Some basic results from field theory and algebraic geometry

Rosario Mennuni

Wwu Münster
Reading group on model theory of pseudofinite structures
$14^{\text {th }}$ April 2021

References

I have mainly looked at: (but there is plenty of literature on the subject: books, notes, stackexchange...)

- Z. Chatzidakis' notes (see learnweb page).
- S. Lang, Introduction to Algebraic Geometry. Also Algebra.
- M. D. Fried, M. Jarden, Field Arithmetic.
- Some notes from a course I took years ago (in Italian).

References

I have mainly looked at: (but there is plenty of literature on the subject: books, notes, stackexchange...)

- Z. Chatzidakis' notes (see learnweb page).
- S. Lang, Introduction to Algebraic Geometry. Also Algebra.
- M. D. Fried, M. Jarden, Field Arithmetic.
- Some notes from a course I took years ago (in Italian).

Feel free to interrupt at any time for questions, comments, remarks, mistakes,...

References

I have mainly looked at: (but there is plenty of literature on the subject: books, notes, stackexchange...)

- Z. Chatzidakis' notes (see learnweb page).
- S. Lang, Introduction to Algebraic Geometry. Also Algebra.
- M. D. Fried, M. Jarden, Field Arithmetic.
- Some notes from a course I took years ago (in Italian).

Feel free to interrupt at any time for questions, comments, remarks, mistakes,... Plan of the talk:
Field theory
Tensors products
Linear disjointness
Algebraic geometry
Algebraic sets
The Zariski topology
The coordinate ring

F-algebras

- Ring $=$ commutative ring with 1. Morphisms preserve 1.

F-algebras

- Ring $=$ commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:

F-algebras

- Ring $=$ commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
- a ring A containing F;

F-algebras

- Ring $=$ commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
- a ring A containing F;
- a ring A with an F-vector space structure compatible with the ring operations, i.e.

$$
"+=+" \text { and } f \cdot(a b)=(f \cdot a) b=a(f \cdot b) ;
$$

F-algebras

- Ring $=$ commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
- a ring A containing F;
- a ring A with an F-vector space structure compatible with the ring operations, i.e. $"+=+"$ and $f \cdot(a b)=(f \cdot a) b=a(f \cdot b)$;
- a ring homomorphism $F \rightarrow A$.

F-algebras

- $\operatorname{Ring}=$ commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
- a ring A containing F;
- a ring A with an F-vector space structure compatible with the ring operations, i.e. " $+=+$ " and $f \cdot(a b)=(f \cdot a) b=a(f \cdot b)$;
- a ring homomorphism $F \rightarrow A$.
- Morphism of F-algebras: an F-linear morphism of rings. ("fixing F pointwise" if you prefer)

F-algebras

- Ring $=$ commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
- a ring A containing F;
- a ring A with an F-vector space structure compatible with the ring operations, i.e. $"+=+"$ and $f \cdot(a b)=(f \cdot a) b=a(f \cdot b)$;
- a ring homomorphism $F \rightarrow A$.
- Morphism of F-algebras: an F-linear morphism of rings. ("fixing F pointwise" if you prefer)
- One can also speak of R-algebras for R a ring. (the first definition does not work anymore)

F-algebras

- Ring $=$ commutative ring with 1. Morphisms preserve 1.
- Let F be a field. An F-algebra is, equivalently:
- a ring A containing F;
- a ring A with an F-vector space structure compatible with the ring operations, i.e.

$$
"+=+" \text { and } f \cdot(a b)=(f \cdot a) b=a(f \cdot b) ;
$$

- a ring homomorphism $F \rightarrow A$.
- Morphism of F-algebras: an F-linear morphism of rings. ("fixing F pointwise" if you prefer)
- One can also speak of R-algebras for R a ring. (the first definition does not work anymore)
- Lots of things also have more abstract (i.e. categorical) definitions, but this will not concern us here.

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .
2. Let $A \otimes_{F} B$ be the F-vector space with basis given by the formal symbols

$$
\left\{a \otimes b \mid a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}\right\}
$$

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .
2. Let $A \otimes_{F} B$ be the F-vector space with basis given by the formal symbols

$$
\left\{a \otimes b \mid a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}\right\}
$$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime \prime}$ ".

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .
2. Let $A \otimes_{F} B$ be the F-vector space with basis given by the formal symbols

$$
\left\{a \otimes b \mid a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}\right\}
$$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime \prime}$ ". Nonsense as written.

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .
2. Let $A \otimes_{F} B$ be the F-vector space with basis given by the formal symbols

$$
\left\{a \otimes b \mid a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}\right\}
$$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime \prime}$ ". Nonsense as written.
4. Given $c, c^{\prime} \in \mathcal{E}_{A}$ and $d, d^{\prime} \in \mathcal{E}_{B}$, write $c c^{\prime}=\sum_{a \in \mathcal{E}_{A}} \alpha_{a} a$ and $d d^{\prime}=\sum_{b \in \mathcal{E}_{B}} \beta_{b} b$. Then set $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}=\sum_{a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}} \alpha_{a} \beta_{b} a \otimes b$.

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .
2. Let $A \otimes_{F} B$ be the F-vector space with basis given by the formal symbols

$$
\left\{a \otimes b \mid a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}\right\}
$$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime \prime}$. Nonsense as written.
4. Given $c, c^{\prime} \in \mathcal{E}_{A}$ and $d, d^{\prime} \in \mathcal{E}_{B}$, write $c c^{\prime}=\sum_{a \in \mathcal{E}_{A}} \alpha_{a} a$ and $d d^{\prime}=\sum_{b \in \mathcal{E}_{B}} \beta_{b} b$. Then set $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}=\sum_{a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}} \alpha_{a} \beta_{b} a \otimes b$.
5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .
2. Let $A \otimes_{F} B$ be the F-vector space with basis given by the formal symbols

$$
\left\{a \otimes b \mid a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}\right\}
$$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime \prime \prime}$. Nonsense as written.
4. Given $c, c^{\prime} \in \mathcal{E}_{A}$ and $d, d^{\prime} \in \mathcal{E}_{B}$, write $c c^{\prime}=\sum_{a \in \mathcal{E}_{A}} \alpha_{a} a$ and $d d^{\prime}=\sum_{b \in \mathcal{E}_{B}} \beta_{b} b$. Then set $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}=\sum_{a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}} \alpha_{a} \beta_{b} a \otimes b$.
5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.
6. Now $a \otimes b$ makes sense in general, and $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}$.

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .
2. Let $A \otimes_{F} B$ be the F-vector space with basis given by the formal symbols

$$
\left\{a \otimes b \mid a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}\right\}
$$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime \prime \prime}$. Nonsense as written.
4. Given $c, c^{\prime} \in \mathcal{E}_{A}$ and $d, d^{\prime} \in \mathcal{E}_{B}$, write $c c^{\prime}=\sum_{a \in \mathcal{E}_{A}} \alpha_{a} a$ and $d d^{\prime}=\sum_{b \in \mathcal{E}_{B}} \beta_{b} b$. Then set $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}=\sum_{a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}} \alpha_{a} \beta_{b} a \otimes b$.
5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.
6. Now $a \otimes b$ makes sense in general, and $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}$.
7. Important note: for $c \in F$, we have $c a \otimes b=c(a \otimes b)=a \otimes c b$.

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .
2. Let $A \otimes_{F} B$ be the F-vector space with basis given by the formal symbols

$$
\left\{a \otimes b \mid a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}\right\}
$$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime \prime \prime}$. Nonsense as written.
4. Given $c, c^{\prime} \in \mathcal{E}_{A}$ and $d, d^{\prime} \in \mathcal{E}_{B}$, write $c c^{\prime}=\sum_{a \in \mathcal{E}_{A}} \alpha_{a} a$ and $d d^{\prime}=\sum_{b \in \mathcal{E}_{B}} \beta_{b} b$. Then set $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}=\sum_{a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}} \alpha_{a} \beta_{b} a \otimes b$.
5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.
6. Now $a \otimes b$ makes sense in general, and $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}$.
7. Important note: for $c \in F$, we have $c a \otimes b=c(a \otimes b)=a \otimes c b$.
8. \otimes can also be defined on linear maps: $(f \otimes g)(a \otimes b)=f(a) \otimes g(b)$.

Tensor product: construction

Let A, B be F-algebras. We want to define the tensor product F-algebra $A \otimes_{F} B$.

