\exists u, w : \phi_{Alt}(u, w)) \land \forall u, w : \phi_{Alt}(u, w) \Rightarrow \psi_d(u, w)$ for $n \ge 4d + 5$.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)fi 0000
Algebraic charac	terization		

No infinite group elementarily equivalent to an ultraproduct of alternating groups Alt_n can be simple.

Proof

- Suppose $G \equiv \prod_{i \in J} Alt_{n_i} / U$ and let d be some integer.
- There is some $n \ge 4d + 5$ such that $Alt_n \models \phi_{Alt}(u, w)$.
- A product of d conjugates of u moves at most 4d points, so fixes at least 5, so w is not a product of d conjugates of u.
 The latter statement can be expressed in a formula \u03c6_d(x, y).
- $Alt_n \models (\exists u, w : \phi_{Alt}(u, w)) \land \forall u, w : \phi_{Alt}(u, w) \Rightarrow \psi_d(u, w)$ for $n \ge 4d + 5$.
- The *n_j* are unbounded (otherwise the ultraproduct would be finite), so *G* shows the above sentence.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 000000000000000000000000000000000000	Solvability in (pseudo)finite g 0000
Algebraic charac	terization		

No infinite group elementarily equivalent to an ultraproduct of alternating groups Alt_n can be simple.

Proof

- Suppose $G \equiv \prod_{j \in J} Alt_{n_j} / U$ and let d be some integer.
- There is some $n \ge 4d + 5$ such that $Alt_n \models \phi_{Alt}(u, w)$.
- A product of d conjugates of u moves at most 4d points, so fixes at least 5, so w is not a product of d conjugates of u. The latter statement can be expressed in a formula \u03c6_d(x, y).
- $Alt_n \models (\exists u, w : \phi_{Alt}(u, w)) \land \forall u, w : \phi_{Alt}(u, w) \Rightarrow \psi_d(u, w)$ for $n \ge 4d + 5$.
- The *n_j* are unbounded (otherwise the ultraproduct would be finite), so *G* shows the above sentence.
- Since *d* can be chosen arbitrarily, there would be elements *u*, *w* in *G* such that *w* is not a product of conjugates of *u*, so *G* cannot be simple.

Motivation	Finite simple grou
00	00

Algebraic characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

If G is simple and elementarily equivalent to an ultraproduct of groups $Y_n(F_n)$, where each Y is one of A, B, C, D,² A,² D, then G is elementarily equivalent to such an ultraproduct in which the integers n are bounded.

Motivation	Finite simple grou
00	00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algebraic characterization

Proposition

If G is simple and elementarily equivalent to an ultraproduct of groups $Y_n(F_n)$, where each Y is one of A, B, C, D,² A,² D, then G is elementarily equivalent to such an ultraproduct in which the integers n are bounded.

• Wilson splits this in the cases of even and odd characteristic.

Motivation	Finite simple grou
00	00

Algebraic characterization

Proposition

If G is simple and elementarily equivalent to an ultraproduct of groups $Y_n(F_n)$, where each Y is one of A, B, C, D,² A,² D, then G is elementarily equivalent to such an ultraproduct in which the integers n are bounded.

- Wilson splits this in the cases of even and odd characteristic.
- Then he proceeds similar to the *Alt_n* case, finding a formula which holds in all groups of the concerned type and deriving the result.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups ○○○○○○○○○○○○○ ●○	Solvability in (pseudo)finite groups 0000
Properties			

We denote by $C_{m,n,p}$ the class of finite difference fields of the form $(\mathbb{F}_{p^{kn+m}}, Frob^k)$ for some k.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We denote by $C_{m,n,p}$ the class of finite difference fields of the form $(\mathbb{F}_{p^{kn+m}}, Frob^k)$ for some k.

Theorem

Properties

Let p be a prime and let m, n, $m \ge 1$, n > 1 and gcd(m, n) = 1. Then any non-principal ultraproduct of $C_{m,n,p}$ has supersimple rank 1 theory.

We denote by $C_{m,n,p}$ the class of finite difference fields of the form $(\mathbb{F}_{p^{kn+m}}, Frob^k)$ for some k.

Theorem

Properties

Let p be a prime and let m, n, $m \ge 1$, n > 1 and gcd(m, n) = 1. Then any non-principal ultraproduct of $C_{m,n,p}$ has supersimple rank 1 theory.

