Algebraic geometry

Some basic results from field theory and algebraic geometry

Rosario Mennuni

Wwu Münster Reading group on model theory of pseudofinite structures

 14^{th} April 2021

References

I have mainly looked at: (but there is plenty of literature on the subject: books, notes, stackexchange...)

- Z. Chatzidakis' notes (see learnweb page).
- S. Lang, Introduction to Algebraic Geometry. Also Algebra.
- M. D. Fried, M. Jarden, *Field Arithmetic*.
- Some notes from a course I took years ago (in Italian).

References

I have mainly looked at: (but there is plenty of literature on the subject: books, notes, stackexchange...)

- Z. Chatzidakis' notes (see learnweb page).
- S. Lang, Introduction to Algebraic Geometry. Also Algebra.
- M. D. Fried, M. Jarden, *Field Arithmetic*.
- Some notes from a course I took years ago (in Italian).

Feel free to interrupt at any time for questions, comments, remarks, mistakes,...

References

I have mainly looked at: (but there is plenty of literature on the subject: books, notes, stackexchange...)

- Z. Chatzidakis' notes (see learnweb page).
- S. Lang, Introduction to Algebraic Geometry. Also Algebra.
- M. D. Fried, M. Jarden, *Field Arithmetic*.
- Some notes from a course I took years ago (in Italian).

Feel free to interrupt at any time for questions, comments, remarks, mistakes,... Plan of the talk: Field theory

Tensors products Linear disjointness

Algebraic geometry

Algebraic sets The Zariski topology The coordinate ring

Algebraic geometry

F-algebras

• Ring = commutative ring with 1. Morphisms preserve 1.

- Ring = commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:

Algebraic geometry

- Ring = commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
 - a ring A containing F;

- Ring = commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
 - a ring A containing F;
 - a ring A with an F-vector space structure compatible with the ring operations, i.e. "+ = +" and $f \cdot (ab) = (f \cdot a)b = a(f \cdot b)$;

- Ring = commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
 - a ring A containing F;
 - a ring A with an F-vector space structure compatible with the ring operations, i.e. "+ = +" and $f \cdot (ab) = (f \cdot a)b = a(f \cdot b)$;
 - a ring homomorphism $F \to A$.

- Ring = commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
 - a ring A containing F;
 - a ring A with an F-vector space structure compatible with the ring operations, i.e. "+ = +" and $f \cdot (ab) = (f \cdot a)b = a(f \cdot b)$;
 - a ring homomorphism $F \to A$.
- Morphism of F-algebras: an F-linear morphism of rings. ("fixing F pointwise" if you prefer)

- Ring = commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
 - a ring A containing F;
 - a ring A with an F-vector space structure compatible with the ring operations, i.e. "+ = +" and $f \cdot (ab) = (f \cdot a)b = a(f \cdot b)$;
 - a ring homomorphism $F \to A$.
- Morphism of F-algebras: an F-linear morphism of rings. ("fixing F pointwise" if you prefer)
- One can also speak of *R*-algebras for *R* a ring. (the first definition does not work anymore)

- Ring = commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
 - a ring A containing F;
 - a ring A with an F-vector space structure compatible with the ring operations, i.e. "+ = +" and $f \cdot (ab) = (f \cdot a)b = a(f \cdot b)$;
 - a ring homomorphism $F \to A$.
- Morphism of F-algebras: an F-linear morphism of rings. ("fixing F pointwise" if you prefer)
- One can also speak of *R*-algebras for *R* a ring. (the first definition does not work anymore)
- Lots of things also have more abstract (i.e. categorical) definitions, but this will not concern us here.

Let A, B be F-algebras. We want to define the *tensor product* F-algebra $A \otimes_F B$. 1. Fix F-vector space bases \mathcal{E}_A of A and \mathcal{E}_B of B, both containing 1.

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_F B$.

1. Fix *F*-vector space bases \mathcal{E}_A of *A* and \mathcal{E}_B of *B*, both containing 1.

2. Let $A \otimes_F B$ be the *F*-vector space with basis given by the formal symbols

 $\{a \otimes b \mid a \in \mathcal{E}_A, b \in \mathcal{E}_B\}$

Let A, B be F-algebras. We want to define the *tensor product* F-algebra $A \otimes_F B$. 1. Fix F-vector space bases \mathcal{E}_A of A and \mathcal{E}_B of B, both containing 1.

2. Let $A \otimes_F B$ be the *F*-vector space with basis given by the formal symbols

 $\{a \otimes b \mid a \in \mathcal{E}_A, b \in \mathcal{E}_B\}$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$ ".

Let A, B be F-algebras. We want to define the *tensor product* F-algebra $A \otimes_F B$. 1. Fix F-vector space bases \mathcal{E}_A of A and \mathcal{E}_B of B, both containing 1.

2. Let $A \otimes_F B$ be the *F*-vector space with basis given by the formal symbols

 $\{a \otimes b \mid a \in \mathcal{E}_A, b \in \mathcal{E}_B\}$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$ ". Nonsense as written.

Let A, B be F-algebras. We want to define the *tensor product* F-algebra $A \otimes_F B$. 1. Fix F-vector space bases \mathcal{E}_A of A and \mathcal{E}_B of B, both containing 1.

$$\{a \otimes b \mid a \in \mathcal{E}_A, b \in \mathcal{E}_B\}$$

- 3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$ ". Nonsense as written.
- 4. Given $c, c' \in \mathcal{E}_A$ and $d, d' \in \mathcal{E}_B$, write $cc' = \sum_{a \in \mathcal{E}_A} \alpha_a a$ and $dd' = \sum_{b \in \mathcal{E}_B} \beta_b b$. Then set $(c \otimes d)(c' \otimes d') = cc' \otimes dd' = \sum_{a \in \mathcal{E}_A, b \in \mathcal{E}_B} \alpha_a \beta_b a \otimes b$.

Let A, B be F-algebras. We want to define the *tensor product* F-algebra $A \otimes_F B$. 1. Fix F-vector space bases \mathcal{E}_A of A and \mathcal{E}_B of B, both containing 1.

$$\{a \otimes b \mid a \in \mathcal{E}_A, b \in \mathcal{E}_B\}$$

- 3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$ ". Nonsense as written.
- 4. Given $c, c' \in \mathcal{E}_A$ and $d, d' \in \mathcal{E}_B$, write $cc' = \sum_{a \in \mathcal{E}_A} \alpha_a a$ and $dd' = \sum_{b \in \mathcal{E}_B} \beta_b b$. Then set $(c \otimes d)(c' \otimes d') = cc' \otimes dd' = \sum_{a \in \mathcal{E}_A, b \in \mathcal{E}_B} \alpha_a \beta_b a \otimes b$.
- 5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.

Let A, B be F-algebras. We want to define the *tensor product* F-algebra $A \otimes_F B$. 1. Fix F-vector space bases \mathcal{E}_A of A and \mathcal{E}_B of B, both containing 1.

$$\{a \otimes b \mid a \in \mathcal{E}_A, b \in \mathcal{E}_B\}$$

- 3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$ ". Nonsense as written.
- 4. Given $c, c' \in \mathcal{E}_A$ and $d, d' \in \mathcal{E}_B$, write $cc' = \sum_{a \in \mathcal{E}_A} \alpha_a a$ and $dd' = \sum_{b \in \mathcal{E}_B} \beta_b b$. Then set $(c \otimes d)(c' \otimes d') = cc' \otimes dd' = \sum_{a \in \mathcal{E}_A, b \in \mathcal{E}_B} \alpha_a \beta_b a \otimes b$.
- 5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.
- 6. Now $a \otimes b$ makes sense in general, and $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$.

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_F B$.

- 1. Fix *F*-vector space bases \mathcal{E}_A of *A* and \mathcal{E}_B of *B*, both containing 1.
- 2. Let $A \otimes_F B$ be the *F*-vector space with basis given by the formal symbols

$$\{a \otimes b \mid a \in \mathcal{E}_A, b \in \mathcal{E}_B\}$$

- 3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$ ". Nonsense as written.
- 4. Given $c, c' \in \mathcal{E}_A$ and $d, d' \in \mathcal{E}_B$, write $cc' = \sum_{a \in \mathcal{E}_A} \alpha_a a$ and $dd' = \sum_{b \in \mathcal{E}_B} \beta_b b$. Then set $(c \otimes d)(c' \otimes d') = cc' \otimes dd' = \sum_{a \in \mathcal{E}_A, b \in \mathcal{E}_B} \alpha_a \beta_b a \otimes b$.
- 5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.
- 6. Now $a \otimes b$ makes sense in general, and $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$.
- 7. Important note: for $c \in F$, we have $ca \otimes b = c(a \otimes b) = a \otimes cb$.