1. Fix F-vector space bases \mathcal{E}_{A} of A and \mathcal{E}_{B} of B, both containing 1 .
2. Let $A \otimes_{F} B$ be the F-vector space with basis given by the formal symbols

$$
\left\{a \otimes b \mid a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}\right\}
$$

3. Define multiplication on the $a \otimes b$, then extend uniquely in an associative, distributive fashion. Idea: " $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime \prime \prime}$. Nonsense as written.
4. Given $c, c^{\prime} \in \mathcal{E}_{A}$ and $d, d^{\prime} \in \mathcal{E}_{B}$, write $c c^{\prime}=\sum_{a \in \mathcal{E}_{A}} \alpha_{a} a$ and $d d^{\prime}=\sum_{b \in \mathcal{E}_{B}} \beta_{b} b$. Then set $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}=\sum_{a \in \mathcal{E}_{A}, b \in \mathcal{E}_{B}} \alpha_{a} \beta_{b} a \otimes b$.
5. Embedding $A \cong A \otimes 1 \subseteq A \otimes B$: send $a \mapsto a \otimes 1$ on \mathcal{A} and extend. Same for B.
6. Now $a \otimes b$ makes sense in general, and $(c \otimes d)\left(c^{\prime} \otimes d^{\prime}\right)=c c^{\prime} \otimes d d^{\prime}$.
7. Important note: for $c \in F$, we have $c a \otimes b=c(a \otimes b)=a \otimes c b$.
8. \otimes can also be defined on linear maps: $(f \otimes g)(a \otimes b)=f(a) \otimes g(b)$.
9. Fact: up to isomorphism, $A \otimes_{F} B$ does not depend on $\mathcal{E}_{A}, \mathcal{E}_{B}$.

Tensor product: properties and examples

Some properties of tensor products: (recall: $c a \otimes b=a \otimes c b$)

1. \otimes is associative (up to isomorphism).
2. Bilinear maps $A \times B \rightarrow C$ "are the same as" linear maps $A \otimes B \rightarrow C$.
3. $\operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(A \otimes B, C) \cong \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}\left(A, \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(B, C)\right)$.

Tensor product: properties and examples

Some properties of tensor products: (recall: $c a \otimes b=a \otimes c b$)

1. \otimes is associative (up to isomorphism).
2. Bilinear maps $A \times B \rightarrow C$ "are the same as" linear maps $A \otimes B \rightarrow C$.
3. $\operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(A \otimes B, C) \cong \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}\left(A, \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(B, C)\right)$.

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring.

Tensor product: properties and examples

Some properties of tensor products: (recall: $c a \otimes b=a \otimes c b$)

1. \otimes is associative (up to isomorphism).
2. Bilinear maps $A \times B \rightarrow C$ "are the same as" linear maps $A \otimes B \rightarrow C$.
3. $\operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(A \otimes B, C) \cong \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}\left(A, \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(B, C)\right)$.

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\left.\mathbb{Q} \otimes_{\mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z})=\{0\}\right)$.

Tensor product: properties and examples

Some properties of tensor products: (recall: $c a \otimes b=a \otimes c b$)

1. \otimes is associative (up to isomorphism).
2. Bilinear maps $A \times B \rightarrow C$ "are the same as" linear maps $A \otimes B \rightarrow C$.
3. $\operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(A \otimes B, C) \cong \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}\left(A, \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(B, C)\right)$.

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\left.\mathbb{Q} \otimes_{\mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z})=\{0\}\right)$. Example

1. $\mathbb{C} \otimes_{\mathbb{R}}(\mathbb{R}[\bar{X}] /(f)) \cong \mathbb{C}[\bar{X}] /(f)$.

Tensor product: properties and examples

Some properties of tensor products: (recall: $c a \otimes b=a \otimes c b$)

1. \otimes is associative (up to isomorphism).
2. Bilinear maps $A \times B \rightarrow C$ "are the same as" linear maps $A \otimes B \rightarrow C$.
3. $\operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(A \otimes B, C) \cong \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}\left(A, \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(B, C)\right)$.

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\mathbb{Q} \otimes_{\mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z})=\{0\}$).

Example

1. $\mathbb{C} \otimes_{\mathbb{R}}(\mathbb{R}[\bar{X}] /(f)) \cong \mathbb{C}[\bar{X}] /(f)$.
2. More generally, "extension of scalars": if $K \supseteq F$, then $K \otimes_{F}(F[\bar{X}] / I) \cong K[\bar{X}] / I K$. (keep this in mind for later)

Tensor product: properties and examples

Some properties of tensor products: (recall: $c a \otimes b=a \otimes c b$)

1. \otimes is associative (up to isomorphism).
2. Bilinear maps $A \times B \rightarrow C$ "are the same as" linear maps $A \otimes B \rightarrow C$.
3. $\operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(A \otimes B, C) \cong \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}\left(A, \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(B, C)\right)$.

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\left.\mathbb{Q} \otimes_{\mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z})=\{0\}\right)$.

Example

1. $\mathbb{C} \otimes_{\mathbb{R}}(\mathbb{R}[\bar{X}] /(f)) \cong \mathbb{C}[\bar{X}] /(f)$.
2. More generally, "extension of scalars": if $K \supseteq F$, then $K \otimes_{F}(F[\bar{X}] / I) \cong K[\bar{X}] / I K$. (keep this in mind for later)
3. $(F[X] /(f(X))) \otimes_{F}(F[Y] /(g(Y))) \cong F[X, Y] /(f(X), g(Y))$

Tensor product: properties and examples

Some properties of tensor products: (recall: $c a \otimes b=a \otimes c b$)

1. \otimes is associative (up to isomorphism).
2. Bilinear maps $A \times B \rightarrow C$ "are the same as" linear maps $A \otimes B \rightarrow C$.
3. $\operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(A \otimes B, C) \cong \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}\left(A, \operatorname{Hom}_{\mathrm{v} . \mathrm{sp} .}(B, C)\right)$.

One can also do a construction without fixing bases (as a quotient of the free abelian group over $A \times B$), which works also when F is only a ring. Some properties are lost (e.g. embeddings \mapsto morphisms, $\left.\mathbb{Q} \otimes_{\mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z})=\{0\}\right)$.

Example

1. $\mathbb{C} \otimes_{\mathbb{R}}(\mathbb{R}[\bar{X}] /(f)) \cong \mathbb{C}[\bar{X}] /(f)$.
2. More generally, "extension of scalars": if $K \supseteq F$, then
$K \otimes_{F}(F[\bar{X}] / I) \cong K[\bar{X}] / I K$. (keep this in mind for later)
3. $(F[X] /(f(X))) \otimes_{F}(F[Y] /(g(Y))) \cong F[X, Y] /(f(X), g(Y))$
4. $(F[\bar{X}] /(f(\bar{X}))) \otimes_{F[\bar{X}]}(F[\bar{X}] /(g(\bar{X}))) \cong F[\bar{X}] /(f(\bar{X}), g(\bar{X}))$

Linear disjointness and freeness

Definition $(F \subseteq E, L \subseteq \Omega)$

- E is linearly disjoint from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.

Linear disjointness and freeness

Definition $(F \subseteq E, L \subseteq \Omega)$

- E is linearly disjoint from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.

Linear disjointness and freeness

Definition $(F \subseteq E, L \subseteq \Omega)$

- E is linearly disjoint from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.
1 . Both notions are symmetric in E, L.

Linear disjointness and freeness

Definition $(F \subseteq E, L \subseteq \Omega)$

- E is linearly disjoint from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.

1. Both notions are symmetric in E, L.
2. Linearly disjoint implies free. The converse is false (take $E=L$ algebraic over F).

Linear disjointness and freeness

Definition $(F \subseteq E, L \subseteq \Omega)$

- E is linearly disjoint from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.

1. Both notions are symmetric in E, L.
2. Linearly disjoint implies free. The converse is false (take $E=L$ algebraic over F).

Linear disjointness and freeness

Definition $(F \subseteq E, L \subseteq \Omega)$

- E is linearly disjoint from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.

1. Both notions are symmetric in E, L.
2. Linearly disjoint implies free. The converse is false (take $E=L$ algebraic over F).
3. $E \underset{F}{\stackrel{1}{~ l . d . ~}} L$ iff the map $E \otimes_{F} L \rightarrow E[L]$ induced by $a \otimes b \mapsto a b$ is injective.
4. Enough to check: some F-basis of some $R \subseteq E$ with $E=\operatorname{Quot}(R)$ is L-lin.ind.

Linear disjointness and freeness

Definition $(F \subseteq E, L \subseteq \Omega)$

- E is linearly disjoint from L over F iff every (finite) F-linearly independent subset of E is L-linearly independent.
- E is free (or algebraically independent) from L over F iff every (finite) F-algebraically independent subset of E is L-algebraically independent.

1. Both notions are symmetric in E, L.
2. Linearly disjoint implies free. The converse is false (take $E=L$ algebraic over F).

3. Enough to check: some F-basis of some $R \subseteq E$ with $E=\operatorname{Quot}(R)$ is L-lin.ind.
4. If $F \subseteq E \subseteq K$ then $L \underset{F}{\downarrow}{ }^{\text {l.d. }} K \Longleftrightarrow\left(L \underset{F}{\downarrow}{ }^{\text {l.d. }} E \wedge L E \underset{E}{\downarrow}{ }^{\text {l.d. }} K\right)$.

