The measure of Chatzidakis-van den Dries-Macintyre Seminar on pseudofinite structures

12.05.2021

Motivation:

- Uniformity results for finite fields \mathbb{F}_{q}

Leg. Is there a formula $\varphi(x)$ in h_{k-g} that defines $\mathbb{F}_{q^{2}}$ in \mathbb{F}_{q} for all q ? (Feigner)

- What can we recover from the counting measure on finite fields?

Let F be psendofinite, then $F e c t$. embeds in an UP of finite fields, ie.

$$
F F P F \Rightarrow F \leqslant \prod_{i \in L} F_{q_{1}} / u
$$

Proof:
Since F is psendofinite it is et. equiv to an ultraproduct of finis fields. Now we can find (egg. using the kuicler-Shelah theorem) an uctropover of F isomorphic to an ultrepower of the uctreyproduct of finite fields which is again an ultraproduct of finite fields.

Theorem (Lang-Weil)
For every positive integers n, d, there is positive constant $C(n, d)$ such that for every finite field \mathbb{F}_{q} and variety V defined by polynomials in $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]_{\leq d}$

$$
\left|\left|V\left(\mathbb{F}_{q}\right)\right|-q^{\operatorname{dim}(V)}\right| \leq C q^{\operatorname{dim}(V)-1 / 2}
$$

Goal: Extend this to definable sets

Main theorem

Theorem

Let $\varphi(x, y)$ be a formula and x, y tuples of variables. Then there is a finite set $D \subset\{0,1, \ldots, n\} \times \mathbb{Q}^{>0} \cup\{(0,0)\}$ of pairs (d, μ), a constant $C>0$, and formulas $\varphi_{d, \mu}(y)$ for $(d, \mu) \in D$ such that: If \mathbb{F}_{q} is a finite field and a an m-tuple in \mathbb{F}_{q}, then there is some $(d, \mu) \in D$ such that

$$
\begin{equation*}
\left|\left|\varphi\left(\mathbb{F}_{q}, a\right)\right|-\mu q^{d}\right|<C q^{d-1 / 2} \tag{*}
\end{equation*}
$$

The formula $\varphi_{d, \mu}(y)$ defines in each \mathbb{F}_{q} the set of tuples a such that $(*)$ holds.
Here $\varphi\left(\mathbb{F}_{q}, a\right):=\left\{b \in \mathbb{F}_{q}^{n} \mid \mathbb{F}_{q} F \varphi(b, a)\right\}$
-We add $(0,0)$ for the case of $\varphi(x, a)$ defining an empty set.

Main theorem

Theorem

Let $\varphi(x, y)$ be a formula and x, y tuples of variables. Then there is a finite set $D \subset\{0,1, \ldots, n\} \times \mathbb{Q}^{>0} \cup\{(0,0)\}$ of pairs (d, μ), a constant $C>0$, and formulas $\varphi_{d, \mu}(y)$ for $(d, \mu) \in D$ such that: If \mathbb{F}_{q} is a finite field and a an m-tuple in \mathbb{F}_{q}, then there is some $(d, \mu) \in D$ such that

$$
\left|\left|\varphi\left(\mathbb{F}_{q}, a\right)\right|-\mu q^{d}\right|<C q^{d-1 / 2} \quad(*)
$$

The formula $\varphi_{d, \mu}(y)$ defines in each \mathbb{F}_{q} the set of tuples a such that $(*)$ holds.

Observations

If $\varphi(x, a)$ defines a variety V, this reduces to Lang-weic
If $\varphi(x, a)$ defines an algebraic set W, with all irreducible components $V_{1, \ldots} V_{n}$ defined over \mathbb{F}_{q}, then $d=\max _{1 \leqslant i \leq n} \operatorname{dim}\left(V_{i}\right)$ and μ the number of the components of maximal dimension

Main theorem

Theorem

Let $\varphi(x, y)$ be a formula and x, y tuples of variables. Then there is a finite set $D \subset\{0,1, \ldots, n\} \times \mathbb{Q}>0 \cup\{(0,0)\}$ of pairs (d, μ), a constant $C>0$, and formulas $\varphi_{d, \mu}(y)$ for $(d, \mu) \in D$ such that:
If \mathbb{F}_{q} is a finite field and a an m-tuple in \mathbb{F}_{q}, then there is some $(d, \mu) \in D$ such that

$$
\left|\left|\varphi\left(\mathbb{F}_{q}, a\right)\right|-\mu q^{d}\right|<C q^{d-1 / 2} \quad(*)
$$