Let A, B be F-algebras. We want to define the *tensor product* F-algebra $A \otimes_F B$. 1. Fix F-vector space bases \mathcal{E}_A of A and \mathcal{E}_B of B, both containing 1.

$$\{a \otimes b \mid a \in \mathcal{E}_A, b \in \mathcal{E}_B\}$$

- 3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$ ". Nonsense as written.
- 4. Given $c, c' \in \mathcal{E}_A$ and $d, d' \in \mathcal{E}_B$, write $cc' = \sum_{a \in \mathcal{E}_A} \alpha_a a$ and $dd' = \sum_{b \in \mathcal{E}_B} \beta_b b$. Then set $(c \otimes d)(c' \otimes d') = cc' \otimes dd' = \sum_{a \in \mathcal{E}_A, b \in \mathcal{E}_B} \alpha_a \beta_b a \otimes b$.
- 5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.
- 6. Now $a \otimes b$ makes sense in general, and $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$.
- 7. Important note: for $c \in F$, we have $ca \otimes b = c(a \otimes b) = a \otimes cb$.
- 8. \otimes can also be defined on linear maps: $(f \otimes g)(a \otimes b) = f(a) \otimes g(b)$.

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_F B$.

- 1. Fix *F*-vector space bases \mathcal{E}_A of *A* and \mathcal{E}_B of *B*, both containing 1.
- 2. Let $A \otimes_F B$ be the *F*-vector space with basis given by the formal symbols

$$\{a \otimes b \mid a \in \mathcal{E}_A, b \in \mathcal{E}_B\}$$

- 3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$ ". Nonsense as written.
- 4. Given $c, c' \in \mathcal{E}_A$ and $d, d' \in \mathcal{E}_B$, write $cc' = \sum_{a \in \mathcal{E}_A} \alpha_a a$ and $dd' = \sum_{b \in \mathcal{E}_B} \beta_b b$. Then set $(c \otimes d)(c' \otimes d') = cc' \otimes dd' = \sum_{a \in \mathcal{E}_A, b \in \mathcal{E}_B} \alpha_a \beta_b a \otimes b$.
- 5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.
- 6. Now $a \otimes b$ makes sense in general, and $(c \otimes d)(c' \otimes d') = cc' \otimes dd'$.
- 7. Important note: for $c \in F$, we have $ca \otimes b = c(a \otimes b) = a \otimes cb$.
- 8. \otimes can also be defined on linear maps: $(f \otimes g)(a \otimes b) = f(a) \otimes g(b)$.
- 9. Fact: up to isomorphism, $A \otimes_F B$ does not depend on $\mathcal{E}_A, \mathcal{E}_B$.

Some properties of tensor products: (recall: $ca \otimes b = a \otimes cb$)

- 1. \otimes is associative (up to isomorphism).
- 2. Bilinear maps $A \times B \to C$ "are the same as" linear maps $A \otimes B \to C$.
- 3. Hom_{v.sp.} $(A \otimes B, C) \cong \operatorname{Hom}_{v.sp.}(A, \operatorname{Hom}_{v.sp.}(B, C)).$

Some properties of tensor products: (recall: $ca \otimes b = a \otimes cb$)

- 1. \otimes is associative (up to isomorphism).
- 2. Bilinear maps $A \times B \to C$ "are the same as" linear maps $A \otimes B \to C$.
- 3. Hom_{v.sp.} $(A \otimes B, C) \cong \operatorname{Hom}_{v.sp.}(A, \operatorname{Hom}_{v.sp.}(B, C)).$

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring.

Some properties of tensor products: (recall: $ca \otimes b = a \otimes cb$)

- 1. \otimes is associative (up to isomorphism).
- 2. Bilinear maps $A \times B \to C$ "are the same as" linear maps $A \otimes B \to C$.
- 3. Hom_{v.sp.} $(A \otimes B, C) \cong \operatorname{Hom}_{v.sp.}(A, \operatorname{Hom}_{v.sp.}(B, C)).$

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) = \{0\}$).

Some properties of tensor products: (recall: $ca \otimes b = a \otimes cb$)

- 1. \otimes is associative (up to isomorphism).
- 2. Bilinear maps $A \times B \to C$ "are the same as" linear maps $A \otimes B \to C$.
- 3. Hom_{v.sp.} $(A \otimes B, C) \cong \operatorname{Hom}_{v.sp.}(A, \operatorname{Hom}_{v.sp.}(B, C)).$

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) = \{0\}$).

Example

1. $\mathbb{C} \otimes_{\mathbb{R}} \left(\mathbb{R}[\bar{X}]/(f) \right) \cong \mathbb{C}[\bar{X}]/(f).$

Some properties of tensor products: (recall: $ca \otimes b = a \otimes cb$)

- 1. \otimes is associative (up to isomorphism).
- 2. Bilinear maps $A \times B \to C$ "are the same as" linear maps $A \otimes B \to C$.
- 3. Hom_{v.sp.} $(A \otimes B, C) \cong \operatorname{Hom}_{v.sp.}(A, \operatorname{Hom}_{v.sp.}(B, C)).$

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) = \{0\}$).

Example

- 1. $\mathbb{C} \otimes_{\mathbb{R}} \left(\mathbb{R}[\bar{X}]/(f) \right) \cong \mathbb{C}[\bar{X}]/(f).$
- 2. More generally, "extension of scalars": if $K \supseteq F$, then $K \otimes_F (F[\bar{X}]/I) \cong K[\bar{X}]/IK$. (keep this in mind for later)

Some properties of tensor products: (recall: $ca \otimes b = a \otimes cb$)

- 1. \otimes is associative (up to isomorphism).
- 2. Bilinear maps $A \times B \to C$ "are the same as" linear maps $A \otimes B \to C$.
- 3. Hom_{v.sp.} $(A \otimes B, C) \cong \operatorname{Hom}_{v.sp.}(A, \operatorname{Hom}_{v.sp.}(B, C)).$

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) = \{0\}$).

Example

- 1. $\mathbb{C} \otimes_{\mathbb{R}} \left(\mathbb{R}[\bar{X}]/(f) \right) \cong \mathbb{C}[\bar{X}]/(f).$
- 2. More generally, "extension of scalars": if $K \supseteq F$, then $K \otimes_F (F[\bar{X}]/I) \cong K[\bar{X}]/IK$. (keep this in mind for later)
- 3. $\left(F[X]/(f(X))\right) \otimes_F \left(F[Y]/(g(Y))\right) \cong F[X,Y]/(f(X),g(Y))$

Some properties of tensor products: (recall: $ca \otimes b = a \otimes cb$)

- 1. \otimes is associative (up to isomorphism).
- 2. Bilinear maps $A \times B \to C$ "are the same as" linear maps $A \otimes B \to C$.
- 3. Hom_{v.sp.} $(A \otimes B, C) \cong \operatorname{Hom}_{v.sp.}(A, \operatorname{Hom}_{v.sp.}(B, C)).$

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) = \{0\}$).

Example

- 1. $\mathbb{C} \otimes_{\mathbb{R}} \left(\mathbb{R}[\bar{X}]/(f) \right) \cong \mathbb{C}[\bar{X}]/(f).$
- 2. More generally, "extension of scalars": if $K \supseteq F$, then $K \otimes_F (F[\bar{X}]/I) \cong K[\bar{X}]/IK$. (keep this in mind for later)
- 3. $\left(F[X]/(f(X))\right) \otimes_F \left(F[Y]/(g(Y))\right) \cong F[X,Y]/(f(X),g(Y))$
- $4. \ \left(F[\bar{X}]/(f(\bar{X}))\right) \otimes_{F[\bar{X}]} \left(F[\bar{X}]/(g(\bar{X}))\right) \cong F[\bar{X}]/(f(\bar{X}),g(\bar{X}))$

Algebraic geometry

Linear disjointness and freeness

Definition ($F \subseteq E, L \subseteq \Omega$)

• E is *linearly disjoint* from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.

Linear disjointness and freeness

- E is *linearly disjoint* from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.

Linear disjointness and freeness

- E is *linearly disjoint* from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.
- 1. Both notions are symmetric in E, L.

Linear disjointness and freeness

- E is *linearly disjoint* from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.
- 1. Both notions are symmetric in E, L.
- 2. Linearly disjoint implies free. The converse is false (take E = L algebraic over F).

Linear disjointness and freeness

- E is *linearly disjoint* from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.
- 1. Both notions are symmetric in E, L.
- 2. Linearly disjoint implies free. The converse is false (take E = L algebraic over F).
- 3. $E \underset{F}{\bigcup}^{1.d.} L$ iff the map $E \otimes_F L \to E[L]$ induced by $a \otimes b \mapsto ab$ is injective.

Linear disjointness and freeness

- E is *linearly disjoint* from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.
- 1. Both notions are symmetric in E, L.
- 2. Linearly disjoint implies free. The converse is false (take E = L algebraic over F).
- 3. $E \underset{F}{\bigcup}^{1.d.} L$ iff the map $E \otimes_F L \to E[L]$ induced by $a \otimes b \mapsto ab$ is injective.
- 4. Enough to check: some F-basis of some $R \subseteq E$ with E = Quot(R) is L-lin.ind.