More on linear disjointness

More on linear disjointness

7. So if $[L: F]$ is also finite, then $E \underset{F}{\downarrow}{ }^{\text {l.d. }} L \Longleftrightarrow[E L: F]=[E: F][L: F]$.

More on linear disjointness

7. So if $[L: F]$ is also finite, then $E \underset{F}{\downarrow}{ }^{\text {l.d. }} L \Longleftrightarrow[E L: F]=[E: F][L: F]$.
8. Example: by 7 above if $(m, n)=1$ then $\mathbb{Q}\left(\zeta_{m}\right) \underset{\mathbb{Q}}{\downarrow^{\text {l.d. }}} \mathbb{Q}\left(\zeta_{n}\right)$.

More on linear disjointness

7. So if $[L: F]$ is also finite, then $E \underset{F}{\downarrow}{ }^{\text {l.d. }} L \Longleftrightarrow[E L: F]=[E: F][L: F]$.
8. Example: by 7 above if $(m, n)=1$ then $\mathbb{Q}\left(\zeta_{m}\right){\underset{\mathbb{Q}}{ }}_{\text {l.d. }}^{\mathbb{Q}}\left(\zeta_{n}\right)$.
9. So if L / F is Galois, then

$$
E \underset{F}{\downarrow} \text { l.d. } L \Longleftrightarrow E \cap L=F \Longleftrightarrow \mid L: \operatorname{Gal}(L E / E) \rightarrow \operatorname{Gal}(L / F) \text { is an iso. }
$$

More on linear disjointness

7. So if $[L: F]$ is also finite, then $E \underset{F}{\downarrow}{ }^{\text {l.d. }} L \Longleftrightarrow[E L: F]=[E: F][L: F]$.
8. Example: by 7 above if $(m, n)=1$ then $\mathbb{Q}\left(\zeta_{m}\right) \underset{\mathbb{Q}}{\downarrow^{\text {l.d. }}} \mathbb{Q}\left(\zeta_{n}\right)$.
9. So if L / F is Galois, then

10. If $L_{i} \underset{F}{\downarrow^{\text {l.d. }}} \prod_{j \neq i} L_{j}$ then $\operatorname{Gal}\left(\prod_{i} L_{i} / F\right) \cong \prod_{i} \operatorname{Gal}\left(L_{i} / F\right)$.

More on linear disjointness

6. If $E, L \supseteq F$ and $[E: F]$ is finite, then $E \underset{F}{\downarrow}$ l.d. $L \Longleftrightarrow[E: F]=[E L: L]$.

7. Example: by 7 above if $(m, n)=1$ then $\mathbb{Q}\left(\zeta_{m}\right) \underset{\mathbb{Q}}{\downarrow^{\text {l.d. }}} \mathbb{Q}\left(\zeta_{n}\right)$.
8. So if L / F is Galois, then
$E \underset{F}{\downarrow}{ }^{\text {l.d. }} L \Longleftrightarrow E \cap L=F \Longleftrightarrow \upharpoonright L: \operatorname{Gal}(L E / E) \rightarrow \operatorname{Gal}(L / F)$ is an iso.
9. If $L_{i} \underset{F}{\downarrow^{\text {l.d. }}} \prod_{j \neq i} L_{j}$ then $\operatorname{Gal}\left(\prod_{i} L_{i} / F\right) \cong \prod_{i} \operatorname{Gal}\left(L_{i} / F\right)$.

More on linear disjointness

8. Example: by 7 above if $(m, n)=1$ then $\mathbb{Q}\left(\zeta_{m}\right) \underset{\mathbb{Q}}{\downarrow^{\text {l.d. }}} \mathbb{Q}\left(\zeta_{n}\right)$.
9. So if L / F is Galois, then

$$
E \underset{F}{\downarrow} L \Longleftrightarrow E \cap L=F \Longleftrightarrow \upharpoonright L: \operatorname{Gal}(L E / E) \rightarrow \operatorname{Gal}(L / F) \text { is an iso. }
$$

10. If $L_{i} \underset{F}{\downarrow^{\text {l.d. }}} \prod_{j \neq i} L_{j}$ then $\operatorname{Gal}\left(\prod_{i} L_{i} / F\right) \cong \prod_{i} \operatorname{Gal}\left(L_{i} / F\right)$.

11. Non-example: with $p=\operatorname{char} F$, let $T \in F$ have no p-th root and $E:=F\left(T^{1 / p}\right)$. In $E \otimes_{F} F^{\text {alg }}$

$$
\left(T^{\frac{1}{p}} \otimes 1-1 \otimes T^{\frac{1}{p}}\right)^{p}=T \otimes 1-1 \otimes T=T(1 \otimes 1)-1 \otimes T=1 \otimes T-1 \otimes T=0
$$

Regular field extensions

Definition

Eqv'ly: $E \cap F^{\text {alg }}=F$ and E is separable ${ }^{1}$ over F.

[^0]
Regular field extensions

Definition

Eqv'ly: $E \cap F^{\text {alg }}=F$ and E is separable ${ }^{1}$ over F. Eqv'ly: $E \otimes_{F} F^{\text {alg }}$ is a domain.

[^1]
Regular field extensions

Definition

Eqv'ly: $E \cap F^{\text {alg }}=F$ and E is separable ${ }^{1}$ over F. Eqv'ly: $E \otimes_{F} F^{\text {alg }}$ is a domain.

1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
[^2]
Regular field extensions

Definition

The field extension $E \supseteq F$ is regular iff $E \underset{F}{\downarrow^{\text {l.d. }}} F^{\text {alg. }}$.
Eqv'ly: $E \cap F^{\text {alg }}=F$ and E is separable ${ }^{1}$ over F. Eqv'ly: $E \otimes_{F} F^{\text {alg }}$ is a domain.

1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$.
[^3]
Regular field extensions

Definition

Eqv'ly: $E \cap F^{\text {alg }}=F$ and E is separable ${ }^{1}$ over F. Eqv'ly: $E \otimes_{F} F^{\text {alg }}$ is a domain.

1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F\left(T^{1 / p}\right)$.)
[^4]
Regular field extensions

Definition

The field extension $E \supseteq F$ is regular iff $E \underset{F}{\downarrow^{\text {l.d. }}} F^{\text {alg. }}$.
Eqv'ly: $E \cap F^{\text {alg }}=F$ and E is separable ${ }^{1}$ over F. Eqv'ly: $E \otimes_{F} F^{\text {alg }}$ is a domain.

1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F\left(T^{1 / p}\right)$.)
3. If $F \vDash \mathrm{ACF}$, every extension of F is regular.
[^5]
Regular field extensions

Definition

Eqv'ly: $E \cap F^{\text {alg }}=F$ and E is separable ${ }^{1}$ over F. Eqv'ly: $E \otimes_{F} F^{\text {alg }}$ is a domain.

1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F\left(T^{1 / p}\right)$.)
3. If $F \vDash \mathrm{ACF}$, every extension of F is regular.
4. If $E \supseteq F$ is regular and free from L over F then $E L \supseteq L$ is regular.
[^6]
Regular field extensions

Definition

The field extension $E \supseteq F$ is regular iff $E \underset{F}{\downarrow^{\text {l.d. }}} F^{\text {alg. }}$.
Eqv'ly: $E \cap F^{\text {alg }}=F$ and E is separable ${ }^{1}$ over F. Eqv'ly: $E \otimes_{F} F^{\text {alg }}$ is a domain.

1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F\left(T^{1 / p}\right)$.)
3. If $F \vDash \mathrm{ACF}$, every extension of F is regular.
4. If $E \supseteq F$ is regular and free from L over F then $E L \supseteq L$ is regular.
5. If E and L are free over F and both regular, so is $E L$.
[^7]
Regular field extensions

Definition

Eqv'ly: $E \cap F^{\text {alg }}=F$ and E is separable ${ }^{1}$ over F. Eqv'ly: $E \otimes_{F} F^{\text {alg }}$ is a domain.