The formula $\varphi_{d, \mu}(y)$ defines in each \mathbb{F}_{q} the set of tuples a such that $(*)$ holds.
We have to allow for rational values and more then one pair: Example: Consider $\varphi(X) \equiv \exists Y \quad Y^{2}=X$, then

- if $\operatorname{char}(q)=2$ we have $\left|\varphi\left(\mathbb{F}_{q}\right)\right|=q$ is $\mu,=1$
. if $\operatorname{char}(q) \neq 2$ we hare $\left|\varphi\left(\mathbb{F}_{q}\right)\right|=\frac{1}{2}(q+1) \leadsto \mu_{2}=\frac{1}{2}$

Some consequences
(1) If q is sufficiently large, the formulas $\varphi_{d, \mu}(y)$ will define a partition of the parameter set \mathbb{F}_{a}^{m}.
If $\left(d_{1}, \mu_{1}\right) \neq\left(d_{2}, \mu_{2}\right)$ then for $d_{2} \neq d_{2}$ this is obvious.
For $\mu_{1} \neq \mu_{2}$ choose $q \gg 0$ such that $\left|\mu_{n}-\mu_{2}\right| q^{d}>C q^{d-\frac{1}{2}}$
(2) If $\phi(x, y)$ with $|x|=1$, then there are positive numbers $A \in \mathbb{N}$ and $r \in \mathbb{Q}$ such that for every \mathbb{F}_{q} and tuple a in \mathbb{F}_{q}

$$
\text { either }\left|\varphi\left(\mathbb{F}_{q}, a\right)\right|<A \text { or }\left|\varphi\left(\mathbb{F}_{q}, a\right)\right| \geq r q
$$

Let Δ be the pairs associated to $\varphi(x, y)$.
Let $\left.B=\sup \{\mu \mid(0, \mu) \in \Delta\} ; r_{0}=i n \kappa s \mu \mid(1, \mu) \in S\right\}$ and then set $r=r_{0} / 2$ and $A=\sup \left\{A_{0}+C, 4 C^{2} / r_{0}^{2}\right\}$
(3) If $q \gg 0$ and $(0, \mu) \in D$ and $\mathbb{F}_{q} \models \varphi_{0, \mu}(a)$, then $q^{-1 / 2} \rightarrow 0$, thus $\mu=\left|\varphi\left(\mathbb{F}_{q}, a\right)\right|$

Some (non)-definability results for finite fields

Theorem
There is no formula ϕ in the language of rings which defines in each field $\mathbb{F}_{q^{2}}$ the subfield \mathbb{F}_{q}.
Proof:
Assume such a formula $\varphi(x)$ would exist.
$B y$ (2) either $\left|\varphi\left(\mathbb{F}_{q^{2}}\right)\right|<A$ or $\left|\varphi\left(\mathbb{F}_{q^{2}}\right)\right| \geq r_{q}$ for some $A>0, r \in Q_{s 0}$
But \mathbb{F}_{q} is of size $\sqrt{q^{2}}$ in $\mathbb{F}_{q^{2}}$. $\frac{q_{y}}{}$
Remark:
One can even prove:
The field \mathbb{F}_{q} is not uniformly interpretable in $\mathbb{F}_{q^{2}}$.
Idea: Extend the main theorem to the context of definable equivalence relations and then use the argument from above.

Some (non)-definability results for finite fields

Theorem
There is no formula which defines in all fields \mathbb{F}_{q} the set of generators of the multiplicative group \mathbb{F}_{q}^{\times}.
Proof:
We use "Euler's totient function" $\phi(n):=\#\{k \leq n \mid k$ rel. Prime $\}$ which has the properties:

- $\phi\left(p^{n}\right)=p^{n}-p^{n-1}$ for p prime
- $\phi(n m)=\phi(n) \phi(m)$ for nim coprime (Chinese-remainder-theoren)
$\otimes p^{n}>2 \Rightarrow \phi\left(p^{n}\right) \geq \sqrt{n}$
From $\phi(n)=n \cdot e_{\text {lin }}^{\pi}\left(1-\frac{1}{e}\right) \quad$ ("Euler's product formula")
From (*) it already follows that $\forall<>0 \#\{n \mid \phi(n)<c\}<\infty$ whence it remains to show that we can find arbitrarily Small values of $\phi(n) / n$.