Linear disjointness and freeness

- E is *linearly disjoint* from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.
- 1. Both notions are symmetric in E, L.
- 2. Linearly disjoint implies free. The converse is false (take E = L algebraic over F).
- 3. $E \underset{F}{\bigcup}^{1.d.} L$ iff the map $E \otimes_F L \to E[L]$ induced by $a \otimes b \mapsto ab$ is injective.
- 4. Enough to check: some F-basis of some $R \subseteq E$ with E = Quot(R) is L-lin.ind.

5. If
$$F \subseteq E \subseteq K$$
 then $L \downarrow_F^{1.d.} K \iff (L \downarrow_F^{1.d.} E \land LE \downarrow_E^{1.d.} K)$.

More on linear disjointness 6. If $E, L \supseteq F$ and [E:F] is finite, then $E \bigcup_{F}^{1.d.} L \iff [E:F] = [EL:L].$

More on linear disjointness 6. If $E, L \supseteq F$ and [E:F] is finite, then $E \bigcup_{F}^{1.d.} L \iff [E:F] = [EL:L]$. 7. So if [L:F] is also finite, then $E \bigcup_{F}^{1.d.} L \iff [EL:F] = [E:F][L:F]$. More on linear disjointness 6. If $E, L \supseteq F$ and [E:F] is finite, then $E \underset{F}{\bigcup}^{1.d.} L \iff [E:F] = [EL:L]$. 7. So if [L:F] is also finite, then $E \underset{F}{\bigcup}^{1.d.} L \iff [EL:F] = [E:F][L:F]$. 8. Example: by 7 above if (m, n) = 1 then $\mathbb{Q}(\zeta_m) \underset{\mathbb{Q}}{\bigcup}^{1.d.} \mathbb{Q}(\zeta_n)$. More on linear disjointness 6. If $E, L \supseteq F$ and [E:F] is finite, then $E \underset{F}{\bigcup}^{1.d.} L \iff [E:F] = [EL:L]$. 7. So if [L:F] is also finite, then $E \underset{F}{\bigcup}^{1.d.} L \iff [EL:F] = [E:F][L:F]$. 8. Example: by 7 above if (m, n) = 1 then $\mathbb{Q}(\zeta_m) \underset{\mathbb{Q}}{\bigcup}^{1.d.} \mathbb{Q}(\zeta_n)$. 9. So if L/F is Galois, then

 $E \underset{F}{\downarrow}^{\mathrm{l.d.}'} L \iff E \cap L = F \iff \upharpoonright L: \operatorname{Gal}(LE/E) \to \operatorname{Gal}(L/F) \text{ is an iso.}$

More on linear disjointness 6. If $E, L \supseteq F$ and [E:F] is finite, then $E \underset{F}{\bigcup}^{1:d.} L \iff [E:F] = [EL:L]$. 7. So if [L:F] is also finite, then $E \underset{F}{\bigcup}^{1:d.} L \iff [EL:F] = [E:F][L:F]$. 8. Example: by 7 above if (m,n) = 1 then $\mathbb{Q}(\zeta_m) \downarrow_{\mathbb{Q}}^{1.d.} \mathbb{Q}(\zeta_n)$. 9. So if L/F is Galois, then $E \bigcup_{F}^{1.d.} L \iff E \cap L = F \iff \uparrow L: \operatorname{Gal}(LE/E) \to \operatorname{Gal}(L/F) \text{ is an iso.}$ 10. If $L_i \bigcup_{F}^{1.d.} \prod_{j \neq i} L_j$ then $\operatorname{Gal}(\prod_i L_i/F) \cong \prod_i \operatorname{Gal}(L_i/F).$

More on linear disjointness 6. If $E, L \supseteq F$ and [E:F] is finite, then $E \bigcup_{F}^{1.d.} L \iff [E:F] = [EL:L]$. 7. So if [L:F] is also finite, then $E \bigcup_{F}^{1.d.} L \iff [EL:F] = [E:F][L:F]$. 8. Example: by 7 above if (m, n) = 1 then $\mathbb{Q}(\zeta_m) \downarrow^{1.d.} \mathbb{Q}(\zeta_n)$. 9. So if L/F is Galois, then 9. So If L/F is Galois, then $E \underset{F}{\downarrow}^{\text{l.d.}} L \iff E \cap L = F \iff \uparrow L: \operatorname{Gal}(LE/E) \to \operatorname{Gal}(L/F)$ is an iso. 10. If $L_i \underset{F}{\downarrow}^{\text{l.d.}} \prod_{j \neq i} L_j$ then $\operatorname{Gal}(\prod_i L_i/F) \cong \prod_i \operatorname{Gal}(L_i/F)$. 11. If L (say) is algebraic over F, then $E \bigcup_{r=1}^{l.d.} L$ iff $E \otimes_F L$ is a domain.

More on linear disjointness 6. If $E, L \supseteq F$ and [E:F] is finite, then $E \bigcup_{F}^{1.d.} L \iff [E:F] = [EL:L]$. 7. So if [L:F] is also finite, then $E \bigcup_{F}^{1.d.} L \iff [EL:F] = [E:F][L:F]$. 8. Example: by 7 above if (m, n) = 1 then $\mathbb{Q}(\zeta_m) \downarrow_{\mathbb{Q}}^{1.d.} \mathbb{Q}(\zeta_n)$. 9. So if L/F is Galois, then $E \underset{F}{\downarrow}^{\mathrm{l.d.}} L \iff E \cap L = F \iff \upharpoonright L \colon \operatorname{Gal}(LE/E) \to \operatorname{Gal}(L/F) \text{ is an iso.}$ 10. If $L_i \downarrow_F^{\text{l.d.}} \prod_{j \neq i} L_j$ then $\operatorname{Gal}(\prod_i L_i/F) \cong \prod_i \operatorname{Gal}(L_i/F)$. 11. If L (say) is algebraic over F, then $E \perp^{\text{l.d.}} L$ iff $E \otimes_F L$ is a domain. 12. Non-example: with $p = \operatorname{char} F$, let $T \in F$ have no p-th root and $E := F(T^{1/p})$. In $E \otimes_F F^{\text{alg}}$ $\left(T^{\frac{1}{p}} \otimes 1 - 1 \otimes T^{\frac{1}{p}}\right)^p = T \otimes 1 - 1 \otimes T = T(1 \otimes 1) - 1 \otimes T = 1 \otimes T - 1 \otimes T = 0$

Definition

The field extension $E \supseteq F$ is regular iff $E \bigcup_{F}^{1.d.} F^{alg}$. Equ'ly: $E \cap F^{alg} = F$ and E is separable¹ over F.

¹Linearly disjoint from $F^{1/p^{\infty}}$. Equivalently, every *F*-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

Definition

The field extension $E \supseteq F$ is regular iff $E \bigcup_{F}^{1.d.} F^{alg}$.

¹Linearly disjoint from $F^{1/p^{\infty}}$. Equivalently, every *F*-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

Definition

- The field extension $E \supseteq F$ is regular iff $E \bigcup_{F}^{1.d.} F^{alg}$.
- Eqv'ly: $E \cap F^{\text{alg}} = F$ and E is separable¹ over F. Eqv'ly: $E \otimes_F F^{\text{alg}}$ is a domain. 1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.

¹Linearly disjoint from $F^{1/p^{\infty}}$. Equivalently, every *F*-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

Definition

The field extension $E \supseteq F$ is regular iff $E \bigcup_{F}^{1.d.} F^{alg}$.

Eqv'ly: $E \cap F^{\text{alg}} = F$ and E is separable¹ over F. Eqv'ly: $E \otimes_F F^{\text{alg}}$ is a domain.

1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.

2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$.

¹Linearly disjoint from $F^{1/p^{\infty}}$. Equivalently, every *F*-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

Definition

The field extension $E \supseteq F$ is regular iff $E \bigcup_{F}^{1.d.} F^{alg}$.

- 1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
- 2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F(T^{1/p})$.)

¹Linearly disjoint from $F^{1/p^{\infty}}$. Equivalently, every *F*-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

Definition

The field extension $E \supseteq F$ is regular iff $E \bigcup_{F}^{1.d.} F^{alg}$.

- 1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
- 2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F(T^{1/p})$.)
- 3. If $F \vDash \mathsf{ACF}$, every extension of F is regular.

¹Linearly disjoint from $F^{1/p^{\infty}}$. Equivalently, every *F*-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

Definition

The field extension $E \supseteq F$ is regular iff $E \bigcup_{F}^{1.d.} F^{alg}$.