1. If $F \subseteq E$ is regular, every intermediate extension of F is regular.
2. If $F \subseteq E \subseteq L$ and both are regular, so is $F \subseteq L$. (But: $F \subseteq F(T) \subseteq F\left(T^{1 / p}\right)$.)
3. If $F \vDash \mathrm{ACF}$, every extension of F is regular.
4. If $E \supseteq F$ is regular and free from L over F then $E L \supseteq L$ is regular.
5. If E and L are free over F and both regular, so is $E L$.
6. Let \mathfrak{p} be a prime ideal of $F[\bar{X}]$. Then $\mathfrak{p} F^{\text {alg }}[\bar{X}]$ is prime if and only if Quot $(F[\bar{X}] / \mathfrak{p})$ is a regular extension of F. (Keep this in mind for later!)
[^8]
Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the map

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the map

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the map

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the maps

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- $\mathcal{I}: \mathscr{P}\left(k^{n}\right) \rightarrow \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right), \mathcal{I}(S)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid \forall x \in S f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the maps

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- $\mathcal{I}: \mathscr{P}\left(k^{n}\right) \rightarrow \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right), \mathcal{I}(S)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid \forall x \in S f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I}.
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the maps

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- $\mathcal{I}: \mathscr{P}\left(k^{n}\right) \rightarrow \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right), \mathcal{I}(S)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid \forall x \in S f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I}.
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.
- Subsets of $k\left[X_{1}, \ldots, X_{n}\right]$ in the image of \mathcal{I} are ideals, and they are radical, i.e. $f^{n} \in I \Rightarrow f \in I$.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the maps

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- $\mathcal{I}: \mathscr{P}\left(k^{n}\right) \rightarrow \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right), \mathcal{I}(S)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid \forall x \in S f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I}.
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.
- Subsets of $k\left[X_{1}, \ldots, X_{n}\right]$ in the image of \mathcal{I} are ideals, and they are radical, i.e. $f^{n} \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3\left(X_{1}^{2}+X_{2}^{2}+1\right)=0 \Longleftrightarrow\left(X_{1}^{2}+X_{2}^{2}+1\right)^{4}=0$.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the maps

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- $\mathcal{I}: \mathscr{P}\left(k^{n}\right) \rightarrow \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right), \mathcal{I}(S)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid \forall x \in S f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I}.
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.
- Subsets of $k\left[X_{1}, \ldots, X_{n}\right]$ in the image of \mathcal{I} are ideals, and they are radical, i.e. $f^{n} \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3\left(X_{1}^{2}+x_{2}^{2}+1\right)=0 \Longleftrightarrow\left(X_{1}^{2}+x_{2}^{2}+1\right)^{4}=0$.
- $\mathcal{V}(A)=\mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the maps

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- $\mathcal{I}: \mathscr{P}\left(k^{n}\right) \rightarrow \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right), \mathcal{I}(S)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid \forall x \in S f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I}.
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.
- Subsets of $k\left[X_{1}, \ldots, X_{n}\right]$ in the image of \mathcal{I} are ideals, and they are radical, i.e. $f^{n} \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3\left(X_{1}^{2}+X_{2}^{2}+1\right)=0 \Longleftrightarrow\left(X_{1}^{2}+X_{2}^{2}+1\right)^{4}=0$.
- $\mathcal{V}(A)=\mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.
- $\mathcal{I}(\mathcal{V}(A)) \supseteq \sqrt{(A)}$. May have \supsetneq : different radical ideals may have the same zeroes.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the maps

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- $\mathcal{I}: \mathscr{P}\left(k^{n}\right) \rightarrow \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right), \mathcal{I}(S)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid \forall x \in S f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I}.
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.
- Subsets of $k\left[X_{1}, \ldots, X_{n}\right]$ in the image of \mathcal{I} are ideals, and they are radical, i.e. $f^{n} \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3\left(X_{1}^{2}+x_{2}^{2}+1\right)=0 \Longleftrightarrow\left(X_{1}^{2}+x_{2}^{2}+1\right)^{4}=0$.
- $\mathcal{V}(A)=\mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.
- $\mathcal{I}(\mathcal{V}(A)) \supseteq \sqrt{(A)}$. May have \supsetneq : different radical ideals may have the same zeroes.
- Example: with $k=\mathbb{R}$ we have $\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right]\right.$.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the maps

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- $\mathcal{I}: \mathscr{P}\left(k^{n}\right) \rightarrow \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right), \mathcal{I}(S)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid \forall x \in S f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I}.
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.
- Subsets of $k\left[X_{1}, \ldots, X_{n}\right]$ in the image of \mathcal{I} are ideals, and they are radical, i.e. $f^{n} \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3\left(X_{1}^{2}+X_{2}^{2}+1\right)=0 \Longleftrightarrow\left(X_{1}^{2}+x_{2}^{2}+1\right)^{4}=0$.
- $\mathcal{V}(A)=\mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.
- $\mathcal{I}(\mathcal{V}(A)) \supseteq \sqrt{(A)}$. May have \supsetneq : different radical ideals may have the same zeroes.
- Example: with $k=\mathbb{R}$ we have $\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right]\right.$.
- Points always yield maximal ideals: $\mathcal{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)=\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$.

Algebraic sets

k a field, $n \geq 1$. Look at zero-sets of polynomial systems. Consider the maps

- $\mathcal{V}: \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \rightarrow \mathscr{P}\left(k^{n}\right), \mathcal{V}(A)=\left\{x \in k^{n} \mid \forall f \in A f(x)=0\right\}$
- $\mathcal{I}: \mathscr{P}\left(k^{n}\right) \rightarrow \mathscr{P}\left(k\left[X_{1}, \ldots, X_{n}\right]\right), \mathcal{I}(S)=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid \forall x \in S f(x)=0\right\}$
- Note that \mathcal{V} reverses inclusions, and so does \mathcal{I}.
- Subsets of k^{n} in the image of \mathcal{V} are called algebraic sets.
- Subsets of $k\left[X_{1}, \ldots, X_{n}\right]$ in the image of \mathcal{I} are ideals, and they are radical, i.e. $f^{n} \in I \Rightarrow f \in I$. Idea: different systems define the same set: e.g. $3\left(X_{1}^{2}+x_{2}^{2}+1\right)=0 \Longleftrightarrow\left(x_{1}^{2}+x_{2}^{2}+1\right)^{4}=0$.
- $\mathcal{V}(A)=\mathcal{V}(\sqrt{(A)})$ (the radical of the ideal (A) generated by A): enough to look at radical ideals.
- $\mathcal{I}(\mathcal{V}(A)) \supseteq \sqrt{(A)}$. May have \supsetneq : different radical ideals may have the same zeroes.
- Example: with $k=\mathbb{R}$ we have $\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right]\right.$.
- Points always yield maximal ideals: $\mathcal{I}\left(\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}\right)=\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$.
- The improper ideal has no zeroes: $\mathcal{V}\left(k\left[X_{1}, \ldots, X_{n}\right]\right) \subseteq \mathcal{V}(\{1\})=\emptyset$.

Hilbert's Nullstellensatz

Recall: with $k=\mathbb{R}$ we have
$\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right] \supsetneq \sqrt{\left(X_{1}^{2}+X_{2}^{2}+1\right)}\right.$.

Hilbert's Nullstellensatz

Recall: with $k=\mathbb{R}$ we have
$\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right] \supsetneq \sqrt{\left(X_{1}^{2}+X_{2}^{2}+1\right)}\right.$.
Theorem (Nullstellensatz)
For a field k, the following are equivalent:

Hilbert's Nullstellensatz

Recall: with $k=\mathbb{R}$ we have
$\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right] \supsetneq \sqrt{\left(X_{1}^{2}+X_{2}^{2}+1\right)}\right.$.
Theorem (Nullstellensatz)
For a field k, the following are equivalent:

1. $k \vDash \mathrm{ACF}$

Hilbert's Nullstellensatz

Recall: with $k=\mathbb{R}$ we have
$\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right] \supsetneq \sqrt{\left(X_{1}^{2}+X_{2}^{2}+1\right)}\right.$.
Theorem (Nullstellensatz)
For a field k, the following are equivalent:

1. $k \vDash \mathrm{ACF}$
2. $\mathcal{V}(A)$ is empty only in trivial cases, i.e. proper ideals have zeroes: $\forall n, \forall A \subseteq k\left[X_{1}, \ldots, X_{n}\right]\left((\mathcal{V}(A)=\emptyset) \Longrightarrow\left((A)=k\left[X_{1}, \ldots, X_{n}\right]\right)\right)$.

Hilbert's Nullstellensatz

Recall: with $k=\mathbb{R}$ we have

$$
\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right] \supsetneq \sqrt{\left(X_{1}^{2}+X_{2}^{2}+1\right)} .\right.
$$

Theorem (Nullstellensatz)
For a field k, the following are equivalent:

1. $k \vDash$ ACF i.e. the next point only for $n=1$ (every ideal of $K[X]$ is principal!).
2. $\mathcal{V}(A)$ is empty only in trivial cases, i.e. proper ideals have zeroes:

$$
\forall n, \forall A \subseteq k\left[X_{1}, \ldots, X_{n}\right]\left((\mathcal{V}(A)=\emptyset) \Longrightarrow\left((A)=k\left[X_{1}, \ldots, X_{n}\right]\right)\right)
$$

Hilbert's Nullstellensatz

Recall: with $k=\mathbb{R}$ we have

$$
\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right] \supsetneq \sqrt{\left(X_{1}^{2}+X_{2}^{2}+1\right)} .\right.
$$

Theorem (Nullstellensatz)
For a field k, the following are equivalent:

1. $k \vDash$ ACF i.e. the next point only for $n=1$ (every ideal of $K[X]$ is principal!).
2. $\mathcal{V}(A)$ is empty only in trivial cases, i.e. proper ideals have zeroes: $\forall n, \forall A \subseteq k\left[X_{1}, \ldots, X_{n}\right]\left((\mathcal{V}(A)=\emptyset) \Longrightarrow\left((A)=k\left[X_{1}, \ldots, X_{n}\right]\right)\right)$.
3. Maximal ideals must come from points: every maximal ideal of $k\left[X_{1}, \ldots, X_{n}\right]$ is of the form $\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$. Contrast with $\left(X^{2}+1\right)$ in $\mathbb{R}[X]$.

