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F -algebras

• Ring = commutative ring with 1. Morphisms preserve 1.

• Let F be a field. An F -algebra is, equivalently:

• a ring A containing F ;
• a ring A with an F -vector space structure compatible with the ring operations, i.e.

“+ = +” and f · (ab) = (f · a)b = a(f · b);
• a ring homomorphism F → A.

• Morphism of F -algebras: an F -linear morphism of rings. (“fixing F pointwise” if you prefer)

• One can also speak of R-algebras for R a ring. (the first definition does not work anymore)

• Lots of things also have more abstract (i.e. categorical) definitions, but this will
not concern us here.
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Tensor product: construction
Let A,B be F -algebras. We want to define the tensor product F -algebra A⊗F B.
1. Fix F -vector space bases EA of A and EB of B, both containing 1.

2. Let A⊗F B be the F -vector space with basis given by the formal symbols

{a⊗ b | a ∈ EA, b ∈ EB}

3. Define multiplication on the a⊗ b, then extend uniquely in an associative,
distributive fashion. Idea: “(c⊗ d)(c′ ⊗ d′) = cc′ ⊗ dd′”.

Nonsense as written.
4. Given c, c′ ∈ EA and d, d′ ∈ EB, write cc′ =

∑
a∈EA αaa and dd′ =

∑
b∈EB βbb.

Then set (c⊗ d)(c′ ⊗ d′) = cc′ ⊗ dd′ =
∑

a∈EA,b∈EB αaβba⊗ b.
5. Embedding A ∼= A⊗ 1 ⊆ A⊗B: send a 7→ a⊗ 1 on A and extend. Same for B.
6. Now a⊗ b makes sense in general, and (c⊗ d)(c′ ⊗ d′) = cc′ ⊗ dd′.
7. Important note: for c ∈ F , we have ca⊗ b = c(a⊗ b) = a⊗ cb.
8. ⊗ can also be defined on linear maps: (f ⊗ g)(a⊗ b) = f(a)⊗ g(b).
9. Fact: up to isomorphism, A⊗F B does not depend on EA, EB.
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Tensor product: properties and examples
Some properties of tensor products: (recall: ca⊗ b = a⊗ cb)
1. ⊗ is associative (up to isomorphism).
2. Bilinear maps A×B → C “are the same as” linear maps A⊗B → C.
3. Homv.sp.(A⊗B,C) ∼= Homv.sp.(A,Homv.sp.(B,C)).

One can also do a construction without fixing bases (as a quotient of the free
abelian group over A×B), which works also when F is only a ring.
Some properties are lost (e.g. embeddings 7→ morphisms, Q⊗Z (Z/2Z) = {0}).
Example

1. C⊗R
(
R[X̄]/(f)

) ∼= C[X̄]/(f).

2. More generally, “extension of scalars”: if K ⊇ F , then
K ⊗F (F [X̄]/I) ∼= K[X̄]/IK. (keep this in mind for later)

3.
(
F [X]/(f(X))

)
⊗F

(
F [Y ]/(g(Y ))

) ∼= F [X,Y ]/(f(X), g(Y ))

4.
(
F [X̄]/(f(X̄))

)
⊗F [X̄]

(
F [X̄]/(g(X̄))

) ∼= F [X̄]/(f(X̄), g(X̄))
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One can also do a construction without fixing bases (as a quotient of the free
abelian group over A×B), which works also when F is only a ring.
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Field theory Algebraic geometry

Linear disjointness and freeness

Definition (F ⊆ E,L ⊆ Ω)
• E is linearly disjoint from L over F iff every (finite)
F -linearly independent subset of E is L-linearly independent.

• E is free (or algebraically independent) from L over F iff every (finite)
F -algebraically independent subset of E is L-algebraically independent.

1. Both notions are symmetric in E, L.
2. Linearly disjoint implies free. The converse is false (take E = L algebraic over F ).

3. E |̂
F

l.d.
L iff the map E ⊗F L→ E[L] induced by a⊗ b 7→ ab is injective.

4. Enough to check: some F -basis of some R ⊆ E with E = Quot(R) is L-lin.ind.

5. If F ⊆ E ⊆ K then L |̂
F

l.d.
K ⇐⇒

(
L |̂

F

l.d.
E ∧ LE |̂

E

l.d.
K
)
.
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Field theory Algebraic geometry

More on linear disjointness
6. If E,L ⊇ F and [E : F ] is finite, then E |̂

F

l.d.
L ⇐⇒ [E : F ] = [EL : L].