- 1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
- 2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F(T^{1/p})$.)
- 3. If $F \vDash \mathsf{ACF}$, every extension of F is regular.
- 4. If $E \supseteq F$ is regular and free from L over F then $EL \supseteq L$ is regular.

¹Linearly disjoint from $F^{1/p^{\infty}}$. Equivalently, every *F*-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

Definition

The field extension $E \supseteq F$ is regular iff $E \bigcup_{F}^{1.d.} F^{alg}$.

- 1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
- 2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F(T^{1/p})$.)
- 3. If $F \vDash \mathsf{ACF}$, every extension of F is regular.
- 4. If $E \supseteq F$ is regular and free from L over F then $EL \supseteq L$ is regular.
- 5. If E and L are free over F and both regular, so is EL.

¹Linearly disjoint from $F^{1/p^{\infty}}$. Equivalently, every *F*-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

Definition

The field extension $E \supseteq F$ is regular iff $E \bigcup_{F}^{1.d.} F^{alg}$.

- 1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
- 2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F(T^{1/p})$.)
- 3. If $F \vDash \mathsf{ACF}$, every extension of F is regular.
- 4. If $E \supseteq F$ is regular and free from L over F then $EL \supseteq L$ is regular.
- 5. If E and L are free over F and both regular, so is EL.
- 6. Let \mathfrak{p} be a prime ideal of $F[\bar{X}]$. Then $\mathfrak{p}F^{\mathrm{alg}}[\bar{X}]$ is prime if and only if $\operatorname{Quot}(F[\bar{X}]/\mathfrak{p})$ is a regular extension of F. (Keep this in mind for later!)

¹Linearly disjoint from $F^{1/p^{\infty}}$. Equivalently, every *F*-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

Algebraic geometry

Algebraic sets

k a field, $n \geq 1.$ Look at zero-sets of polynomial systems.

k a field, $n \ge 1$. Look at zero-sets of polynomial systems. Consider the map • $\mathcal{V}: \mathscr{P}(k[X_1, \ldots, X_n]) \to \mathscr{P}(k^n), \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- $\mathcal{I}: \mathscr{P}(k^n) \to \mathscr{P}(k[X_1, \dots, X_n]), \mathcal{I}(S) = \{f \in k[X_1, \dots, X_n] \mid \forall x \in S \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- $\mathcal{I}: \mathscr{P}(k^n) \to \mathscr{P}(k[X_1, \dots, X_n]), \mathcal{I}(S) = \{f \in k[X_1, \dots, X_n] \mid \forall x \in S \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I} .
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- $\mathcal{I}: \mathscr{P}(k^n) \to \mathscr{P}(k[X_1, \dots, X_n]), \mathcal{I}(S) = \{f \in k[X_1, \dots, X_n] \mid \forall x \in S \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I} .
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.
- Subsets of $k[X_1, \ldots, X_n]$ in the image of \mathcal{I} are ideals, and they are *radical*, i.e. $f^n \in I \Rightarrow f \in I$.

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- $\mathcal{I}: \mathscr{P}(k^n) \to \mathscr{P}(k[X_1, \dots, X_n]), \mathcal{I}(S) = \{f \in k[X_1, \dots, X_n] \mid \forall x \in S \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I} .
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.
- Subsets of $k[X_1, \ldots, X_n]$ in the image of \mathcal{I} are ideals, and they are *radical*, i.e. $f^n \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3(X_1^2 + X_2^2 + 1) = 0 \iff (X_1^2 + X_2^2 + 1)^4 = 0$.

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- $\mathcal{I}: \mathscr{P}(k^n) \to \mathscr{P}(k[X_1, \dots, X_n]), \mathcal{I}(S) = \{f \in k[X_1, \dots, X_n] \mid \forall x \in S \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I} .
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.
- Subsets of $k[X_1, \ldots, X_n]$ in the image of \mathcal{I} are ideals, and they are *radical*, i.e. $f^n \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3(x_1^2 + x_2^2 + 1) = 0 \iff (x_1^2 + x_2^2 + 1)^4 = 0$.
- $\mathcal{V}(A) = \mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- $\mathcal{I}: \mathscr{P}(k^n) \to \mathscr{P}(k[X_1, \dots, X_n]), \mathcal{I}(S) = \{f \in k[X_1, \dots, X_n] \mid \forall x \in S \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I} .
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.
- Subsets of $k[X_1, \ldots, X_n]$ in the image of \mathcal{I} are ideals, and they are *radical*, i.e. $f^n \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3(x_1^2 + x_2^2 + 1) = 0 \iff (x_1^2 + x_2^2 + 1)^4 = 0$.
- $\mathcal{V}(A) = \mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.
- $\mathcal{I}(\mathcal{V}(A)) \supseteq \sqrt{(A)}$. May have \supseteq : different radical ideals may have the same zeroes.

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- $\mathcal{I}: \mathscr{P}(k^n) \to \mathscr{P}(k[X_1, \dots, X_n]), \mathcal{I}(S) = \{f \in k[X_1, \dots, X_n] \mid \forall x \in S \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I} .
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.
- Subsets of $k[X_1, \ldots, X_n]$ in the image of \mathcal{I} are ideals, and they are *radical*, i.e. $f^n \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3(x_1^2 + x_2^2 + 1) = 0 \iff (x_1^2 + x_2^2 + 1)^4 = 0$.
- $\mathcal{V}(A) = \mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.
- $\mathcal{I}(\mathcal{V}(A)) \supseteq \sqrt{(A)}$. May have \supseteq : different radical ideals may have the same zeroes.
- Example: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2].$

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- $\mathcal{I}: \mathscr{P}(k^n) \to \mathscr{P}(k[X_1, \dots, X_n]), \mathcal{I}(S) = \{f \in k[X_1, \dots, X_n] \mid \forall x \in S \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I} .
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.
- Subsets of $k[X_1, \ldots, X_n]$ in the image of \mathcal{I} are ideals, and they are *radical*, i.e. $f^n \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3(x_1^2 + x_2^2 + 1) = 0 \iff (x_1^2 + x_2^2 + 1)^4 = 0$.
- $\mathcal{V}(A) = \mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.
- $\mathcal{I}(\mathcal{V}(A)) \supseteq \sqrt{(A)}$. May have \supseteq : different radical ideals may have the same zeroes.
- Example: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2].$
- Points always yield maximal ideals: $\mathcal{I}(\{(a_1,\ldots,a_n)\}) = (X_1 a_1,\ldots,X_n a_n).$

- $\mathcal{V}: \mathscr{P}(k[X_1, \dots, X_n]) \to \mathscr{P}(k^n), \ \mathcal{V}(A) = \{x \in k^n \mid \forall f \in A \ f(x) = 0\}$
- $\mathcal{I}: \mathscr{P}(k^n) \to \mathscr{P}(k[X_1, \dots, X_n]), \mathcal{I}(S) = \{f \in k[X_1, \dots, X_n] \mid \forall x \in S \ f(x) = 0\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I} .
- Subsets of k^n in the image of \mathcal{V} are called *algebraic sets*.
- Subsets of $k[X_1, \ldots, X_n]$ in the image of \mathcal{I} are ideals, and they are *radical*, i.e. $f^n \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3(x_1^2 + x_2^2 + 1) = 0 \iff (x_1^2 + x_2^2 + 1)^4 = 0$.
- $\mathcal{V}(A) = \mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.
- $\mathcal{I}(\mathcal{V}(A)) \supseteq \sqrt{(A)}$. May have \supseteq : different radical ideals may have the same zeroes.
- Example: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2].$
- Points always yield maximal ideals: $\mathcal{I}(\{(a_1, \ldots, a_n)\}) = (X_1 a_1, \ldots, X_n a_n).$
- The improper ideal has no zeroes: $\mathcal{V}(k[X_1,\ldots,X_n]) \subseteq \mathcal{V}(\{1\}) = \emptyset$.

