The Embedding Lemma for Pseudofinite Fields and the Completions of Psf

Jonathan Krebs

Seminar Model Theory of Pseudofinite Structures

28 April 2021

Recap

Recap

We introduced the theory Psf of pseudofinite fields. We called a field K pseudofinite if it has the following properties:

- K is perfect;
- $Gal(K^{alg}/K) \simeq \hat{\mathbb{Z}};$
- K is pseudo-algebraically closed (PAC).

Lemma 1 (Facts about regular and linear disjoint extensions)

Let $K \subseteq E, F \subseteq \Omega$ be fields. Assume further that E and F are linearly disjoint over K. Then:

- **1** If K is perfect, then E/K is regular iff $E \cap K^{alg} = K$.
- **2** The natural map $E \otimes_K F \to \Omega$ given by $a \otimes b \mapsto ab$ is injective with image E[F]. (Conversely, this implies linear disjointness.)
- Similarly, if $A \subseteq E$ is a ring containing K, then the natural map $A \otimes_K F \to \Omega$ is injective with image A[F].
- If F/K is algebraic, then E[F] is a field (as union of finite extensions of E) and hence the image of the map $E \otimes_K F \to \Omega$ is EF. (In particular, if E/K is regular, then $E \otimes_K K^{\operatorname{alg}} \xrightarrow{\cong} EK^{\operatorname{alg}} = E[K^{\operatorname{alg}}]$.)

Lemma 2 (Embedding lemma for psudofinite fields)

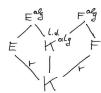
Let $K \subseteq E, F$ be perfect fields such that:

- \blacksquare E/K and F/K are regular;
- **2** E is countable and $Gal(E^{alg}/E) \simeq \hat{\mathbb{Z}}$;
- **3** F is \aleph_1 -saturated and pseudofinite.

Then there exists a K-embedding $\phi: E \to F$ such that F is a regular extension of $\phi(E)$.

Proof:

- Rough idea: Construct a closed subgroup of $Gal(E^{alg}F^{alg}/EF)$ such that the restrictions to $Gal(E^{alg}/E)$ and $Gal(F^{alg}/F)$ are isomorphisms. Then consider the fixed field of this subgroup.
- For this we want E^{alg} and F^{alg} to be linearly disjoint over K^{alg} .



■ Let Ω be a common algebraically closed extension of E^{alg} and F^{alg} such that E^{alg} and F^{alg} are algebraically independent over K^{alg} .

Theorem (see [Lan02, VIII, Thm. 4.12]). Let $L_1, L_2 \subseteq \Omega$ be fields free over a common subfield k with L_1/k regular. Then L_1 and L_2 are linearly disjoint over k.

- It follows that E^{alg} and F^{alg} are linearly disjoint over K^{alg} .
- Notice that $E^{\text{alg}}F^{\text{alg}}/EF$ is Galois:
 - E and F are perfect, hence EF is perfect as well. (The elements of EF have the form $\frac{\sum e_i f_i}{\sum e_i' f_i'}$.)
 - $E^{\text{alg}}F^{\text{alg}}/EF$ is normal: Every EF-embedding of $E^{\text{alg}}F^{\text{alg}}$ in an algebraic closure is an automorphism of $E^{\text{alg}}F^{\text{alg}}$.

Claim. The map

$$\alpha: \operatorname{Gal}(E^{\operatorname{alg}}F^{\operatorname{alg}}/EF) \to \operatorname{Gal}(E^{\operatorname{alg}}/E) \times_{\operatorname{Gal}(K^{\operatorname{alg}}/K)} \operatorname{Gal}(F^{\operatorname{alg}}/F)$$
$$\tau \mapsto (\tau \upharpoonright_{E^{\operatorname{alg}}}, \tau \upharpoonright_{F^{\operatorname{alg}}})$$

is an isomorphism (of topological groups).

Proof:

- $\tau \mapsto \tau \upharpoonright_{E^{\text{alg}}}$ and $\tau \mapsto \tau \upharpoonright_{F^{\text{alg}}}$ are continuous homomorphisms. By the universal property of the product, it follows that $\tau \mapsto (\tau \upharpoonright_{E^{\text{alg}}}, \tau \upharpoonright_{F^{\text{alg}}})$ is a continuous homomorphism.
- Injectivity is clear (consider the form of the elements of $E^{alg}F^{alg}$).