7. So if [L : F ] is also finite, then E |̂
F

l.d.
L ⇐⇒ [EL : F ] = [E : F ][L : F ].

8. Example: by 7 above if (m,n) = 1 then Q(ζm) |̂
Q

l.d. Q(ζn).

9. So if L/F is Galois, then
E |̂

F

l.d.
L ⇐⇒ E ∩ L = F ⇐⇒ � L : Gal(LE/E)→ Gal(L/F ) is an iso.

10. If Li |̂
F

l.d. ∏
j 6=i Lj then Gal (

∏
i Li/F ) ∼=

∏
i Gal(Li/F ).

11. If L (say) is algebraic over F , then E |̂
F

l.d.
L iff E ⊗F L is a domain.

12. Non-example: with p = charF , let T ∈ F have no p-th root and E := F (T 1/p).
In E ⊗F F

alg(
T

1
p ⊗ 1− 1⊗ T

1
p

)p
= T ⊗ 1− 1⊗ T = T (1⊗ 1)− 1⊗ T = 1⊗ T − 1⊗ T = 0
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Field theory Algebraic geometry

Regular field extensions

Definition
The field extension E ⊇ F is regular iff E |̂

F

l.d.
F alg.

Eqv’ly: E ∩ F alg = F and E is separable1 over F .

Eqv’ly: E ⊗F F
alg is a domain.

1. If F ⊆ E is regular, every intermediate extension of F is regular.
2. If F ⊆ E ⊆ L and both are regular, so is F ⊆ L. (But: F ⊆ F (T ) ⊆ F (T 1/p).)
3. If F � ACF, every extension of F is regular.
4. If E ⊇ F is regular and free from L over F then EL ⊇ L is regular.
5. If E and L are free over F and both regular, so is EL.
6. Let p be a prime ideal of F [X̄]. Then pF alg[X̄] is prime if and only if

Quot(F [X̄]/p) is a regular extension of F . (Keep this in mind for later!)

1Linearly disjoint from F 1/p∞ . Equivalently, every F -finitely generated intermediate field can
be obtained by first adding transcendentals and then taking a separable algebraic extension.
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Field theory Algebraic geometry

Algebraic sets

k a field, n ≥ 1. Look at zero-sets of polynomial systems.

Consider the map

s

• V : P(k[X1, . . . , Xn])→P(kn), V(A) = {x ∈ kn | ∀f ∈ A f(x) = 0}

• I : P(kn)→P(k[X1, . . . , Xn]), I(S) = {f ∈ k[X1, . . . , Xn] | ∀x ∈ S f(x) = 0}
• Note that V reverses inclusions

, and so does I.

• Subsets of kn in the image of V are called algebraic sets.
• Subsets of k[X1, . . . , Xn] in the image of I are ideals, and they are radical, i.e.
fn ∈ I ⇒ f ∈ I.

Idea: different systems define the same set: e.g. 3(X2
1 +X2

2 +1) = 0 ⇐⇒ (X2
1 +X2

2 +1)4 = 0.

• V(A) = V(
√

(A)) (the radical of the ideal (A) generated by A): enough to look at radical ideals.
• I(V(A)) ⊇

√
(A). May have ): different radical ideals may have the same zeroes.

• Example: with k = R we have I(V({X2
1 +X2

2 + 1}) = I(∅) = R[X1, X2].
• Points always yield maximal ideals: I({(a1, . . . , an)}) = (X1 − a1, . . . , Xn − an).
• The improper ideal has no zeroes: V(k[X1, . . . ,Xn]) ⊆ V({1}) = ∅.
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Field theory Algebraic geometry

Hilbert’s Nullstellensatz

Recall: with k = R we have
I(V({X2

1 +X2
2 + 1}) = I(∅) = R[X1, X2] )

√
(X2

1 +X2
2 + 1).

Theorem (Nullstellensatz)
For a field k, the following are equivalent:

1. k � ACF

i.e. the next point only for n = 1 (every ideal of K[X] is principal!).

2. V(A) is empty only in trivial cases, i.e. proper ideals have zeroes:
∀n, ∀A ⊆ k[X1, . . . , Xn]

((
V(A) = ∅

)
=⇒

(
(A) = k[X1, . . . ,Xn]

))
.