Field theory

Algebraic geometry

Hilbert's Nullstellensatz

Recall: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2] \supseteq \sqrt{(X_1^2 + X_2^2 + 1)}.$

Recall: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2] \supseteq \sqrt{(X_1^2 + X_2^2 + 1)}.$

Theorem (Nullstellensatz)

Recall: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2] \supseteq \sqrt{(X_1^2 + X_2^2 + 1)}.$

Theorem (Nullstellensatz)

For a field k, the following are equivalent:

1. $k \models \mathsf{ACF}$

Recall: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2] \supseteq \sqrt{(X_1^2 + X_2^2 + 1)}.$

Theorem (Nullstellensatz)

- 1. $k \models \mathsf{ACF}$
- 2. $\mathcal{V}(A)$ is empty only in trivial cases, i.e. proper ideals have zeroes: $\forall n, \forall A \subseteq k[X_1, \dots, X_n] \left(\left(\mathcal{V}(A) = \emptyset \right) \Longrightarrow \left((A) = k[X_1, \dots, X_n] \right) \right).$

Recall: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2] \supseteq \sqrt{(X_1^2 + X_2^2 + 1)}.$

Theorem (Nullstellensatz)

- 1. $k \models \mathsf{ACF}$ i.e. the next point only for n = 1 (every ideal of K[X] is principal!).
- 2. $\mathcal{V}(A)$ is empty only in trivial cases, i.e. proper ideals have zeroes: $\forall n, \forall A \subseteq k[X_1, \dots, X_n] \left(\left(\mathcal{V}(A) = \emptyset \right) \Longrightarrow \left((A) = k[X_1, \dots, X_n] \right) \right).$

Recall: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2] \supseteq \sqrt{(X_1^2 + X_2^2 + 1)}.$

Theorem (Nullstellensatz)

- 1. $k \models \mathsf{ACF}$ i.e. the next point only for n = 1 (every ideal of K[X] is principal!).
- 2. $\mathcal{V}(A)$ is empty only in trivial cases, i.e. proper ideals have zeroes: $\forall n, \forall A \subseteq k[X_1, \dots, X_n] \left(\left(\mathcal{V}(A) = \emptyset \right) \Longrightarrow \left((A) = k[X_1, \dots, X_n] \right) \right).$
- 3. Maximal ideals must come from points: every maximal ideal of $k[X_1, \ldots, X_n]$ is of the form $(X_1 a_1, \ldots, X_n a_n)$. Contrast with $(X^2 + 1)$ in $\mathbb{R}[X]$.

Recall: with $k = \mathbb{R}$ we have $\mathcal{I}(\mathcal{V}(\{X_1^2 + X_2^2 + 1\}) = \mathcal{I}(\emptyset) = \mathbb{R}[X_1, X_2] \supseteq \sqrt{(X_1^2 + X_2^2 + 1)}.$

Theorem (Nullstellensatz)

- 1. $k \models \mathsf{ACF}$ i.e. the next point only for n = 1 (every ideal of K[X] is principal!).
- 2. $\mathcal{V}(A)$ is empty only in trivial cases, i.e. proper ideals have zeroes: $\forall n, \forall A \subseteq k[X_1, \dots, X_n] \left(\left(\mathcal{V}(A) = \emptyset \right) \Longrightarrow \left((A) = k[X_1, \dots, X_n] \right) \right).$
- 3. Maximal ideals must come from points: every maximal ideal of $k[X_1, \ldots, X_n]$ is of the form $(X_1 a_1, \ldots, X_n a_n)$. Contrast with $(X^2 + 1)$ in $\mathbb{R}[X]$.
- 4. \mathcal{IV} is as small as possible: $\forall n, \forall A \subseteq k[X_1, \dots, X_n] \left(\mathcal{I}(\mathcal{V}(A)) = \sqrt{(A)} \right).$

It can be shown that \mathcal{VI} is a closure operator, so the sets in its image are the closed sets of a topology on k^n .

It can be shown that VI is a closure operator, so the sets in its image are the closed sets of a topology on kⁿ. Directly, we can define "closed = in the image of V".
1. V({0}) = kⁿ, V({1}) = Ø.

- 1. $\mathcal{V}(\{0\}) = k^n, \mathcal{V}(\{1\}) = \emptyset.$
- 2. Closure under intersections: $\bigcap_i \mathcal{V}(A_i) = \mathcal{V}(\bigcup_i A_i).$

- 1. $\mathcal{V}(\{0\}) = k^n, \, \mathcal{V}(\{1\}) = \emptyset.$
- 2. Closure under intersections: $\bigcap_i \mathcal{V}(A_i) = \mathcal{V}(\bigcup_i A_i).$
- 3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B) = \mathcal{V}(\{ab \mid a \in A, b \in B\}).$

- 1. $\mathcal{V}(\{0\}) = k^n, \, \mathcal{V}(\{1\}) = \emptyset.$
- 2. Closure under intersections: $\bigcap_i \mathcal{V}(A_i) = \mathcal{V}(\bigcup_i A_i).$
- 3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B) = \mathcal{V}(\{ab \mid a \in A, b \in B\}).$ This is called the *Zariski topology* on k^n .

- 1. $\mathcal{V}(\{0\}) = k^n, \, \mathcal{V}(\{1\}) = \emptyset.$
- 2. Closure under intersections: $\bigcap_i \mathcal{V}(A_i) = \mathcal{V}(\bigcup_i A_i).$
- 3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B) = \mathcal{V}(\{ab \mid a \in A, b \in B\}).$ This is called the *Zariski topology* on k^n .
- 1. It is T1, but not Hausdorff. (except when k is finite)

- 1. $\mathcal{V}(\{0\}) = k^n, \, \mathcal{V}(\{1\}) = \emptyset.$
- 2. Closure under intersections: $\bigcap_i \mathcal{V}(A_i) = \mathcal{V}(\bigcup_i A_i).$
- 3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B) = \mathcal{V}(\{ab \mid a \in A, b \in B\}).$ This is called the *Zariski topology* on k^n .
- 1. It is T1, but not Hausdorff. (except when k is finite)
- 2. On k^1 , it is the cofinite topology.

- 1. $\mathcal{V}(\{0\}) = k^n, \, \mathcal{V}(\{1\}) = \emptyset.$
- 2. Closure under intersections: $\bigcap_i \mathcal{V}(A_i) = \mathcal{V}(\bigcup_i A_i).$
- 3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B) = \mathcal{V}(\{ab \mid a \in A, b \in B\}).$ This is called the *Zariski topology* on k^n .
- 1. It is T1, but not Hausdorff. (except when k is finite)
- 2. On k^1 , it is the cofinite topology.
- 3. On k^2 , it is not the product of the cofinite topologies on $k^{1}!$ (except when k is finite)

- 1. $\mathcal{V}(\{0\}) = k^n, \, \mathcal{V}(\{1\}) = \emptyset.$
- 2. Closure under intersections: $\bigcap_i \mathcal{V}(A_i) = \mathcal{V}(\bigcup_i A_i).$
- 3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B) = \mathcal{V}(\{ab \mid a \in A, b \in B\}).$ This is called the *Zariski topology* on k^n .
- 1. It is T1, but not Hausdorff. (except when k is finite)
- 2. On k^1 , it is the cofinite topology.
- 3. On k^2 , it is not the product of the cofinite topologies on $k^1!$ (except when k is finite)
- 4. Between k^n and k^m , polynomial maps are continuous (the converse is not true).

- 1. $\mathcal{V}(\{0\}) = k^n, \, \mathcal{V}(\{1\}) = \emptyset.$
- 2. Closure under intersections: $\bigcap_i \mathcal{V}(A_i) = \mathcal{V}(\bigcup_i A_i).$
- 3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B) = \mathcal{V}(\{ab \mid a \in A, b \in B\}).$ This is called the *Zariski topology* on k^n .
- 1. It is T1, but not Hausdorff. (except when k is finite)
- 2. On k^1 , it is the cofinite topology.
- 3. On k^2 , it is *not* the product of the cofinite topologies on $k^1!$ (except when k is finite)
- 4. Between k^n and k^m , polynomial maps are continuous (the converse is not true).
- 5. Corollary of the Nullstellensatz: if $k \models \mathsf{ACF}$, then \mathcal{IV} and \mathcal{VI} are bijections between the radical ideals of $k[X_1, \ldots, X_n]$ and the Zariski closed subsets of k^n .

"Connectedness on steroids"

1. A topological space is *irreducible* iff it is nonempty and, equivalently:

- 1. A topological space is irreducible iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$
 - 1.2 Every nonempty open set is dense.

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)
- 2. The only irreducible Hausdorff space has one point.

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)
- 2. The only irreducible Hausdorff space has one point.
- 3. $S \subseteq X$ is irreducible iff \overline{S} is, iff every $S \subseteq T \subseteq \overline{S}$ is.

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)
- 2. The only irreducible Hausdorff space has one point.
- 3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.
- 4. Irreducibility is preserved by continuous images.

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)
- 2. The only irreducible Hausdorff space has one point.
- 3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.
- 4. Irreducibility is preserved by continuous images.
- 5. It pulls back along surjective open maps with irreducible fibers.

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)
- 2. The only irreducible Hausdorff space has one point.
- 3. $S \subseteq X$ is irreducible iff \overline{S} is, iff every $S \subseteq T \subseteq \overline{S}$ is.
- 4. Irreducibility is preserved by continuous images.
- 5. It pulls back along surjective open maps with irreducible fibers.
- 6. The *irreducibile components* of a space are its maximal irreducible subspaces.

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)
- 2. The only irreducible Hausdorff space has one point.
- 3. $S\subseteq X$ is irreducible iff \bar{S} is, iff every $S\subseteq T\subseteq \bar{S}$ is.
- 4. Irreducibility is preserved by continuous images.
- 5. It pulls back along surjective open maps with irreducible fibers.
- 6. The *irreducibile components* of a space are its maximal irreducible subspaces.
- 7. They are closed, and each is contained in a connected component.