Theorem
There is no formula which defines in all fields \mathbb{F}_{q} the set of generators of the multiplicative group \mathbb{F}_{q}^{\times}.
Fix some prime P and distinct primes $e_{1} \ldots, e_{m}$ and define
$M=\prod_{i=1}^{m}\left(l_{i}-1\right)$ then $p^{m} \equiv 1 \bmod e_{i}$ for all $1 \leq i \leq m$
$\stackrel{\phi}{\Rightarrow} \frac{\phi\left(p^{m}-1\right)}{p^{m}-1} \leq \prod_{i=1}^{m}\left(1-\frac{1}{e_{i}}\right)$
see for example Enter's proof of the existence of infinitely many primes.
Now Since $\prod_{p \text { prime }}\left(1-\frac{1}{p}\right)^{-1} \Theta \sum_{n=1}^{\infty} \frac{1}{n}=\infty$
and we can choose the h $_{1}, \ldots$, cm arbitrarily we can find $\prod_{i \rightarrow 1}^{m}\left(1-\frac{1}{l_{i}}\right)$ arbitrarily small.

Dimension and measure on pseudofinite fields
Let $\varphi(x, y)$ be a formula and $D, \varphi_{d, \mu}(y)$ given
as in the main theorem Using (1) (partition) and the fact that a pseudofinik field F is elementarily embedded in an ultraproduct of finite fields we get that for any $a \in F$ there is a unique pair $c d, \mu) \in D$ such that $F \vDash \varphi_{d, \mu}(a)$.
We then define $\operatorname{dim}(\varphi(x, a))=d \quad$ (Dimension)

$$
\text { and } \quad \mu(\varphi(x, a))=\mu \quad(\text { Measure })
$$

Additivity + Fubini

Let F be a pseudofinite field, S, T two definable sets.
(1) Assume that $T \cap S=\emptyset$. Then

$$
\mu(S \cup T)= \begin{cases}\mu(S)+\mu(T) & \text { if } \operatorname{dim}(S)=\operatorname{dim}(T) \\ \mu(S) & \text { if } \operatorname{dim}(S)>\operatorname{dim}(T) \\ \mu(T) & \text { if } \operatorname{dim}(S)<\operatorname{dim}(T)\end{cases}
$$

(2) Assume that $f: S \rightarrow T$ is a definable function, which is onto. If for all $y \in T \operatorname{dim}\left(f^{-1}(y)\right)=d$ then $\operatorname{dim}(S)=\operatorname{dim}(T)+d$. If moreover for every $y \in T, \mu\left(f^{-1}(y)\right)=m$ then $\mu(S)=m \mu(T)$.
Proof idea: we have $F \leqslant \prod_{i \in E} \mathbb{F}_{q_{1}} / u$. Now let S be given by $\varphi(x, a)$ in F. Write $a=\left[a_{q}\right.$ i J_{u} and define $S_{q}:=\varphi\left(x, a_{q}\right) \leq \mathbb{F}_{q}^{n}$
$\stackrel{\text { 然, }}{=}$ For almost all q we have $\mathbb{F}_{q} \vDash \varphi_{d, \mu}\left(a_{q}\right)$
Analogously define T_{q}.
Then it is enough to show that the equalities hold for almost all q and $T_{q} v S_{q}$ which follows using the main theorem.
For the Fubini stakment proceed in the same manner.

Measure on definable sets

Theorem

Let S be a definable set. Define a function m_{S} on definable subsets of S as follows. Assume that $T \subset S$ is definable, and let $(d, \mu)=(\operatorname{dim}(S), \mu(S)),(e, \nu)=(\operatorname{dim}(T), \mu(T))$. Then

$$
m_{S}(T)= \begin{cases}0 & \text { if } e<d \\ \nu / \mu & \text { if } d=e\end{cases}
$$

Then m_{S} is a finitely additive measure on the set of definable subsets of S.