Hilbert's Nullstellensatz

Recall: with $k=\mathbb{R}$ we have

$$
\mathcal{I}\left(\mathcal{V}\left(\left\{X_{1}^{2}+X_{2}^{2}+1\right\}\right)=\mathcal{I}(\emptyset)=\mathbb{R}\left[X_{1}, X_{2}\right] \supsetneq \sqrt{\left(X_{1}^{2}+X_{2}^{2}+1\right)} .\right.
$$

Theorem (Nullstellensatz)

For a field k, the following are equivalent:

1. $k \vDash$ ACF i.e. the next point only for $n=1$ (every ideal of $K[X]$ is principal!).
2. $\mathcal{V}(A)$ is empty only in trivial cases, i.e. proper ideals have zeroes: $\forall n, \forall A \subseteq k\left[X_{1}, \ldots, X_{n}\right]\left((\mathcal{V}(A)=\emptyset) \Longrightarrow\left((A)=k\left[X_{1}, \ldots, X_{n}\right]\right)\right)$.
3. Maximal ideals must come from points: every maximal ideal of $k\left[X_{1}, \ldots, X_{n}\right]$ is of the form $\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$. Contrast with ($X^{2}+1$) in $\mathbb{R}[X]$.
4. $\mathcal{I V}$ is as small as possible: $\forall n, \forall A \subseteq k\left[X_{1}, \ldots, X_{n}\right](\mathcal{I}(\mathcal{V}(A))=\sqrt{(A)})$.

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}.

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}. Directly, we can define "closed $=$ in the image of \mathcal{V} ".

1. $\mathcal{V}(\{0\})=k^{n}, \mathcal{V}(\{1\})=\emptyset$.

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}. Directly, we can define "closed $=$ in the image of \mathcal{V} ".

1. $\mathcal{V}(\{0\})=k^{n}, \mathcal{V}(\{1\})=\emptyset$.
2. Closure under intersections: $\bigcap_{i} \mathcal{V}\left(A_{i}\right)=\mathcal{V}\left(\bigcup_{i} A_{i}\right)$.

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}. Directly, we can define "closed $=$ in the image of \mathcal{V} ".

1. $\mathcal{V}(\{0\})=k^{n}, \mathcal{V}(\{1\})=\emptyset$.
2. Closure under intersections: $\bigcap_{i} \mathcal{V}\left(A_{i}\right)=\mathcal{V}\left(\bigcup_{i} A_{i}\right)$.
3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B)=\mathcal{V}(\{a b \mid a \in A, b \in B\})$.

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}. Directly, we can define "closed $=$ in the image of \mathcal{V} ".

1. $\mathcal{V}(\{0\})=k^{n}, \mathcal{V}(\{1\})=\emptyset$.
2. Closure under intersections: $\bigcap_{i} \mathcal{V}\left(A_{i}\right)=\mathcal{V}\left(\bigcup_{i} A_{i}\right)$.
3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B)=\mathcal{V}(\{a b \mid a \in A, b \in B\})$.

This is called the Zariski topology on k^{n}.

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}. Directly, we can define "closed $=$ in the image of \mathcal{V} ".

1. $\mathcal{V}(\{0\})=k^{n}, \mathcal{V}(\{1\})=\emptyset$.
2. Closure under intersections: $\bigcap_{i} \mathcal{V}\left(A_{i}\right)=\mathcal{V}\left(\bigcup_{i} A_{i}\right)$.
3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B)=\mathcal{V}(\{a b \mid a \in A, b \in B\})$.

This is called the Zariski topology on k^{n}.

1. It is T1, but not Hausdorff. (except when k is finite)

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}. Directly, we can define "closed $=$ in the image of \mathcal{V} ".

1. $\mathcal{V}(\{0\})=k^{n}, \mathcal{V}(\{1\})=\emptyset$.
2. Closure under intersections: $\bigcap_{i} \mathcal{V}\left(A_{i}\right)=\mathcal{V}\left(\bigcup_{i} A_{i}\right)$.
3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B)=\mathcal{V}(\{a b \mid a \in A, b \in B\})$.

This is called the Zariski topology on k^{n}.

1. It is T1, but not Hausdorff. (except when k is finite)
2. On k^{1}, it is the cofinite topology.

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}. Directly, we can define "closed $=$ in the image of \mathcal{V} ".

1. $\mathcal{V}(\{0\})=k^{n}, \mathcal{V}(\{1\})=\emptyset$.
2. Closure under intersections: $\bigcap_{i} \mathcal{V}\left(A_{i}\right)=\mathcal{V}\left(\bigcup_{i} A_{i}\right)$.
3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B)=\mathcal{V}(\{a b \mid a \in A, b \in B\})$.

This is called the Zariski topology on k^{n}.

1. It is T1, but not Hausdorff. (except when k is finite)
2. On k^{1}, it is the cofinite topology.
3. On k^{2}, it is not the product of the cofinite topologies on k^{1} ! (except when k is finite)

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}. Directly, we can define "closed $=$ in the image of \mathcal{V} ".

1. $\mathcal{V}(\{0\})=k^{n}, \mathcal{V}(\{1\})=\emptyset$.
2. Closure under intersections: $\bigcap_{i} \mathcal{V}\left(A_{i}\right)=\mathcal{V}\left(\bigcup_{i} A_{i}\right)$.
3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B)=\mathcal{V}(\{a b \mid a \in A, b \in B\})$.

This is called the Zariski topology on k^{n}.

1. It is T1, but not Hausdorff. (except when k is finite)
2. On k^{1}, it is the cofinite topology.
3. On k^{2}, it is not the product of the cofinite topologies on k^{1} ! (except when k is finite)
4. Between k^{n} and k^{m}, polynomial maps are continuous (the converse is not true).

Zariski topology

It can be shown that $\mathcal{V I}$ is a closure operator, so the sets in its image are the closed sets of a topology on k^{n}. Directly, we can define "closed $=$ in the image of \mathcal{V} ".

1. $\mathcal{V}(\{0\})=k^{n}, \mathcal{V}(\{1\})=\emptyset$.
2. Closure under intersections: $\bigcap_{i} \mathcal{V}\left(A_{i}\right)=\mathcal{V}\left(\bigcup_{i} A_{i}\right)$.
3. Closure under finite unions: $\mathcal{V}(A) \cup \mathcal{V}(B)=\mathcal{V}(\{a b \mid a \in A, b \in B\})$.

This is called the Zariski topology on k^{n}.

1. It is T1, but not Hausdorff. (except when k is finite)
2. On k^{1}, it is the cofinite topology.
3. On k^{2}, it is not the product of the cofinite topologies on k^{1} ! (except when k is finite)
4. Between k^{n} and k^{m}, polynomial maps are continuous (the converse is not true).
5. Corollary of the Nullstellensatz: if $k \vDash \mathrm{ACF}$, then $\mathcal{I} \mathcal{V}$ and $\mathcal{V} \mathcal{I}$ are bijections between the radical ideals of $k\left[X_{1}, \ldots, X_{n}\right]$ and the Zariski closed subsets of k^{n}.

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)
2. The only irreducible Hausdorff space has one point.

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)
2. The only irreducible Hausdorff space has one point.
3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)
2. The only irreducible Hausdorff space has one point.
3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.
4. Irreducibility is preserved by continuous images.

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)
2. The only irreducible Hausdorff space has one point.
3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.
4. Irreducibility is preserved by continuous images.
5. It pulls back along surjective open maps with irreducible fibers.

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)
2. The only irreducible Hausdorff space has one point.
3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.
4. Irreducibility is preserved by continuous images.
5. It pulls back along surjective open maps with irreducible fibers.
6. The irreducibile components of a space are its maximal irreducible subspaces.

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)
2. The only irreducible Hausdorff space has one point.
3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.
4. Irreducibility is preserved by continuous images.
5. It pulls back along surjective open maps with irreducible fibers.
6. The irreducibile components of a space are its maximal irreducible subspaces.
7. They are closed, and each is contained in a connected component.