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. $({\tt need not be disjoint!})$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)
- 2. The only irreducible Hausdorff space has one point.
- 3. $S\subseteq X$ is irreducible iff \bar{S} is, iff every $S\subseteq T\subseteq \bar{S}$ is.
- 4. Irreducibility is preserved by continuous images.
- 5. It pulls back along surjective open maps with irreducible fibers.
- 6. The *irreducibile components* of a space are its maximal irreducible subspaces.
- 7. They are closed, and each is contained in a connected component.
- 8. Each space is the union of its irreducible components.

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. ${\scriptstyle (need \ not \ be \ disjoint!)}$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)
- 2. The only irreducible Hausdorff space has one point.
- 3. $S\subseteq X$ is irreducible iff \bar{S} is, iff every $S\subseteq T\subseteq \bar{S}$ is.
- 4. Irreducibility is preserved by continuous images.
- 5. It pulls back along surjective open maps with irreducible fibers.
- 6. The *irreducibile components* of a space are its maximal irreducible subspaces.
- 7. They are closed, and each is contained in a connected component.
- 8. Each space is the union of its irreducible components.
- 9. But: irreducible components are allowed to meet. $_{\rm (steroids\ have\ side-effects)}$

- 1. A topological space is *irreducible* iff it is nonempty and, equivalently:
 - 1.1 It is not the union of two proper closed sets. ${\scriptstyle (need \ not \ be \ disjoint!)}$
 - 1.2 Every nonempty open set is dense.
 - 1.3 Every nonempty open set is connected. (in particular, the whole space is)
- 2. The only irreducible Hausdorff space has one point.
- 3. $S \subseteq X$ is irreducible iff \overline{S} is, iff every $S \subseteq T \subseteq \overline{S}$ is.
- 4. Irreducibility is preserved by continuous images.
- 5. It pulls back along surjective open maps with irreducible fibers.
- 6. The *irreducibile components* of a space are its maximal irreducible subspaces.
- 7. They are closed, and each is contained in a connected component.
- 8. Each space is the union of its irreducible components.
- 9. But: irreducible components are allowed to meet. (steroids have side-effects)
- 10. If $X = X_1 \cup \ldots \cup X_n$, each X_i closed irreducible, and $X_i \not\subseteq X_j$, then the X_i are the irreducible components of X.

"Compactness on steroids"

1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.

- 1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.
- 2. Noetherianity implies compactness and is preserved by continuous images.

- 1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.
- 2. Noetherianity implies compactness and is preserved by continuous images.
- 3. But it passes to subspaces. (steroids again)

- 1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.
- 2. Noetherianity implies compactness and is preserved by continuous images.
- 3. But it passes to subspaces. (steroids again)
- 4. Important: Noetherian spaces have finitely many irreducible components.

- 1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.
- 2. Noetherianity implies compactness and is preserved by continuous images.
- 3. But it passes to subspaces. (steroids again)
- 4. Important: Noetherian spaces have finitely many irreducible components.
- 5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_0 \subsetneq \ldots \subsetneq S_n$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).

- 1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.
- 2. Noetherianity implies compactness and is preserved by continuous images.
- 3. But it passes to subspaces. (steroids again)
- 4. Important: Noetherian spaces have finitely many irreducible components.
- 5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_0 \subsetneq \ldots \subsetneq S_n$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
- 6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$

- 1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.
- 2. Noetherianity implies compactness and is preserved by continuous images.
- 3. But it passes to subspaces. (steroids again)
- 4. Important: Noetherian spaces have finitely many irreducible components.
- 5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_0 \subsetneq \ldots \subsetneq S_n$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
- 6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$
- 7. This notion of dimension has these properties:

"Compactness on steroids"

- 1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.
- 2. Noetherianity implies compactness and is preserved by continuous images.
- 3. But it passes to subspaces. (steroids again)
- 4. Important: Noetherian spaces have finitely many irreducible components.
- 5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_0 \subsetneq \ldots \subsetneq S_n$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
- 6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$
- 7. This notion of dimension has these properties:

7.1 $Y \subseteq X \Longrightarrow \dim Y \le \dim X$.

- 1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.
- 2. Noetherianity implies compactness and is preserved by continuous images.
- 3. But it passes to subspaces. (steroids again)
- 4. Important: Noetherian spaces have finitely many irreducible components.
- 5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_0 \subsetneq \ldots \subsetneq S_n$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
- 6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$
- 7. This notion of dimension has these properties:
 - 7.1 $Y \subseteq X \Longrightarrow \dim Y \le \dim X$.
 - 7.2 If Y is closed, X is irreducible, $Y \subseteq X$, and dim $X = \dim Y$, then Y = X.

- 1. A space is *Noetherian* iff it has no infinite strictly descending chain of closed sets.
- 2. Noetherianity implies compactness and is preserved by continuous images.
- 3. But it passes to subspaces. (steroids again)
- 4. Important: Noetherian spaces have finitely many irreducible components.
- 5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_0 \subsetneq \ldots \subsetneq S_n$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
- 6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$
- 7. This notion of dimension has these properties:
 - 7.1 $Y \subseteq X \Longrightarrow \dim Y \le \dim X$.
 - 7.2 If Y is closed, X is irreducible, $Y \subseteq X$, and dim $X = \dim Y$, then Y = X.
 - 7.3 If $X = X_1 \cup \ldots \cup X_n$, with the X_i closed, then dim $X = \max_i \dim X_i$.

Back to Zariski

1. (Every subspace of) k^n is Noetherian, because the ring $k[X_1, \ldots, X_n]$ is.

No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].

Back to Zariski

1. (Every subspace of) k^n is Noetherian, because the ring $k[X_1, \ldots, X_n]$ is.

No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X]. What about irreducibility? Time for an example:

Back to Zariski

- (Every subspace of) kⁿ is Noetherian, because the ring k[X₁,...,X_n] is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].
 What about irreducibility? Time for an example:
- 2. Let C be the closed subspace of k^2 given by $X_1X_2 = 0$ (a "cross").

- (Every subspace of) kⁿ is Noetherian, because the ring k[X₁,...,X_n] is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].
 What about irreducibility? Time for an example:
- 2. Let C be the closed subspace of k^2 given by $X_1X_2 = 0$ (a "cross").
- 3. Its irreducible subsets are:

- (Every subspace of) kⁿ is Noetherian, because the ring k[X₁,...,X_n] is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].
 What about irreducibility? Time for an example:
- 2. Let C be the closed subspace of k^2 given by $X_1X_2 = 0$ (a "cross").
- 3. Its irreducible subsets are:
 - 3.1 points,

1. (Every subspace of) k^n is Noetherian, because the ring $k[X_1, \ldots, X_n]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].

- 2. Let C be the closed subspace of k^2 given by $X_1X_2 = 0$ (a "cross").
- 3. Its irreducible subsets are:
 - 3.1 points, 3.2 $X_1 = 0$,

1. (Every subspace of) k^n is Noetherian, because the ring $k[X_1, \ldots, X_n]$ is.

No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].

- 2. Let C be the closed subspace of k^2 given by $X_1X_2 = 0$ (a "cross").
- 3. Its irreducible subsets are:
 - 3.1 points, 3.2 $X_1 = 0$, 3.3 $X_2 = 0$.

1. (Every subspace of) k^n is Noetherian, because the ring $k[X_1, \ldots, X_n]$ is.

No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].

- 2. Let C be the closed subspace of k^2 given by $X_1X_2 = 0$ (a "cross").
- 3. Its irreducible subsets are:
 - 3.1 points, 3.2 $X_1 = 0$, 3.3 $X_2 = 0$.
- 4. The last two are the irreducible components of C. They meet. dim C = 1.

1. (Every subspace of) k^n is Noetherian, because the ring $k[X_1, \ldots, X_n]$ is.

No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].

- 2. Let C be the closed subspace of k^2 given by $X_1X_2 = 0$ (a "cross").
- 3. Its irreducible subsets are:
 - 3.1 points, 3.2 $X_1 = 0$, 3.3 $X_2 = 0$.
- 4. The last two are the irreducible components of C. They meet. dim C = 1.
- 5. Reducibility is detected algebraically as follows: X_1X_2 is zero on C, but neither X_1 nor X_2 is.

1. (Every subspace of) k^n is Noetherian, because the ring $k[X_1, \ldots, X_n]$ is.

No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].

- 2. Let C be the closed subspace of k^2 given by $X_1X_2 = 0$ (a "cross").
- 3. Its irreducible subsets are:
 - 3.1 points, 3.2 $X_1 = 0$, 3.3 $X_2 = 0$.
- 4. The last two are the irreducible components of C. They meet. dim C = 1.
- 5. Reducibility is detected algebraically as follows: X_1X_2 is zero on C, but neither X_1 nor X_2 is. This is no coincidence:
- 6. Important fact: a Zariski closed set S is irreducible iff $\mathcal{I}(S)$ is prime.