- Surjectivity:
 - Let $\sigma_1 \in Gal(E^{alg}/E)$, $\sigma_2 \in Gal(F^{alg}/F)$ with $\sigma_1 \upharpoonright_{K^{alg}} = \sigma_2 \upharpoonright_{K^{alg}}$.
 - Since E^{alg} and F^{alg} are linearly disjoint over K^{alg} , we have

$$E^{\mathsf{alg}} \otimes_{K^{\mathsf{alg}}} F^{\mathsf{alg}} \xrightarrow{\cong} E^{\mathsf{alg}}[F^{\mathsf{alg}}]$$

 $a \otimes b \mapsto ab.$

- Then $a \otimes b \mapsto \sigma_1(a) \otimes \sigma_2(b)$ defines a ring automorphism of $E^{\operatorname{alg}} \otimes_{K^{\operatorname{alg}}} F^{\operatorname{alg}}$ and hence of $E^{\operatorname{alg}}[F^{\operatorname{alg}}]$, which fixes E and F.
- It extends to an EF-automorphism of the quotient field $E^{alg}F^{alg}$.
 - ☐ (Claim)

Recall: $\operatorname{{\it Gal}}(E^{\operatorname{alg}}/E) \simeq \hat{\mathbb{Z}} \simeq \operatorname{{\it Gal}}(F^{\operatorname{alg}}/F)$. We want to consider the graph of an isomorphism $\operatorname{{\it Gal}}(E^{\operatorname{alg}}/E) \xrightarrow{\simeq} \operatorname{{\it Gal}}(F^{\operatorname{alg}}/F)$ as a closed subgroup of $\operatorname{{\it Gal}}(E^{\operatorname{alg}}/E) \times_{\operatorname{{\it Gal}}(K^{\operatorname{alg}}/K)} \operatorname{{\it Gal}}(F^{\operatorname{alg}}/F)$.

Remark. Let G, H be topological groups and $f: G \xrightarrow{\cong} H$ an isomorphism. Then the map

$$G \rightarrow G \times H$$

 $g \mapsto (g, f(g))$

defines an isomorphism of topological groups between G and $graph(f) = \{(g, f(g)) \mid g \in G\} \subseteq G \times H \text{ (the latter endowed with the subspace topology). If <math>G$ is Hausdorff, then $graph(f) \subseteq G \times H$ is a closed subgroup.

We need an isomorphism $\Psi: \operatorname{Gal}(E^{\operatorname{alg}}/E) \xrightarrow{\simeq} \operatorname{Gal}(F^{\operatorname{alg}}/F)$, whose graph lies in $\operatorname{Gal}(E^{\operatorname{alg}}/E) \times_{\operatorname{Gal}(K^{\operatorname{alg}}/K)} \operatorname{Gal}(F^{\operatorname{alg}}/F)$. In other words:

Gal(E^{a(g}/E)
$$\xrightarrow{\Psi}$$
 Gal(F^{a(g}/F)

Gal(K^{a(g}/K)

Facts about $\hat{\mathbb{Z}}$ (see [Cha05, Sec. 3]).

- If G is a profinite group, $f: \hat{\mathbb{Z}} \to G$ a continuous epimorphism and $\sigma \in G$ a topological generator of G (i.e. $\langle \sigma \rangle$ is dense in G), then $f^{-1}(\sigma)$ contains a topological generator of $\hat{\mathbb{Z}}$.
- **2** Let $a, b \in \hat{\mathbb{Z}}$ be topological generators. Then $a \mapsto b$ extends to an automorphism of $\hat{\mathbb{Z}}$.

We use this to define Ψ :

- Let $\sigma_E \in \mathcal{G}al(E^{alg}/E) \simeq \hat{\mathbb{Z}}$ be a topological generator.
- The restriction $\sigma_E \upharpoonright_{K^{\text{alg}}} \in \mathcal{G}al(K^{\text{alg}}/K)$ is a topological generator, i.e. $\overline{\langle \sigma_E \upharpoonright_{K^{\text{alg}}} \rangle} = \mathcal{G}al(K^{\text{alg}}/K)$:

By continuity, the preimage of $\langle \sigma_E \upharpoonright_{K^{\text{alg}}} \rangle$ is closed (and it contains $\langle \sigma_E \rangle$), hence it is identical to $\langle \sigma_E \rangle = \mathcal{G}al(E^{\text{alg}}/E)$. The result follows by surjectivity of the restriction map $\mathcal{G}al(E^{\text{alg}}/E) \to \mathcal{G}al(K^{\text{alg}}/K)$ (using regularity of E/K).