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)
2. The only irreducible Hausdorff space has one point.
3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.
4. Irreducibility is preserved by continuous images.
5. It pulls back along surjective open maps with irreducible fibers.
6. The irreducibile components of a space are its maximal irreducible subspaces.
7. They are closed, and each is contained in a connected component.
8. Each space is the union of its irreducible components.

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)
2. The only irreducible Hausdorff space has one point.
3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.
4. Irreducibility is preserved by continuous images.
5. It pulls back along surjective open maps with irreducible fibers.
6. The irreducibile components of a space are its maximal irreducible subspaces.
7. They are closed, and each is contained in a connected component.
8. Each space is the union of its irreducible components.
9. But: irreducible components are allowed to meet. (steroids have side-effects)

Irreducibility

"Connectedness on steroids"

1. A topological space is irreducible iff it is nonempty and, equivalently:
1.1 It is not the union of two proper closed sets. (need not be disjoint!)
1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)
2. The only irreducible Hausdorff space has one point.
3. $S \subseteq X$ is irreducible iff \bar{S} is, iff every $S \subseteq T \subseteq \bar{S}$ is.
4. Irreducibility is preserved by continuous images.
5. It pulls back along surjective open maps with irreducible fibers.
6. The irreducibile components of a space are its maximal irreducible subspaces.
7. They are closed, and each is contained in a connected component.
8. Each space is the union of its irreducible components.
9. But: irreducible components are allowed to meet. (steroids have side-effects)
10. If $X=X_{1} \cup \ldots \cup X_{n}$, each X_{i} closed irreducible, and $X_{i} \nsubseteq X_{j}$, then the X_{i} are the irreducible components of X.

Noetherianity

"Compactness on steroids"

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.

Noetherianity

"Compactness on steroids"

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.
2. Noetherianity implies compactness and is preserved by continuous images.

Noetherianity

"Compactness on steroids"

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.
2. Noetherianity implies compactness and is preserved by continuous images.
3. But it passes to subspaces. (steroids again)

Noetherianity
 "Compactness on steroids"

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.
2. Noetherianity implies compactness and is preserved by continuous images.
3. But it passes to subspaces. (steroids again)
4. Important: Noetherian spaces have finitely many irreducible components.

Noetherianity
 "Compactness on steroids"

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.
2. Noetherianity implies compactness and is preserved by continuous images.
3. But it passes to subspaces. (steroids again)
4. Important: Noetherian spaces have finitely many irreducible components.
5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_{0} \subsetneq \ldots \subsetneq S_{n}$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).

Noetherianity

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.
2. Noetherianity implies compactness and is preserved by continuous images.
3. But it passes to subspaces. (steroids again)
4. Important: Noetherian spaces have finitely many irreducible components.
5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_{0} \subsetneq \ldots \subsetneq S_{n}$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$

Noetherianity

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.
2. Noetherianity implies compactness and is preserved by continuous images.
3. But it passes to subspaces. (steroids again)
4. Important: Noetherian spaces have finitely many irreducible components.
5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_{0} \subsetneq \ldots \subsetneq S_{n}$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$
7. This notion of dimension has these properties:

Noetherianity

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.
2. Noetherianity implies compactness and is preserved by continuous images.
3. But it passes to subspaces. (steroids again)
4. Important: Noetherian spaces have finitely many irreducible components.
5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_{0} \subsetneq \ldots \subsetneq S_{n}$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$
7. This notion of dimension has these properties:
$7.1 Y \subseteq X \Longrightarrow \operatorname{dim} Y \leq \operatorname{dim} X$.

Noetherianity

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.
2. Noetherianity implies compactness and is preserved by continuous images.
3. But it passes to subspaces. (steroids again)
4. Important: Noetherian spaces have finitely many irreducible components.
5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_{0} \subsetneq \ldots \subsetneq S_{n}$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$
7. This notion of dimension has these properties:
$7.1 Y \subseteq X \Longrightarrow \operatorname{dim} Y \leq \operatorname{dim} X$.
7.2 If Y is closed, X is irreducible, $Y \subseteq X$, and $\operatorname{dim} X=\operatorname{dim} Y$, then $Y=X$.

Noetherianity

"Compactness on steroids"

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.
2. Noetherianity implies compactness and is preserved by continuous images.
3. But it passes to subspaces. (steroids again)
4. Important: Noetherian spaces have finitely many irreducible components.
5. In Noetherian spaces it is common to look at this notion of dimension : the maximum length n of a chain of irreducible closed sets $\emptyset \neq S_{0} \subsetneq \ldots \subsetneq S_{n}$ (or ∞ if there is no maximum; in the spaces we look at it's going to be finite).
6. Idea: point \subsetneq curve \subsetneq surface $\subsetneq \ldots$
7. This notion of dimension has these properties:
$7.1 Y \subseteq X \Longrightarrow \operatorname{dim} Y \leq \operatorname{dim} X$.
7.2 If Y is closed, X is irreducible, $Y \subseteq X$, and $\operatorname{dim} X=\operatorname{dim} Y$, then $Y=X$.
7.3 If $X=X_{1} \cup \ldots \cup X_{n}$, with the X_{i} closed, then $\operatorname{dim} X=\max _{i} \operatorname{dim} X_{i}$.

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$
What about irreducibility? Time for an example:

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$
What about irreducibility? Time for an example:
2. Let C be the closed subspace of k^{2} given by $X_{1} X_{2}=0$ (a "cross").

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$
What about irreducibility? Time for an example:
2. Let C be the closed subspace of k^{2} given by $X_{1} X_{2}=0$ (a "cross").
3. Its irreducible subsets are:

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$
What about irreducibility? Time for an example:
2. Let C be the closed subspace of k^{2} given by $X_{1} X_{2}=0$ (a "cross").
3. Its irreducible subsets are:
3.1 points,

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$
What about irreducibility? Time for an example:
2. Let C be the closed subspace of k^{2} given by $X_{1} X_{2}=0$ (a "cross").
3. Its irreducible subsets are:
3.1 points,
$3.2 X_{1}=0$,

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$
What about irreducibility? Time for an example:
2. Let C be the closed subspace of k^{2} given by $X_{1} X_{2}=0$ (a "cross").
3. Its irreducible subsets are:
3.1 points,
$3.2 X_{1}=0$,
$3.3 X_{2}=0$.

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$.
What about irreducibility? Time for an example:
2. Let C be the closed subspace of k^{2} given by $X_{1} X_{2}=0$ (a "cross").
3. Its irreducible subsets are:
3.1 points,
$3.2 X_{1}=0$,
$3.3 X_{2}=0$.
4. The last two are the irreducible components of C. They meet. $\operatorname{dim} C=1$.

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is. No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$.
What about irreducibility? Time for an example:
2. Let C be the closed subspace of k^{2} given by $X_{1} X_{2}=0$ (a "cross").
3. Its irreducible subsets are:
3.1 points,
$3.2 X_{1}=0$,
$3.3 X_{2}=0$.
4. The last two are the irreducible components of C. They meet. $\operatorname{dim} C=1$.
5. Reducibility is detected algebraically as follows: $X_{1} X_{2}$ is zero on C, but neither X_{1} nor X_{2} is.

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is.

No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$.
What about irreducibility? Time for an example:
2. Let C be the closed subspace of k^{2} given by $X_{1} X_{2}=0$ (a "cross").
3. Its irreducible subsets are:
3.1 points,
$3.2 X_{1}=0$,
$3.3 X_{2}=0$.
4. The last two are the irreducible components of C. They meet. $\operatorname{dim} C=1$.
5. Reducibility is detected algebraically as follows: $X_{1} X_{2}$ is zero on C, but neither X_{1} nor X_{2} is. This is no coincidence:
6. Important fact: a Zariski closed set S is irreducible iff $\mathcal{I}(S)$ is prime.

Back to Zariski

1. (Every subspace of) k^{n} is Noetherian, because the ring $k\left[X_{1}, \ldots, X_{n}\right]$ is.

No infinite strictly ascending chain of ideals. Hilbert's Basis Theorem: if A is Noetherian then so is $A[X]$.
What about irreducibility? Time for an example:
2. Let C be the closed subspace of k^{2} given by $X_{1} X_{2}=0$ (a "cross").
3. Its irreducible subsets are:
3.1 points,
$3.2 X_{1}=0$,
$3.3 X_{2}=0$.
4. The last two are the irreducible components of C. They meet. $\operatorname{dim} C=1$.
5. Reducibility is detected algebraically as follows: $X_{1} X_{2}$ is zero on C, but neither X_{1} nor X_{2} is. This is no coincidence:
6. Important fact: a Zariski closed set S is irreducible iff $\mathcal{I}(S)$ is prime.
7. If $k \vDash \mathrm{ACF}$, by the Nullstellensatz prime ideals correspond to irreducible subsets.