1. (Every subspace of) k^n is Noetherian, because the ring $k[X_1, \ldots, X_n]$ is.

No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is A[X].

- 2. Let C be the closed subspace of k^2 given by $X_1X_2 = 0$ (a "cross").
- 3. Its irreducible subsets are:
 - 3.1 points, 3.2 $X_1 = 0$, 3.3 $X_2 = 0$.
- 4. The last two are the irreducible components of C. They meet. dim C = 1.
- 5. Reducibility is detected algebraically as follows: X_1X_2 is zero on C, but neither X_1 nor X_2 is. This is no coincidence:
- 6. Important fact: a Zariski closed set S is irreducible iff $\mathcal{I}(S)$ is prime.
- 7. If $k \models \mathsf{ACF}$, by the Nullstellensatz prime ideals correspond to irreducible subsets.

1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?
- 4. We don't care about $k^n \setminus S$: if f is 0 on S it might as well be 0 everywhere.

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?
- 4. We don't care about $k^n \setminus S$: if f is 0 on S it might as well be 0 everywhere.
- 5. So we define the *coordinate ring* $k[S] \coloneqq k[X_1, \ldots, X_n]/\mathcal{I}(S)$.

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?
- 4. We don't care about $k^n \setminus S$: if f is 0 on S it might as well be 0 everywhere.
- 5. So we define the coordinate ring $k[S] \coloneqq k[X_1, \ldots, X_n]/\mathcal{I}(S)$.
- 6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?
- 4. We don't care about $k^n \setminus S$: if f is 0 on S it might as well be 0 everywhere.
- 5. So we define the coordinate ring $k[S] \coloneqq k[X_1, \ldots, X_n]/\mathcal{I}(S)$.
- 6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
- 7. If $k \models ACF$, every such algebra is a coordinate ring (Nullstellensatz).

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?
- 4. We don't care about $k^n \setminus S$: if f is 0 on S it might as well be 0 everywhere.
- 5. So we define the coordinate ring $k[S] \coloneqq k[X_1, \ldots, X_n]/\mathcal{I}(S)$.
- 6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
- 7. If $k \models ACF$, every such algebra is a coordinate ring (Nullstellensatz).
- 8. Polynomial maps $S \to T$ correspond to k-algebra homomorphisms $k[T] \to k[S]$. E.g. $S \hookrightarrow k^n$ corresponds to the quotient map.

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?
- 4. We don't care about $k^n \setminus S$: if f is 0 on S it might as well be 0 everywhere.
- 5. So we define the coordinate ring $k[S] \coloneqq k[X_1, \ldots, X_n]/\mathcal{I}(S)$.
- 6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
- 7. If $k \models ACF$, every such algebra is a coordinate ring (Nullstellensatz).
- 8. Polynomial maps $S \to T$ correspond to k-algebra homomorphisms $k[T] \to k[S]$. E.g. $S \hookrightarrow k^n$ corresponds to the quotient map.
- 9. \mathcal{I} and \mathcal{V} induce maps between ideals of k[S] and subsets of S (and if $k \models ACF...$)

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?
- 4. We don't care about $k^n \setminus S$: if f is 0 on S it might as well be 0 everywhere.
- 5. So we define the coordinate ring $k[S] \coloneqq k[X_1, \ldots, X_n]/\mathcal{I}(S)$.
- 6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
- 7. If $k \models ACF$, every such algebra is a coordinate ring (Nullstellensatz).
- 8. Polynomial maps $S \to T$ correspond to k-algebra homomorphisms $k[T] \to k[S]$. E.g. $S \hookrightarrow k^n$ corresponds to the quotient map.
- 9. \mathcal{I} and \mathcal{V} induce maps between ideals of k[S] and subsets of S (and if $k \models ACF...$)
- 10. k[S] is a domain iff S is irreducible.

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?
- 4. We don't care about $k^n \setminus S$: if f is 0 on S it might as well be 0 everywhere.
- 5. So we define the coordinate ring $k[S] \coloneqq k[X_1, \ldots, X_n]/\mathcal{I}(S)$.
- 6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
- 7. If $k \models ACF$, every such algebra is a coordinate ring (Nullstellensatz).
- 8. Polynomial maps $S \to T$ correspond to k-algebra homomorphisms $k[T] \to k[S]$. E.g. $S \hookrightarrow k^n$ corresponds to the quotient map.
- 9. \mathcal{I} and \mathcal{V} induce maps between ideals of k[S] and subsets of S (and if $k \models ACF...$)
- 10. k[S] is a domain iff S is irreducible.
- 11. In which case, we define the ring of rational functions $k(S) \coloneqq \text{Quot}(k[S])$.

- 1. We have put a topology on k^n , starting from the ring $k[X_1, \ldots, X_n]$.
- 2. Think of it as "the ring of algebraic functions on k^{n} ".
- 3. What if we want to do the same for a Zariski closed $S \subseteq k^n$?
- 4. We don't care about $k^n \setminus S$: if f is 0 on S it might as well be 0 everywhere.
- 5. So we define the coordinate ring $k[S] \coloneqq k[X_1, \ldots, X_n]/\mathcal{I}(S)$.
- 6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
- 7. If $k \models ACF$, every such algebra is a coordinate ring (Nullstellensatz).
- 8. Polynomial maps $S \to T$ correspond to k-algebra homomorphisms $k[T] \to k[S]$. E.g. $S \hookrightarrow k^n$ corresponds to the quotient map.
- 9. \mathcal{I} and \mathcal{V} induce maps between ideals of k[S] and subsets of S (and if $k \models ACF...$)
- 10. k[S] is a domain iff S is irreducible.
- 11. In which case, we define the ring of rational functions $k(S) \coloneqq \text{Quot}(k[S])$.
- 12. If $k \models \mathsf{ACF}$ and S is irreducible then dim $S = \operatorname{trdeg}(k(S)/k)$.

Field theory

Algebraic geometry

Changing base field

1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) := S \cap k^n$.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) \coloneqq S \cap k^n$.
- 3. S is defined over k iff $\mathcal{I}(S) \cap k[X_1, \ldots, X_n]$ generates $\mathcal{I}(S)$.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) \coloneqq S \cap k^n$.
- 3. S is defined over k iff $\mathcal{I}(S) \cap k[X_1, \ldots, X_n]$ generates $\mathcal{I}(S)$.
- 4. "k-definable" \neq "defined over k": if t is transcendental over \mathbb{F}^p , then $\{t\}$ is definable, but not defined, over $\mathbb{F}_p(t^p)$.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) \coloneqq S \cap k^n$.
- 3. S is defined over k iff $\mathcal{I}(S) \cap k[X_1, \ldots, X_n]$ generates $\mathcal{I}(S)$.
- 4. "k-definable" \neq "defined over k": if t is transcendental over \mathbb{F}^p , then $\{t\}$ is definable, but not defined, over $\mathbb{F}_p(t^p)$.
- 5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^n$ has a smallest field of definition.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) \coloneqq S \cap k^n$.
- 3. S is defined over k iff $\mathcal{I}(S) \cap k[X_1, \ldots, X_n]$ generates $\mathcal{I}(S)$.
- 4. "k-definable" \neq "defined over k": if t is transcendental over \mathbb{F}^p , then $\{t\}$ is definable, but not defined, over $\mathbb{F}_p(t^p)$.
- 5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^n$ has a smallest field of definition.
- 6. Irreducibility does not transfer: if S is defined over k, $\mathcal{I}(S) \cap k$ may be prime even if S is reducible.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) \coloneqq S \cap k^n$.
- 3. S is defined over k iff $\mathcal{I}(S) \cap k[X_1, \ldots, X_n]$ generates $\mathcal{I}(S)$.
- 4. "k-definable" \neq "defined over k": if t is transcendental over \mathbb{F}^p , then $\{t\}$ is definable, but not defined, over $\mathbb{F}_p(t^p)$.
- 5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^n$ has a smallest field of definition.
- 6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
- 7. For example, $X_0^2 + X_1^2 = 0$ can be written as the union of two proper k-closed subsets for $k = \mathbb{C}$, but not for $k = \mathbb{Q}$.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) \coloneqq S \cap k^n$.
- 3. S is defined over k iff $\mathcal{I}(S) \cap k[X_1, \ldots, X_n]$ generates $\mathcal{I}(S)$.
- 4. "k-definable" \neq "defined over k": if t is transcendental over \mathbb{F}^p , then $\{t\}$ is definable, but not defined, over $\mathbb{F}_p(t^p)$.
- 5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^n$ has a smallest field of definition.
- 6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
- 7. For example, $X_0^2 + X_1^2 = 0$ can be written as the union of two proper k-closed subsets for $k = \mathbb{C}$, but not for $k = \mathbb{Q}$.
- 8. Recall: $F \otimes_k (k[\bar{X}]/I) \cong F[\bar{X}]/IF$.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) \coloneqq S \cap k^n$.
- 3. S is defined over k iff $\mathcal{I}(S) \cap k[X_1, \ldots, X_n]$ generates $\mathcal{I}(S)$.
- 4. "k-definable" \neq "defined over k": if t is transcendental over \mathbb{F}^p , then $\{t\}$ is definable, but not defined, over $\mathbb{F}_p(t^p)$.
- 5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^n$ has a smallest field of definition.
- 6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
- 7. For example, $X_0^2 + X_1^2 = 0$ can be written as the union of two proper k-closed subsets for $k = \mathbb{C}$, but not for $k = \mathbb{Q}$.
- 8. Recall: $F \otimes_k (k[\bar{X}]/I) \cong F[\bar{X}]/IF$.
- 9. This yields: a k-irreducible set S defined over k is k^{alg} -irreducible iff k(S) is a regular extension of k, i.e. linearly disjoint from k^{alg} , iff $k(S) \otimes_k k^{\text{alg}}$ is a domain.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) \coloneqq S \cap k^n$.
- 3. S is defined over k iff $\mathcal{I}(S) \cap k[X_1, \ldots, X_n]$ generates $\mathcal{I}(S)$.
- 4. "k-definable" \neq "defined over k": if t is transcendental over \mathbb{F}^p , then $\{t\}$ is definable, but not defined, over $\mathbb{F}_p(t^p)$.
- 5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^n$ has a smallest field of definition.
- 6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
- 7. For example, $X_0^2 + X_1^2 = 0$ can be written as the union of two proper k-closed subsets for $k = \mathbb{C}$, but not for $k = \mathbb{Q}$.
- 8. Recall: $F \otimes_k (k[\bar{X}]/I) \cong F[\bar{X}]/IF$.
- 9. This yields: a k-irreducible set S defined over k is k^{alg} -irreducible iff k(S) is a regular extension of k, i.e. linearly disjoint from k^{alg} , iff $k(S) \otimes_k k^{\text{alg}}$ is a domain.
- 10. Note that $S(k^{\text{alg}})$ is irreducible iff $S(\Omega)$ is, by quantifier elimination.