Relation to algebraic dimension

Theorem
 the second dimension is the algebraic dimension of the algebraic set \bar{S}.
Proof sketch:
We want to reduce to the case of S being an algebraic set. If this algebraic set has definable irreducible components we have already seen this as a consequence of the main theorem. Otherwise it will be seen in the proof of the main theorem that we can always reduce to that case.
Now by the previous talks we have seen that we can find an $F_{\text {-a }}\left(\right.$ gebraic set $W(F) \subseteq F^{\text {nim }}$ such that $\pi(w(F))=s$ for the projection $\pi: F^{n+m} \rightarrow F^{n}$ and such that the fibers $\pi^{-1}(y) \cap W(F)$ for $y \in S$ are finite and bounded by the same $k \in \mathbb{N}$.
Now using Fubini it follows that $\operatorname{dim}(S)=\operatorname{dim}(W(F))$ and by the above described cause this coincides with the algebraic dimension of $w(F)$ which can be assumed to be equal to $\operatorname{dim}(w)$ (allebebruic dimension) because we can assume that $w(F)$ is Z crispi dense in w using pats of the proof of the main theorem again). (Note: W denotes the respective set in Fils defied by the corresponding equations of $W(F)$.]
Thus it remains to show that $\operatorname{dim}_{\text {alg }}(S)=\operatorname{dim}_{\text {alg }}(W)$.
But now $S=\pi(W(k))$ is Zariski dense in $\pi(W)$ and π is finiketo-one on a zariski dense open subset of w, so direly $(s)=$ dimes (w) follows.

Application on definable groups

Theorem
Let G, H be groups definable in the pseudo-finite field F, and assume that $f: G \rightarrow H$ is a definable morphism, $\operatorname{Ker}(f)$ is finite, and $\operatorname{dim}(G)=\operatorname{dim}(H)=d$. Then

$$
\mu(G)[H: f(G)]=\mu(H)|\operatorname{Ker}(f)| .
$$

Proof: Again use $F \curvearrowleft F^{*}=\prod_{i \in L} \mathbb{F}_{q_{1}} / u$.
Let $a=[a,]_{x}$ be the parameter topple for formulas defining H.g. their grouplaw and the g-ash of f.
LNote that we can indeed express that f is a morphism of groups with kernel of fixed size $m \in \mathbb{I}\}$
Now we consider the respective formulas using a_{q} and by tor we get for almost all q definable groups Sq $_{q}, H_{f}$ over F_{q} and a morphism $f_{q}: b_{q} \rightarrow H_{q}$ with kernel of size meir.

Application on definable groups

Theorem
Let G, H be groups definable in the pseudo-finite field F, and assume that $f: G \rightarrow H$ is a definable morphism, $\operatorname{Ker}(f)$ is finite, and $\operatorname{dim}(G)=\operatorname{dim}(H)=d$. Then

$$
\mu(G)[H: f(G)]=\mu(H)|\operatorname{Ker}(f)| .
$$

Since G_{q} and H_{q} are finite we directly get

$$
\left|b_{q}\right|\left[H_{q}: f_{q}\left(b_{q}\right)\right]=\left|H_{q}\right|\left|K e r\left(f_{q}\right)\right| .
$$

Now we can deduce (by only considering (age enough q) by dividing of q^{d} that $\mu\left(g_{q}\right)\left[H_{q}: f_{q}\left(g_{q}\right)\right]=\mu\left(H_{q}\right)\left|k_{\operatorname{cr}}\left(f_{q}\right)\right|$
\Leftrightarrow The theorem holds in F^{*} whence in F.
using that $\varphi_{a, 1}\left(a_{4}\right)$ then holes fro al mat all q, when μ fulfils the oboe equation