■ By Fact (1), $\sigma_E \upharpoonright_{K^{\text{alg}}}$ extends to a topological generator of $Gal(F^{\text{alg}}/F) \simeq \hat{\mathbb{Z}}$, call it σ_F .

- By Fact (2), $\sigma_E \mapsto \sigma_F$ extends to an isomorphism $\Psi : \mathcal{G}al(E^{alg}/E) \xrightarrow{\simeq} \mathcal{G}al(F^{alg}/F)$, which is as required:
 - By definition, we have $\sigma_E \upharpoonright_{K^{\text{alg}}} = \Psi(\sigma_E) \upharpoonright_{K^{\text{alg}}}$.
 - Obviously, this extends to the generated subgroups, i.e. for $\sigma \in \langle \sigma_E \rangle$, we have $\sigma \upharpoonright_{K^{\mathrm{alg}}} = \Psi(\sigma) \upharpoonright_{K^{\mathrm{alg}}}$.
 - By continuity of Ψ, this property extends to the closure $\overline{\langle \sigma_E \rangle} = Gal(E^{alg}/E)$.

Using the Remark, we get that

$$\begin{split} \mathsf{graph}(\Psi) &= \left\{ \left(\sigma, \Psi(\sigma) \right) \mid \sigma \in \mathcal{G}\mathit{al}\left(E^{\mathsf{alg}}(E)\right) \right. \\ &\qquad \qquad \subseteq \mathcal{G}\mathit{al}\left(E^{\mathsf{alg}}/E\right) \times_{\mathcal{G}\mathit{al}\left(K^{\mathsf{alg}}/K\right)} \mathcal{G}\mathit{al}\left(F^{\mathsf{alg}}/F\right) \end{split}$$

is a closed subgroup isomorphic to $\hat{\mathbb{Z}}$ with topological generator (σ_E, σ_F) . Set

$$H_{\Psi} := \alpha^{-1} (\operatorname{graph}(\Psi)) \subseteq \operatorname{Gal}(E^{\operatorname{alg}}F^{\operatorname{alg}}/EF),$$

 $\tau_{\Psi} := \alpha^{-1} ((\sigma_E, \sigma_F)) \in H_{\Psi}.$

(By definition of α , we have $\tau_{\Psi} \upharpoonright_{E^{\text{alg}}} = \sigma_E$ and $\tau_{\Psi} \upharpoonright_{F^{\text{alg}}} = \sigma_{F}$.)

Let $M \subseteq E^{\text{alg}}F^{\text{alg}}$ be the fixed field of τ_{Ψ} (which is identical to the fixed field of $H_{\Psi} = \overline{\langle \tau_{\Psi} \rangle}$).

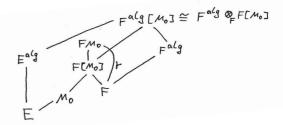
Claim.

- \blacksquare M/E and M/F are regular extensions.
- $\mathbf{Z} E^{\mathsf{alg}} F^{\mathsf{alg}} = M F^{\mathsf{alg}} = M[F^{\mathsf{alg}}].$ (In particular, $E^{\mathsf{alg}} \subseteq M[F^{\mathsf{alg}}].$)

Proof:

- I Since $\tau_{\Psi} \upharpoonright_{E^{\operatorname{alg}}} = \sigma_E$ and $\tau_{\Psi} \upharpoonright_{F^{\operatorname{alg}}} = \sigma_F$, we have $M \cap E^{\operatorname{alg}} = E$ and $M \cap F^{\operatorname{alg}} = F$. (Notice that the fixed field of a topological generator is the ground field.)
- The second equality follows from F^{alg} being algebraic over M. For the first, it suffices to show that $Gal(E^{\text{alg}}F^{\text{alg}}/MF^{\text{alg}}) = \{\text{id}\}$:
 - Let $\tau \in Gal(E^{alg}F^{alg}/MF^{alg})$.
 - Then $\tau \in \operatorname{Gal}(E^{\operatorname{alg}}F^{\operatorname{alg}}/M) = H_{\Psi} \simeq \operatorname{graph}(\Psi)$ and $\tau \upharpoonright_{F^{\operatorname{alg}}} = \operatorname{id}_{F^{\operatorname{alg}}} \in \operatorname{Gal}(F^{\operatorname{alg}}/F)$.
 - lacksquare It follows that $au\!\!\upharpoonright_{\mathsf{E}^{\mathsf{alg}}} = \Psi^{-1}(\mathsf{id}_{\mathsf{F}^{\mathsf{alg}}}) = \mathsf{id}_{\mathsf{E}^{\mathsf{alg}}}.$
 - lacktriangle Consequently, $au=\mathrm{id}_{E^{\mathrm{alg}}F^{\mathrm{alg}}}$.

- By countability of E, let $E \subseteq M_0 \subseteq M$ be a countable intermediate field such that $E^{alg} \subseteq F^{alg}[M_0]$.
- Since M/F is regular, FM_0/F is regular.



Lemma from last week – **statement (2)** (see [Cha05, 6.7]). Let F be a perfect \aleph_1 -saturated PAC field and A a countable subset of some field containing F such that F(A)/F is regular. Then there exists an F-homomorphism $F[A] \to F$.

- It follows that there is an F-homomorphism $F[M_0] \to F$, which extends to an F^{alg} -homomorphism $\phi : F^{\text{alg}}[M_0] \to F^{\text{alg}}$.
- We show that this is the ϕ we are looking for (more precisely, $\phi \upharpoonright_E$). Notice: $\phi \upharpoonright_E$ is a K-embedding $E \to F$ (since $K \subseteq F^{\text{alg}}$ and $E \subset M_0$).
- It remains to show that $F/\phi(E)$ is regular.

Claim. For $a \in E^{alg}$, we have $\phi(\sigma_E(a)) = \sigma_F(\phi(a))$.

Proof:

- Write $a = \sum_i m_i b_i$ with $m_i \in M_0$ and $b_i \in F^{\text{alg}}$.
- Firstly:

$$\begin{split} \phi(\sigma_E(a)) &= \phi\Big(\sigma_E\Big(\sum_i m_i b_i\Big)\Big) \\ &= \phi\Big(\tau_{\Psi}\Big(\sum_i m_i b_i\Big)\Big) \qquad \Big[\tau_{\Psi}\!\!\upharpoonright_{E^{\text{alg}}} = \sigma_E\Big] \\ &= \phi\Big(\sum_i \tau_{\Psi}(m_i)\tau_{\Psi}(b_i)\Big) \\ &= \phi\Big(\sum_i m_i \sigma_F(b_i)\Big) \qquad \Big[\tau_{\Psi}\!\!\upharpoonright_{M} = \mathrm{id}_M \text{ and } \tau_{\Psi}\!\!\upharpoonright_{F^{\text{alg}}} = \sigma_F\Big] \\ &= \sum_i \phi(m_i)\sigma_F(b_i) \qquad \Big[\phi\!\!\upharpoonright_{F^{\text{alg}}} = \mathrm{id}_{F^{\text{alg}}}\Big] \end{split}$$

Secondly:

$$\sigma_{F}(\phi(a)) = \sigma_{F}\left(\phi\left(\sum_{i} m_{i} b_{i}\right)\right)$$

$$= \sigma_{F}\left(\sum_{i} \phi(m_{i}) b_{i}\right)$$

$$= \sum_{i} \phi(m_{i}) \sigma_{F}(b_{i}) \qquad \left[\phi(M_{0}) \subseteq F \text{ and } \sigma_{F} \upharpoonright_{F} = \mathrm{id}_{F}\right]$$

(Claim)

We conclude that $F/\phi(E)$ is regular. It suffices to show that $\phi(E^{\text{alg}}) \cap F = \phi(E)$. Let $a \in E^{\text{alg}}$ with $\phi(a) \in F$. Then:

$$\sigma_F(\phi(a)) = \phi(a)$$
 $\Rightarrow \phi(\sigma_E(a)) = \phi(a)$
 $\Rightarrow \sigma_E(a) = a$
 $\Rightarrow a \in E$
 $\left[\overline{\langle \sigma_E \rangle} = \mathcal{G}al(E^{alg}/E) \right].$

Lemma 3 (Embedding lemma – 2nd version)

Let $K \subseteq E$ and $K' \subseteq F$ be perfect fields such that:

- \supseteq E/K and F/K' are regular;
- **3** E is countable and $Gal(E^{alg}/E) \simeq \hat{\mathbb{Z}}$;
- **4** F is \aleph_1 -saturated and pseudofinite.