3. Maximal ideals must come from points: every maximal ideal of k[X1, . . . ,Xn] is
of the form (X1 − a1, . . . , Xn − an). Contrast with (X2 + 1) in R[X].

4. IV is as small as possible: ∀n, ∀A ⊆ k[X1, . . . , Xn]
(
I(V(A)) =

√
(A)
)
.
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Field theory Algebraic geometry

Zariski topology

It can be shown that VI is a closure operator, so the sets in its image are the closed
sets of a topology on kn.

Directly, we can define “closed = in the image of V”.
1. V({0}) = kn, V({1}) = ∅.

2. Closure under intersections:
⋂

i V(Ai) = V (
⋃

iAi).
3. Closure under finite unions: V(A) ∪ V(B) = V({ab | a ∈ A, b ∈ B}).

This is called the Zariski topology on kn.

1. It is T1, but not Hausdorff. (except when k is finite)

2. On k1, it is the cofinite topology.
3. On k2, it is not the product of the cofinite topologies on k1! (except when k is finite)

4. Between kn and km, polynomial maps are continuous (the converse is not true).
5. Corollary of the Nullstellensatz: if k � ACF, then IV and VI are bijections

between the radical ideals of k[X1, . . . , Xn] and the Zariski closed subsets of kn.
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Field theory Algebraic geometry

Irreducibility
“Connectedness on steroids”

1. A topological space is irreducible iff it is nonempty and, equivalently:

1.1 It is not the union of two proper closed sets. (need not be disjoint!)

1.2 Every nonempty open set is dense.
1.3 Every nonempty open set is connected. (in particular, the whole space is)

2. The only irreducible Hausdorff space has one point.
3. S ⊆ X is irreducible iff S̄ is, iff every S ⊆ T ⊆ S̄ is.
4. Irreducibility is preserved by continuous images.
5. It pulls back along surjective open maps with irreducible fibers.
6. The irreducibile components of a space are its maximal irreducible subspaces.
7. They are closed, and each is contained in a connected component.
8. Each space is the union of its irreducible components.
9. But: irreducible components are allowed to meet. (steroids have side-effects)

10. If X = X1 ∪ . . . ∪Xn, each Xi closed irreducible, and Xi 6⊆ Xj ,
then the Xi are the irreducible components of X.
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9. But: irreducible components are allowed to meet. (steroids have side-effects)
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Field theory Algebraic geometry

Noetherianity
“Compactness on steroids”

1. A space is Noetherian iff it has no infinite strictly descending chain of closed sets.

2. Noetherianity implies compactness and is preserved by continuous images.
3. But it passes to subspaces. (steroids again)

4. Important: Noetherian spaces have finitely many irreducible components.
5. In Noetherian spaces it is common to look at this notion of dimension : the

maximum length n of a chain of irreducible closed sets ∅ 6= S0 ( . . . ( Sn
(or ∞ if there is no maximum; in the spaces we look at it’s going to be finite).

6. Idea: point ( curve ( surface (. . .
7. This notion of dimension has these properties:

7.1 Y ⊆ X =⇒ dimY ≤ dimX.
7.2 If Y is closed, X is irreducible, Y ⊆ X, and dimX = dimY , then Y = X.
7.3 If X = X1 ∪ . . . ∪Xn, with the Xi closed, then dimX = maxi dimXi.
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Field theory Algebraic geometry

Back to Zariski

1. (Every subspace of) kn is Noetherian, because the ring k[X1, . . . , Xn] is.
No infinite strictly ascending chain of ideals. Hilbert’s Basis Theorem: if A is Noetherian then so is A[X].

What about irreducibility? Time for an example:

2. Let C be the closed subspace of k2 given by X1X2 = 0 (a “cross”).
3. Its irreducible subsets are:

3.1 points,
3.2 X1 = 0,
3.3 X2 = 0.

4. The last two are the irreducible components of C. They meet. dimC = 1.
5. Reducibility is detected algebraically as follows: X1X2 is zero on C, but neither
X1 nor X2 is.

This is no coincidence:

6. Important fact: a Zariski closed set S is irreducible iff I(S) is prime.
7. If k � ACF, by the Nullstellensatz prime ideals correspond to irreducible subsets.
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Field theory Algebraic geometry

Back to algebra: the coordinate ring
1. We have put a topology on kn, starting from the ring k[X1, . . . , Xn].