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?
4. We don't care about $k^{n} \backslash S$: if f is 0 on S it might as well be 0 everywhere.

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?
4. We don't care about $k^{n} \backslash S$: if f is 0 on S it might as well be 0 everywhere.
5. So we define the coordinate ring $k[S]:=k\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(S)$.

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?
4. We don't care about $k^{n} \backslash S$: if f is 0 on S it might as well be 0 everywhere.
5. So we define the coordinate ring $k[S]:=k\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(S)$.
6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?
4. We don't care about $k^{n} \backslash S$: if f is 0 on S it might as well be 0 everywhere.
5. So we define the coordinate ring $k[S]:=k\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(S)$.
6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
7. If $k \vDash$ ACF, every such algebra is a coordinate ring (Nullstellensatz).

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?
4. We don't care about $k^{n} \backslash S$: if f is 0 on S it might as well be 0 everywhere.
5. So we define the coordinate ring $k[S]:=k\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(S)$.
6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
7. If $k \vDash \mathrm{ACF}$, every such algebra is a coordinate ring (Nullstellensatz).
8. Polynomial maps $S \rightarrow T$ correspond to k-algebra homomorphisms $k[T] \rightarrow k[S]$. E.g. $S \hookrightarrow k^{n}$ corresponds to the quotient map.

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?
4. We don't care about $k^{n} \backslash S$: if f is 0 on S it might as well be 0 everywhere.
5. So we define the coordinate ring $k[S]:=k\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(S)$.
6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
7. If $k \vDash \mathrm{ACF}$, every such algebra is a coordinate ring (Nullstellensatz).
8. Polynomial maps $S \rightarrow T$ correspond to k-algebra homomorphisms $k[T] \rightarrow k[S]$. E.g. $S \hookrightarrow k^{n}$ corresponds to the quotient map.
9. \mathcal{I} and \mathcal{V} induce maps between ideals of $k[S]$ and subsets of S (and if $k \neq$ ACF...)

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?
4. We don't care about $k^{n} \backslash S$: if f is 0 on S it might as well be 0 everywhere.
5. So we define the coordinate ring $k[S]:=k\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(S)$.
6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
7. If $k \vDash \mathrm{ACF}$, every such algebra is a coordinate ring (Nullstellensatz).
8. Polynomial maps $S \rightarrow T$ correspond to k-algebra homomorphisms $k[T] \rightarrow k[S]$. E.g. $S \hookrightarrow k^{n}$ corresponds to the quotient map.
9. \mathcal{I} and \mathcal{V} induce maps between ideals of $k[S]$ and subsets of S (and if $k \neq$ ACF...)
10. $k[S]$ is a domain iff S is irreducible.

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?
4. We don't care about $k^{n} \backslash S$: if f is 0 on S it might as well be 0 everywhere.
5. So we define the coordinate ring $k[S]:=k\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(S)$.
6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
7. If $k \vDash \mathrm{ACF}$, every such algebra is a coordinate ring (Nullstellensatz).
8. Polynomial maps $S \rightarrow T$ correspond to k-algebra homomorphisms $k[T] \rightarrow k[S]$. E.g. $S \hookrightarrow k^{n}$ corresponds to the quotient map.
9. \mathcal{I} and \mathcal{V} induce maps between ideals of $k[S]$ and subsets of S (and if $k \vDash$ ACF...)
10. $k[S]$ is a domain iff S is irreducible.
11. In which case, we define the ring of rational functions $k(S):=\operatorname{Quot}(k[S])$.

Back to algebra: the coordinate ring

1. We have put a topology on k^{n}, starting from the ring $k\left[X_{1}, \ldots, X_{n}\right]$.
2. Think of it as "the ring of algebraic functions on k^{n} ".
3. What if we want to do the same for a Zariski closed $S \subseteq k^{n}$?
4. We don't care about $k^{n} \backslash S$: if f is 0 on S it might as well be 0 everywhere.
5. So we define the coordinate ring $k[S]:=k\left[X_{1}, \ldots, X_{n}\right] / \mathcal{I}(S)$.
6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
7. If $k \vDash \mathrm{ACF}$, every such algebra is a coordinate ring (Nullstellensatz).
8. Polynomial maps $S \rightarrow T$ correspond to k-algebra homomorphisms $k[T] \rightarrow k[S]$. E.g. $S \hookrightarrow k^{n}$ corresponds to the quotient map.
9. \mathcal{I} and \mathcal{V} induce maps between ideals of $k[S]$ and subsets of S (and if $k \vDash$ ACF...)
10. $k[S]$ is a domain iff S is irreducible.
11. In which case, we define the ring of rational functions $k(S):=\operatorname{Quot}(k[S])$.
12. If $k \vDash \mathrm{ACF}$ and S is irreducible then $\operatorname{dim} S=\operatorname{trdeg}(k(S) / k)$.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.
3. S is defined over k iff $\mathcal{I}(S) \cap k\left[X_{1}, \ldots, X_{n}\right]$ generates $\mathcal{I}(S)$.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.
3. S is defined over k iff $\mathcal{I}(S) \cap k\left[X_{1}, \ldots, X_{n}\right]$ generates $\mathcal{I}(S)$.
4. " k-definable" \neq "defined over k ": if t is transcendental over \mathbb{F}^{p}, then $\{t\}$ is definable, but not defined, over $\mathbb{F}_{p}\left(t^{p}\right)$.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.
3. S is defined over k iff $\mathcal{I}(S) \cap k\left[X_{1}, \ldots, X_{n}\right]$ generates $\mathcal{I}(S)$.
4. " k-definable" \neq "defined over k ": if t is transcendental over \mathbb{F}^{p}, then $\{t\}$ is definable, but not defined, over $\mathbb{F}_{p}\left(t^{p}\right)$.
5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^{n}$ has a smallest field of definition.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.
3. S is defined over k iff $\mathcal{I}(S) \cap k\left[X_{1}, \ldots, X_{n}\right]$ generates $\mathcal{I}(S)$.
4. " k-definable" \neq "defined over k ": if t is transcendental over \mathbb{F}^{p}, then $\{t\}$ is definable, but not defined, over $\mathbb{F}_{p}\left(t^{p}\right)$.
5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^{n}$ has a smallest field of definition.
6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.
3. S is defined over k iff $\mathcal{I}(S) \cap k\left[X_{1}, \ldots, X_{n}\right]$ generates $\mathcal{I}(S)$.
4. " k-definable" \neq "defined over k ": if t is transcendental over \mathbb{F}^{p}, then $\{t\}$ is definable, but not defined, over $\mathbb{F}_{p}\left(t^{p}\right)$.
5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^{n}$ has a smallest field of definition.
6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
7. For example, $X_{0}^{2}+X_{1}^{2}=0$ can be written as the union of two proper k-closed subsets for $k=\mathbb{C}$, but not for $k=\mathbb{Q}$.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.
3. S is defined over k iff $\mathcal{I}(S) \cap k\left[X_{1}, \ldots, X_{n}\right]$ generates $\mathcal{I}(S)$.
4. " k-definable" \neq "defined over k ": if t is transcendental over \mathbb{F}^{p}, then $\{t\}$ is definable, but not defined, over $\mathbb{F}_{p}\left(t^{p}\right)$.
5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^{n}$ has a smallest field of definition.
6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
7. For example, $X_{0}^{2}+X_{1}^{2}=0$ can be written as the union of two proper k-closed subsets for $k=\mathbb{C}$, but not for $k=\mathbb{Q}$.
8. Recall: $F \otimes_{k}(k[\bar{X}] / I) \cong F[\bar{X}] / I F$.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.
3. S is defined over k iff $\mathcal{I}(S) \cap k\left[X_{1}, \ldots, X_{n}\right]$ generates $\mathcal{I}(S)$.
4. " k-definable" \neq "defined over k ": if t is transcendental over \mathbb{F}^{p}, then $\{t\}$ is definable, but not defined, over $\mathbb{F}_{p}\left(t^{p}\right)$.
5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^{n}$ has a smallest field of definition.
6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
7. For example, $X_{0}^{2}+X_{1}^{2}=0$ can be written as the union of two proper k-closed subsets for $k=\mathbb{C}$, but not for $k=\mathbb{Q}$.
8. Recall: $F \otimes_{k}(k[\bar{X}] / I) \cong F[\bar{X}] / I F$.
9. This yields: a k-irreducible set S defined over k is $k^{\text {alg }}$-irreducible iff $k(S)$ is a regular extension of k, i.e. linearly disjoint from $k^{\text {alg }}$, iff $k(S) \otimes_{k} k^{\text {alg }}$ is a domain.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.
3. S is defined over k iff $\mathcal{I}(S) \cap k\left[X_{1}, \ldots, X_{n}\right]$ generates $\mathcal{I}(S)$.
4. " k-definable" \neq "defined over k ": if t is transcendental over \mathbb{F}^{p}, then $\{t\}$ is definable, but not defined, over $\mathbb{F}_{p}\left(t^{p}\right)$.
5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^{n}$ has a smallest field of definition.
6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
7. For example, $X_{0}^{2}+X_{1}^{2}=0$ can be written as the union of two proper k-closed subsets for $k=\mathbb{C}$, but not for $k=\mathbb{Q}$.
8. Recall: $F \otimes_{k}(k[\bar{X}] / I) \cong F[\bar{X}] / I F$.
9. This yields: a k-irreducible set S defined over k is $k^{\text {alg-irreducible } \mathrm{iff}} k(S)$ is a regular extension of k, i.e. linearly disjoint from $k^{\text {alg }}$, iff $k(S) \otimes_{k} k^{\text {alg }}$ is a domain.
10. Note that $S\left(k^{\mathrm{alg}}\right)$ is irreducible iff $S(\Omega)$ is, by quantifier elimination.