Then there exists an embedding $\phi': E \to F$, which extends ϕ and such that F is a regular extension of $\phi'(E)$.

Proof:

Extend ϕ to an embedding ϕ_0 with domain E and apply the Embedding Lemma to $\phi_0(E)/K'$.

Proposition 4

Let E and F be pseudofinite fields, which are regular extensions of a common perfect subfield K. Then $E \equiv_K F$.

Proof:

WLOG we may assume:

- E and F are \aleph_1 -saturated. (Otherwise consider \aleph_1 -saturated elementary extensions. They are also pseudofinite and by being regular extensions of E and F regular extensions of K.)
- K is countable, otherwise:
 - Show $E \equiv_A F$ for all countable subsets $A \subseteq K$.
 - By Löwenheim-Skolem, let $A \subseteq K' \preceq K$ be a countable elementary substructure.
 - K' is perfect, since K is. Furthermore, K/K', E/K and F/K being regular implies that E/K' and F/K' are regular.

We build recursively sequences of partial K-isomorphisms $(\phi_i : E \dashrightarrow F)_{i < \omega}$ and $(\psi_i : F \dashrightarrow E)_{i < \omega}$ with the following properties:

- dom (ϕ_i) and dom (ψ_i) are countable subfields containing K.
- dom (ϕ_i) \leq E and F/im (ϕ_i) is regular.
- dom $(\psi_i) \leq F$ and $E/\operatorname{im}(\psi_i)$ is regular.
- ψ_i extends ϕ_i^{-1} and ϕ_{i+1} extends ψ_i^{-1} .

Then $\bigcup \phi_i$ is a K-isomorphism between $E' := \bigcup_{i < \omega} \operatorname{dom}(\phi_i) \preceq E$ and $F' := \bigcup_{i < \omega} \operatorname{dom}(\psi_i) \preceq F$. Hence $E' \equiv_K F'$ and so $E \equiv_K F$.

As for the construction:

- ϕ_0 : Let $E_0 \leq E$ be countable containing K. We have that E_0/K is regular and E_0 is pseudofinite. By the embedding lemma, there exists a K-embedding $\phi_0 : E_0 \to F$, such that $F/\operatorname{im}(\phi_0)$ is regular.
- ψ_0 : Let $F_0 \leq F$ be countable containing $\operatorname{im}(\phi_0)$. We have that $F_0/\operatorname{im}(\phi_0)$ is regular and F_0 is pseudofinite. By the embedding lemma (version 2), there exists an extension $\psi_0: F_0 \to E$ of ϕ_0^{-1} , such that $E/\operatorname{im}(\psi_0)$ is regular.
- For the inductive step, proceed as for ψ_0 .

Corollary 5

Let $E \subseteq F$ be pseudofinite fields. Then $E \preceq F$ iff F/E is regular (i.e. $E^{\mathsf{alg}} \cap F = E$).

Proof:

"⇒": Elementary substructures are relatively algebraically closed.

" \Leftarrow ": Apply Proposition 4 to K := E.

Theorem 6

Let E and F be pseudofinite fields and K a common subfield. Then

$$E \equiv_{\mathcal{K}} F \iff E \cap \mathcal{K}^{\mathsf{alg}} \simeq_{\mathcal{K}} F \cap \mathcal{K}^{\mathsf{alg}}.$$

(" \Rightarrow " holds for arbitrary fields, see [Cha05, remark after (6.13)]).