2. Think of it as “the ring of algebraic functions on kn”.
3. What if we want to do the same for a Zariski closed S ⊆ kn?
4. We don’t care about kn \ S: if f is 0 on S it might as well be 0 everywhere.
5. So we define the coordinate ring k[S] := k[X1, . . . , Xn]/I(S).
6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
7. If k � ACF, every such algebra is a coordinate ring (Nullstellensatz).
8. Polynomial maps S → T correspond to k-algebra homomorphisms k[T ]→ k[S].

E.g. S ↪→ kn corresponds to the quotient map.
9. I and V induce maps between ideals of k[S] and subsets of S (and if k � ACF. . . )

10. k[S] is a domain iff S is irreducible.
11. In which case, we define the ring of rational functions k(S) := Quot(k[S]).
12. If k � ACF and S is irreducible then dimS = trdeg(k(S)/k).
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5. So we define the coordinate ring k[S] := k[X1, . . . , Xn]/I(S).
6. It is clearly a (finitely generated, reduced no nonzero nilpotents) k-algebra.
7. If k � ACF, every such algebra is a coordinate ring (Nullstellensatz).

8. Polynomial maps S → T correspond to k-algebra homomorphisms k[T ]→ k[S].
E.g. S ↪→ kn corresponds to the quotient map.

9. I and V induce maps between ideals of k[S] and subsets of S (and if k � ACF. . . )

10. k[S] is a domain iff S is irreducible.
11. In which case, we define the ring of rational functions k(S) := Quot(k[S]).
12. If k � ACF and S is irreducible then dimS = trdeg(k(S)/k).
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Field theory Algebraic geometry

Changing base field
1. Let k ⊆ Ω � ACF, with trdeg(Ω/k) infinite.

2. If S ⊆ Ωn is Zariski closed, the set of k-rational points of S is S(k) := S ∩ kn.
3. S is defined over k iff I(S) ∩ k[X1, . . . , Xn] generates I(S).
4. “k-definable” 6= “defined over k”: if t is transcendental over Fp, then {t} is

definable, but not defined, over Fp(t
p).

5. Theorem (Weil): every Zariski-closed S ⊆ Ωn has a smallest field of definition.
6. Irreducibility does not transfer: if S is defined over k, I(S) ∩ k may be prime

even if S is reducible.
7. For example, X2

0 +X2
1 = 0 can be written as the union of two proper k-closed

subsets for k = C, but not for k = Q.
8. Recall: F ⊗k (k[X̄]/I) ∼= F [X̄]/IF .
9. This yields: a k-irreducible set S defined over k is kalg-irreducible iff k(S) is a

regular extension of k, i.e. linearly disjoint from kalg, iff k(S)⊗k k
alg is a domain.

10. Note that S(kalg) is irreducible iff S(Ω) is, by quantifier elimination.
11. Aside: the Ω-Zariski subspace topology on kn equals the k-Zariski topology.
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Field theory Algebraic geometry

Generic points
1. Work inside a saturated Ω � ACF. Variety = irreducible Zariski closed set.

2. Let V be a variety defined over k ⊆ Ω and p := Ik(V ) ⊆ k[X1, . . . , Xn].
3. A generic point of V is, equivalently:

3.1 “The element (X1, . . . ,Xn) + p of k[X1, . . . , Xn]/p.”
3.2 More precisely, any image a = (a1, . . . , an) of it under some k-embedding in Ω.
3.3 In other words, k[a1, . . . , an] ∼=k k[X1, . . . , Xn]/p.
3.4 Some a ∈ V (Ω) such that V (Ω) is the closure of {a} in the k-Zariski topology on Ω.

Warning: this is not even T0.

3.5 Some a ∈ V (Ω) with trdeg(k(a)/k) = dimV .
3.6 Some a ∈ V (Ω) with tp(a/k) of the same Morley rank as V .
3.7 At any rate: a point satisfying the equations in p and no other equation over k.

4. Any point a ∈ Ωn is a generic point over k of Ik({a}). (may have a /∈ kn!)

5. b is a specialisation of a over k iff Ik({a}) ⊆ Ik({b}).
6. Specialisations correspond to surjective morphisms between coordinate rings.
7. The points of a variety are exactly the specialisations of its generic points.
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