Changing base field

1. Let $k \subseteq \Omega \vDash \mathrm{ACF}$, with $\operatorname{trdeg}(\Omega / k)$ infinite.
2. If $S \subseteq \Omega^{n}$ is Zariski closed, the set of k-rational points of S is $S(k):=S \cap k^{n}$.
3. S is defined over k iff $\mathcal{I}(S) \cap k\left[X_{1}, \ldots, X_{n}\right]$ generates $\mathcal{I}(S)$.
4. " k-definable" \neq "defined over k ": if t is transcendental over \mathbb{F}^{p}, then $\{t\}$ is definable, but not defined, over $\mathbb{F}_{p}\left(t^{p}\right)$.
5. Theorem (Weil): every Zariski-closed $S \subseteq \Omega^{n}$ has a smallest field of definition.
6. Irreducibility does not transfer: if S is defined over $k, \mathcal{I}(S) \cap k$ may be prime even if S is reducible.
7. For example, $X_{0}^{2}+X_{1}^{2}=0$ can be written as the union of two proper k-closed subsets for $k=\mathbb{C}$, but not for $k=\mathbb{Q}$.
8. Recall: $F \otimes_{k}(k[\bar{X}] / I) \cong F[\bar{X}] / I F$.
9. This yields: a k-irreducible set S defined over k is $k^{\text {alg-irreducible } \mathrm{iff}} k(S)$ is a regular extension of k, i.e. linearly disjoint from $k^{\text {alg }}$, iff $k(S) \otimes_{k} k^{\text {alg }}$ is a domain.
10. Note that $S\left(k^{\mathrm{alg}}\right)$ is irreducible iff $S(\Omega)$ is, by quantifier elimination.
11. Aside: the Ω-Zariski subspace topology on k^{n} equals the k-Zariski topology.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.
3.3 In other words, $k\left[a_{1}, \ldots, a_{n}\right] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.
3.3 In other words, $k\left[a_{1}, \ldots, a_{n}\right] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$.
3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω.

Warning: this is not even TO.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.
3.3 In other words, $k\left[a_{1}, \ldots, a_{n}\right] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$.
3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω.

Warning: this is not even T0.
3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a) / k)=\operatorname{dim} V$.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.
3.3 In other words, $k\left[a_{1}, \ldots, a_{n}\right] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$.
3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω.

Warning: this is not even T0.
3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a) / k)=\operatorname{dim} V$.
3.6 Some $a \in V(\Omega)$ with $\operatorname{tp}(a / k)$ of the same Morley rank as V.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.
3.3 In other words, $k\left[a_{1}, \ldots, a_{n}\right] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$.
3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω.

Warning: this is not even T0.
3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a) / k)=\operatorname{dim} V$.
3.6 Some $a \in V(\Omega)$ with $\operatorname{tp}(a / k)$ of the same Morley rank as V.
3.7 At any rate: a point satisfying the equations in \mathfrak{p} and no other equation over k.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.
3.3 In other words, $k\left[a_{1}, \ldots, a_{n}\right] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$.
3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω.

Warning: this is not even T0.
3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a) / k)=\operatorname{dim} V$.
3.6 Some $a \in V(\Omega)$ with $\operatorname{tp}(a / k)$ of the same Morley rank as V.
3.7 At any rate: a point satisfying the equations in \mathfrak{p} and no other equation over k.
4. Any point $a \in \Omega^{n}$ is a generic point over k of $\mathcal{I}_{k}(\{a\})$. (may have $a \notin k^{n!}$)

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.
3.3 In other words, $k\left[a_{1}, \ldots, a_{n}\right] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$.
3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω.

Warning: this is not even T0.
3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a) / k)=\operatorname{dim} V$.
3.6 Some $a \in V(\Omega)$ with $\operatorname{tp}(a / k)$ of the same Morley rank as V.
3.7 At any rate: a point satisfying the equations in \mathfrak{p} and no other equation over k.
4. Any point $a \in \Omega^{n}$ is a generic point over k of $\mathcal{I}_{k}(\{a\})$. (may have $a \notin k^{n!}$)
5. b is a specialisation of a over k iff $\mathcal{I}_{k}(\{a\}) \subseteq \mathcal{I}_{k}(\{b\})$.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.
3.3 In other words, $k\left[a_{1}, \ldots, a_{n}\right] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$.
3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω. Warning: this is not even T0.
3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a) / k)=\operatorname{dim} V$.
3.6 Some $a \in V(\Omega)$ with $\operatorname{tp}(a / k)$ of the same Morley rank as V.
3.7 At any rate: a point satisfying the equations in \mathfrak{p} and no other equation over k.
4. Any point $a \in \Omega^{n}$ is a generic point over k of $\mathcal{I}_{k}(\{a\})$. (may have $a \notin k^{n!}$)
5. b is a specialisation of a over k iff $\mathcal{I}_{k}(\{a\}) \subseteq \mathcal{I}_{k}(\{b\})$.
6. Specialisations correspond to surjective morphisms between coordinate rings.

Generic points

1. Work inside a saturated $\Omega \vDash$ ACF. Variety $=$ irreducible Zariski closed set.
2. Let V be a variety defined over $k \subseteq \Omega$ and $\mathfrak{p}:=\mathcal{I}_{k}(V) \subseteq k\left[X_{1}, \ldots, X_{n}\right]$.
3. A generic point of V is, equivalently:
3.1 "The element $\left(X_{1}, \ldots, X_{n}\right)+\mathfrak{p}$ of $k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$."
3.2 More precisely, any image $a=\left(a_{1}, \ldots, a_{n}\right)$ of it under some k-embedding in Ω.
3.3 In other words, $k\left[a_{1}, \ldots, a_{n}\right] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$.
3.4 Some $a \in V(\Omega)$ such that $V(\Omega)$ is the closure of $\{a\}$ in the k-Zariski topology on Ω. Warning: this is not even T0.
3.5 Some $a \in V(\Omega)$ with $\operatorname{trdeg}(k(a) / k)=\operatorname{dim} V$.
3.6 Some $a \in V(\Omega)$ with $\operatorname{tp}(a / k)$ of the same Morley rank as V.
3.7 At any rate: a point satisfying the equations in \mathfrak{p} and no other equation over k.
4. Any point $a \in \Omega^{n}$ is a generic point over k of $\mathcal{I}_{k}(\{a\})$. (may have $a \notin k^{n!}$)
5. b is a specialisation of a over k iff $\mathcal{I}_{k}(\{a\}) \subseteq \mathcal{I}_{k}(\{b\})$.
6. Specialisations correspond to surjective morphisms between coordinate rings.
7. The points of a variety are exactly the specialisations of its generic points.

[^0]: ${ }^{1}$ Linearly disjoint from $F^{1 / p^{\infty}}$. Equivalently, every F-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

[^1]: ${ }^{1}$ Linearly disjoint from $F^{1 / p^{\infty}}$. Equivalently, every F-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

[^2]: ${ }^{1}$ Linearly disjoint from $F^{1 / p^{\infty}}$. Equivalently, every F-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

[^3]: ${ }^{1}$ Linearly disjoint from $F^{1 / p^{\infty}}$. Equivalently, every F-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

[^4]: ${ }^{1}$ Linearly disjoint from $F^{1 / p^{\infty}}$. Equivalently, every F-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

[^5]: ${ }^{1}$ Linearly disjoint from $F^{1 / p^{\infty}}$. Equivalently, every F-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

[^6]: ${ }^{1}$ Linearly disjoint from $F^{1 / p^{\infty}}$. Equivalently, every F-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

[^7]: ${ }^{1}$ Linearly disjoint from $F^{1 / p^{\infty}}$. Equivalently, every F-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

[^8]: ${ }^{1}$ Linearly disjoint from $F^{1 / p^{\infty}}$. Equivalently, every F-finitely generated intermediate field can be obtained by first adding transcendentals and then taking a separable algebraic extension.