Corollary (Hrushovski)

Any simple pseudofinite group has supersimple finite rank theory.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups ○○○○○○○○○○○ ○●	Solvability in (pseudo)finite groups 0000
Properties			
Proof			

• By the classification theorem of Wilson, any simple pseudofinite group is a simple group of Lie type over a pseudofinite field.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Solvability in (pseudo)finite groups 0000
Properties			
Proof			

- By the classification theorem of Wilson, any simple pseudofinite group is a simple group of Lie type over a pseudofinite field.
- By the bi-interpretability result of Ryten such a group is elementarily equivalent to one either interpretable in a pseudofinite field or in an ultraproduct of the the class $C_{1,2,2}$ or $C_{1,2,3}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups ○○○○○○○○○○○○○ ○●	Solvability in (pseudo)finite groups 0000
Properties			
Proof			

- By the classification theorem of Wilson, any simple pseudofinite group is a simple group of Lie type over a pseudofinite field.
- By the bi-interpretability result of Ryten such a group is elementarily equivalent to one either interpretable in a pseudofinite field or in an ultraproduct of the the class $C_{1,2,2}$ or $C_{1,2,3}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• By the theorem stated above, such ultraproducts are supersimple of SU rank 1.

Pseudofinite simple groups

Solvability in (pseudo)finite groups •••••

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Wilson)

Pseudofinite simple groups

Solvability in (pseudo)finite groups •••••

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Wilson)

There is a sentence in the group language which holds for a finite group if and only if the group is solvable.

• The sentence states that there is no non-trivial element g which is a product of 56 commutators [x, y] where each x, y is a conjugate of g.

Theorem (Wilson)

- The sentence states that there is no non-trivial element g which is a product of 56 commutators [x, y] where each x, y is a conjugate of g.
- Proof "⇐": Any solvable group satisfies this sentence for any n.

Theorem (Wilson)

- The sentence states that there is no non-trivial element g which is a product of 56 commutators [x, y] where each x, y is a conjugate of g.
- Proof "⇐": Any solvable group satisfies this sentence for any n.
 - Suppose not, i.e. there is some element g which is a product of n commutators as above.

Theorem (Wilson)

- The sentence states that there is no non-trivial element g which is a product of 56 commutators [x, y] where each x, y is a conjugate of g.
- Proof "⇐": Any solvable group satisfies this sentence for any n.
 - Suppose not, i.e. there is some element g which is a product of n commutators as above.
 - Let N be the normal subgroup generated by g. Then $g \in [N, N] \leq N$, so N = [N, N], i.e. N is perfect and not solvable.

Theorem (Wilson)

- The sentence states that there is no non-trivial element g which is a product of 56 commutators [x, y] where each x, y is a conjugate of g.
- Proof "⇐": Any solvable group satisfies this sentence for any n.
 - Suppose not, i.e. there is some element g which is a product of n commutators as above.
 - Let N be the normal subgroup generated by g. Then $g \in [N, N] \leq N$, so N = [N, N], i.e. N is perfect and not solvable.
 - Groups with non-solvable subgroups cannot be solvable.

Theorem (Wilson)

- The sentence states that there is no non-trivial element g which is a product of 56 commutators [x, y] where each x, y is a conjugate of g.
- Proof "⇐": Any solvable group satisfies this sentence for any n.
 - Suppose not, i.e. there is some element g which is a product of n commutators as above.
 - Let N be the normal subgroup generated by g. Then $g \in [N, N] \leq N$, so N = [N, N], i.e. N is perfect and not solvable.
 - Groups with non-solvable subgroups cannot be solvable.
- Proof "⇒": Uses classification of minimal finite groups which are not solvable by Thompson.

Motivation 00	Finite simple groups 00 00	Pseudofinite simple groups 0000000000000 00	Solvability in (pseudo)finite groups ⊙●੦੦

Attention

It is not true that any pseudofinite group is solvable iff the above sentence holds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Motivation	Finite simple groups	Pseudofi
00	00	000000
	00	00

Attention

It is not true that any pseudofinite group is solvable iff the above sentence holds.

• A pseudofinite group may be an ultraproduct of finite groups which are solvable but of unbounded length of the derived series.

Finite simple groups
00

Attention

It is not true that any pseudofinite group is solvable iff the above sentence holds.

- A pseudofinite group may be an ultraproduct of finite groups which are solvable but of unbounded length of the derived series.
- By Łos, such a group satisfies the sentence above.

Finite	simple	gro
00		

Attention

It is not true that any pseudofinite group is solvable iff the above sentence holds.

- A pseudofinite group may be an ultraproduct of finite groups which are solvable but of unbounded length of the derived series.
- By Łos, such a group satisfies the sentence above.
- However, it clearly is not solvable.

lotivation	Finite simple groups	
	00	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

The **radical** R(G) of a group G is the subgroup of G generated by the solvable normal subgroups of G.

Finite	simple	groι
00		

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

The **radical** R(G) of a group G is the subgroup of G generated by the solvable normal subgroups of G.

Theorem

In finite groups the radical is \emptyset -definable.

Notivation 00 Finite simple groups

Pseudofinite simple groups

Solvability in (pseudo)finite groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you for your attention! Are there questions?