- 1. Let $k \subseteq \Omega \vDash \mathsf{ACF}$, with $\operatorname{trdeg}(\Omega/k)$ infinite.
- 2. If $S \subseteq \Omega^n$ is Zariski closed, the set of k-rational points of S is $S(k) \coloneqq S \cap k^n$.
- 3. S is defined over k iff $\mathcal{I}(S) \cap k[X_1, \ldots, X_n]$ generates $\mathcal{I}(S)$.
- 4. "k-definable" \neq "defined over k": if t is transcendental over \mathbb{F}^p , then $\{t\}$ is definable, but not defined, over $\mathbb{F}_p(t^p)$.
- 5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^n$ has a smallest field of definition.
- 6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
- 7. For example, $X_0^2 + X_1^2 = 0$ can be written as the union of two proper k-closed subsets for $k = \mathbb{C}$, but not for $k = \mathbb{Q}$.
- 8. Recall: $F \otimes_k (k[\bar{X}]/I) \cong F[\bar{X}]/IF$.
- 9. This yields: a k-irreducible set S defined over k is k^{alg} -irreducible iff k(S) is a regular extension of k, i.e. linearly disjoint from k^{alg} , iff $k(S) \otimes_k k^{\text{alg}}$ is a domain.
- 10. Note that $S(k^{\text{alg}})$ is irreducible iff $S(\Omega)$ is, by quantifier elimination.
- 11. Aside: the Ω -Zariski subspace topology on k^n equals the k-Zariski topology.

1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .
 - 3.3 In other words, $k[a_1, \ldots, a_n] \cong_k k[X_1, \ldots, X_n]/\mathfrak{p}$.

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .
 - 3.3 In other words, $k[a_1, \ldots, a_n] \cong_k k[X_1, \ldots, X_n]/\mathfrak{p}$.
 - 3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω . Warning: this is not even TO.

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .
 - 3.3 In other words, $k[a_1, \ldots, a_n] \cong_k k[X_1, \ldots, X_n]/\mathfrak{p}$.
 - 3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω . Warning: this is not even TO.
 - 3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a)/k) = \dim V$.

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .
 - 3.3 In other words, $k[a_1, \ldots, a_n] \cong_k k[X_1, \ldots, X_n]/\mathfrak{p}$.
 - 3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω . Warning: this is not even TO.
 - 3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a)/k) = \dim V$.
 - 3.6 Some $a \in V(\Omega)$ with tp(a/k) of the same Morley rank as V.

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .
 - 3.3 In other words, $k[a_1, \ldots, a_n] \cong_k k[X_1, \ldots, X_n]/\mathfrak{p}$.
 - 3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω . Warning: this is not even TO.
 - 3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a)/k) = \dim V$.
 - 3.6 Some $a \in V(\Omega)$ with tp(a/k) of the same Morley rank as V.
 - 3.7 At any rate: a point satisfying the equations in \mathfrak{p} and no other equation over k.

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .
 - 3.3 In other words, $k[a_1, \ldots, a_n] \cong_k k[X_1, \ldots, X_n]/\mathfrak{p}$.
 - 3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω . Warning: this is not even TO.
 - 3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a)/k) = \dim V$.
 - 3.6 Some $a \in V(\Omega)$ with tp(a/k) of the same Morley rank as V.
 - 3.7 At any rate: a point satisfying the equations in \mathfrak{p} and no other equation over k.
- 4. Any point $a \in \Omega^n$ is a generic point over k of $\mathcal{I}_k(\{a\})$. (may have $a \notin k^n$!)

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .
 - 3.3 In other words, $k[a_1, \ldots, a_n] \cong_k k[X_1, \ldots, X_n]/\mathfrak{p}$.
 - 3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω . Warning: this is not even TO.
 - 3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a)/k) = \dim V$.
 - 3.6 Some $a \in V(\Omega)$ with tp(a/k) of the same Morley rank as V.
 - 3.7 At any rate: a point satisfying the equations in \mathfrak{p} and no other equation over k.
- 4. Any point $a \in \Omega^n$ is a generic point over k of $\mathcal{I}_k(\{a\})$. (may have $a \notin k^{n_1}$)
- 5. b is a specialisation of a over k iff $\mathcal{I}_k(\{a\}) \subseteq \mathcal{I}_k(\{b\})$.

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .
 - 3.3 In other words, $k[a_1, \ldots, a_n] \cong_k k[X_1, \ldots, X_n]/\mathfrak{p}$.
 - 3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω . Warning: this is not even TO.
 - 3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a)/k) = \dim V$.
 - 3.6 Some $a \in V(\Omega)$ with tp(a/k) of the same Morley rank as V.
 - 3.7 At any rate: a point satisfying the equations in \mathfrak{p} and no other equation over k.
- 4. Any point $a \in \Omega^n$ is a generic point over k of $\mathcal{I}_k(\{a\})$. (may have $a \notin k^{n_1}$)
- 5. b is a specialisation of a over k iff $\mathcal{I}_k(\{a\}) \subseteq \mathcal{I}_k(\{b\})$.
- 6. Specialisations correspond to surjective morphisms between coordinate rings.

- 1. Work inside a saturated $\Omega \vDash \mathsf{ACF}$. Variety = irreducible Zariski closed set.
- 2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p} \coloneqq \mathcal{I}_k(V) \subseteq k[X_1, \ldots, X_n]$.
- 3. A generic point of V is, equivalently:
 - 3.1 "The element $(X_1, \ldots, X_n) + \mathfrak{p}$ of $k[X_1, \ldots, X_n]/\mathfrak{p}$."
 - 3.2 More precisely, any image $a = (a_1, \ldots, a_n)$ of it under some k-embedding in Ω .
 - 3.3 In other words, $k[a_1, \ldots, a_n] \cong_k k[X_1, \ldots, X_n]/\mathfrak{p}$.
 - 3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω . Warning: this is not even TO.
 - 3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a)/k) = \dim V$.
 - 3.6 Some $a \in V(\Omega)$ with tp(a/k) of the same Morley rank as V.
 - 3.7 At any rate: a point satisfying the equations in ${\mathfrak p}$ and no other equation over k.
- 4. Any point $a \in \Omega^n$ is a generic point over k of $\mathcal{I}_k(\{a\})$. (may have $a \notin k^{n_1}$)
- 5. b is a specialisation of a over k iff $\mathcal{I}_k(\{a\}) \subseteq \mathcal{I}_k(\{b\})$.
- 6. Specialisations correspond to surjective morphisms between coordinate rings.
- 7. The points of a variety are exactly the specialisations of its generic points.