Not the strict order property

Theorem
Let $\varphi(x, y)$ be a formula. There is a number M such that in any finite or pseudo-finite field F, the length of a chain of definable subsets of F^{n} defined by formulas $\varphi(x, a)$ for some tuples a in F, is bounded by M.
Proof:
Assume that does not hold, then by going over to a sufficiently saturated psendofinite Field F we can Obtain a sequence $\left(a_{i}\right)_{i \in / N}$ of tuples in F, such that $S_{i}:=\varphi\left(x, a_{i}\right) \not \subset \varphi\left(x, a_{j}\right) \forall i<j$ Now let Δ be the set of pairs associated to $\varphi(x, y)$ then we can assume that $\operatorname{dim}\left(s_{i}\right)=d, \mu\left(s_{i}\right)=\mu$ for all i GIN [by possibly going over to a subsequence]
Now we show by induction on the dimension d, that any such sequence already had to be finite:
For $d=0$ this follows from the fact that μ denotes the size of the set S_{i} and the sequence could only be of length one.
For $\underline{d>0}$ we consider the sets $T_{i}=S_{0} \backslash S_{i}$. Then the sets T_{i} form a strictly increasing sequence and we have $\operatorname{dim}\left(T_{i}\right)<d$ using the additivity of the measure and thar $\mu\left(S_{i}\right)$ is constantly μ for all ic en. Now this contradicts the induction hypothesis.

Not the strict order property

Theorem
Let $\varphi(x, y)$ be a formula. There is a number M such that in any finite or pseudo-finite field F, the length of a chain of definable subsets of F^{n} defined by formulas $\varphi(x, a)$ for some tuples a in F, is bounded by M.

Note that in the proof we only used the existence of measure \& dimension and its properties.

Finite Shelah-rank

Theorem
Let $\varphi(x, y)$ be a formula. There is a number M such that in any finite field or pseudo-finite field F, if S is a definable set and $\left(a_{i}\right)_{i \in 1}$ is a set of tuples such that each $\varphi\left(x, a_{i}\right)$ defines a subset of S of the same dimension d as S, and for $i \neq j, \operatorname{dim}\left(\varphi\left(x, a_{i}\right) \wedge \varphi\left(x, a_{j}\right)\right)<d$, then $|I| \leq M$.
Proof:
Let Δ be the set of pairs associated to the formula $\varphi(x, y)$ and let $\nu:=$ inf $\{\mu \mid(d, \mu) \in D\}$.
Now if $\varphi\left(x, a_{i}\right)$ define subsets S_{i} of S such that $\operatorname{dim}\left(s_{i}\right)=d$ and $\operatorname{dim}\left(S_{i} \cap S_{j}\right)<d$ then we get $m_{g}\left(S_{i}\right) \geq 0 / \mu(S)$ and $m_{s}\left(S_{i} \cap S_{j}\right)=0$
Thus the length of τ is bounded by $\mu(s) / v$.

Finite Shelah-rank

Theorem
Let $\varphi(x, y)$ be a formula. There is a number M such that in any finite field or pseudo-finite field F, if S is a definable set and $\left(a_{i}\right)_{i \in 1}$ is a set of tuples such that each $\varphi\left(x, a_{i}\right)$ defines a subset of S of the same dimension d as S, and for $i \neq j, \operatorname{dim}\left(\varphi\left(x, a_{i}\right) \wedge \varphi\left(x, a_{j}\right)\right)<d$, then $|I| \leq M$.

Note that it follows from the theorem that the Sr-rank is bounded by the dimension.
As a result we get that the psendofinite fields are supersimple
[Thus it would already follow from this theorem that the theory PF does not have the strict order property]

Theorem
Let $\varphi(x, y)$ be a formula. There is a number M such that in any finite field or pseudo-finite field F, if S is a definable set and $\left(a_{i}\right)_{i \in I}$ is a set of tuples such that each $\varphi\left(x, a_{i}\right)$ defines a subset of S of the same dimension d as S, and for $i \neq j, \operatorname{dim}\left(\varphi\left(x, a_{i}\right) \wedge \varphi\left(x, a_{j}\right)\right)<d$, then $|I| \leq M$.

References:

- 2. Chatzidakis, L. van den Dries, A. Macintyre Definable sets ores Finite fuchs 1. Rene Anger. Math. 427 (1992), 107-135
- Z. Chatiodakis, Notes on the model theory of Firik fields Course Notes, 200 S