Proof:

"⇐":

- WLOG $E \cap K^{\text{alg}} = F \cap K^{\text{alg}} =: K'$. (Otherwise, let $f : E \cap K^{\text{alg}} \xrightarrow{\simeq} F \cap K^{\text{alg}}$ be a K-isomorphism, consider an extension f' to E, and apply the result to f'(E).)
- Since E is perfect, K' is perfect. Furthermore, it follows that E and F are regular extensions of K'.
- By Proposition 4, it follows $E \equiv_{K'} F$. In particular, $E \equiv_K F$.

- "⇒": (We work in a common algebraically closed extension.)
- **Step 1.** Let L be a finite Galois extension of K, then $E \cap L \simeq_K F \cap L$:
 - **B** By the primitive element theorem and separability, $E \cap L = K(\alpha)$ for some $\alpha \in F \cap I$.
 - $\blacksquare E \equiv_K F$ implies that the minimal polynomial of α over K has a zero $\alpha' \in F$. By normality, $\alpha' \in L$ and hence $K(\alpha') \subseteq F \cap L$.
 - The K-embedding $E \cap L \to F \cap L$ given by the isomorphism $K(\alpha) \simeq K(\alpha')$ implies $[E \cap K : K] \leq [F \cap K : K]$. By symmetry, we have $[E \cap K : K] = [F \cap K : K]$, and hence $F \cap K = K(\alpha')$. Thus, the embedding is an isomorphism.

Step 2. $E \cap K^{sep} \simeq_K F \cap K^{sep}$:

Let $\mathcal N$ be the set of all finite Galois extensions of $\mathcal K$. For $L\in\mathcal N$ consider

$$S_L := \{ \sigma \in \operatorname{Gal}(K^{\operatorname{sep}}/K) \mid \sigma(E \cap L) = F \cap L \}.$$

Claim: $\bigcap_{L \in \mathcal{N}} S_L \neq \emptyset$.

- By step 1, $S_L \neq \emptyset$ for all $L \in \mathcal{N}$.
- Finite intersections are non-empty: For $L \subseteq M \in \mathcal{N}$, we have $S_L \supseteq S_M$. In particular, for $L, M \in \mathcal{N}$, we have $S_L \cap S_M \supseteq S_{LM}$.
- $S_L \subseteq Gal(K^{sep}/K)$ is closed for all $L \in \mathcal{N}$:
 - For $\sigma \in S_L$ and $\tau \in Gal(K^{sep}/L)$, we have $\tau \sigma \in S_L$. Hence, S_L is a union of cosets of $Gal(K^{sep}/L)$.
 - Furthermore, $Gal(K^{sep}/L)$ is an open and hence clopen subgroup. It follows that arbitrary unions of cosets are clopen.
- The claim follows by compactness of $Gal(K^{sep}/K)$.

Any $\sigma \in \bigcap_{L \in \mathcal{N}} S_L$ restricts to a K-isomorphism $E \cap K^{sep} \xrightarrow{\simeq} F \cap K^{sep}$.

Step 3. $E \cap K^{alg} \simeq_{\kappa} F \cap K^{alg}$:

- An isomorphism $E \cap K^{sep} \xrightarrow{\simeq} F \cap K^{sep}$ extends (uniquely) to an isomorphism $(E \cap K^{sep})^{perf} \xrightarrow{\simeq} (F \cap K^{sep})^{perf}$.
- But

$$(E \cap K^{sep})^{perf} = E^{perf} \cap (K^{sep})^{perf} = E \cap K^{alg},$$

since E is perfect; analogously for F.

Corollary 7 (The completions of Psf)

Let E and F be pseudofinite fields with prime fields E_0 and F_0 . Then:

$$E \equiv F \iff E \cap E_0^{\text{alg}} \simeq F \cap F_0^{\text{alg}}$$
$$\iff \left\{ f(X) \in \mathbb{Z}[X] \mid E \models \exists x. f(x) = 0 \right\} =$$
$$\left\{ f(X) \in \mathbb{Z}[X] \mid F \models \exists x. f(x) = 0 \right\}.$$

Proof:

The first equivalence follows directly from Theorem 6.

As for the second equivalence: " \Rightarrow " is obvious. " \Leftarrow " follows from the proof of the " \Rightarrow "-direction of Theorem 6. Notice that also the characteristic is fixed by the given set of polynomials. Notice further that for characteristic 0, the polynomials over $\mathbb Q$ with roots are determined by those over $\mathbb Z$.