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1 Preliminaries

1.1 Notation

• L := {+, ·}.

• x, y, z, a, b, c, . . . denote tuples.

• |x| denotes the length of the tuple x.

• Mx := M |x|.

1.2 Pseudofinite cardinality

Definition 1.1. If U is an ultrafilter on a set I and (Xi)i∈I are finite sets, we define
the pseudofinite cardinality of the ultraproduct by∣∣∣∣∣∏

i→U
Xi

∣∣∣∣∣ := lim
i→U
|Xi| ∈ NU .

In particular, if Mi are finite L-structures and φ(x, y) is an L-formula, and bi ∈
(Mi)

y, then ∣∣∣∣∣φ(
∏
i→U
Mi, lim

i→U
bi)

∣∣∣∣∣ = lim
i→U
|φ(Mi, bi)|.

2 Chatzidakis - van den Dries - Macintyre

2.1 Finitary version

Theorem 2.1 (Chatzidakis - van den Dries - Macintyre). Let φ(x, y) be an L-formula.
Then there are

• C ∈ R>0,

• G ⊆fin ({0, . . . , |x|} ×Q>0) ∪ {(0, 0)}, and

• L-formulas (θφ,d,m(y))(d,m)∈G,

such that for any finite field Fq,

• Fq � ∀y.
∨

(d,m)∈G θφ,d,m(y)

• for each (d,m) ∈ G, for b ∈ (Fq)y,

Fq � θφ,d,m(b)⇔
∣∣|φ(Fq, b)| −mqd

∣∣ ≤ Cqd− 1
2

2.2 Asymptotic version

To prove Theorem 2.1, it suffices to prove it with “for any finite field” replaced by
“for all sufficiently large finite fields”. Indeed, we can then increase C and modify the
θφ,d,m to handle the finitely many remaining finite fields.

Explicitly: to deal with fields of size ≤ q0, set

• C ′ := max(C, q
|x|+ 1

2
0 + 1), so |φ(Fq0 , b)| ≤ q

|x|
0 ≤ C ′q

− 1
2

0 ;

• θ′φ,0,0(y) := θφ,0,0(y) ∨ ∃≤q0x. x = x;

• θ′φ,d,m(y) := ∃>q0x. x = x ∧ θφ,d,m(y) for (d,m) 6= (0, 0).

2.3 Pseudofinite version

By  Loś, this asymptotic statement is equivalent to the following, which we will prove
using the model theory of pseudofinite fields.

Theorem 2.2 (CDM, pseudofinite version). Let φ(x, y) be an L-formula.
Then there are

• C ∈ R,

• G ⊆fin ({0, . . . , |x|} ×Q>0) ∪ {(0, 0)}, and

• L-formulas (θφ,d,m(y))(d,m)∈G,

such that for any infinite ultraproduct of finite fields F ,

• F � ∀y.
∨

(d,m)∈G θφ,d,m(y)

• for each (d,m) ∈ G, for b ∈ F y,

F � θφ,d,m(b) ⇔
∣∣|φ(F, b)| −m|F |d

∣∣ ≤ C|F |d− 1
2

Remark. Given b ∈ F y, we can recover the corresponding d,m from N := |φ(F, b)| as

d = st(log|F |(N)); m = st

(
N

|F |d

)
.

Hence the θφ,d,m(y) are pairwise inconsistent, so form a partition.

Remark. In fact d = dim(φ(F, b)Zar). We will see that this falls out of the proof.

Remark. |φ(F, b)| < (m+ 1)|F |d since |F | 12 > R 3 C.

Remark. Let F � Psf and b ∈ F y.
If F is not an ultraproduct of finite fields, then |F | and |φ(F, b)| are undefined.
But F is elementarily equivalent to an ultraproduct of finite fields,

so b � θφ,d,m(y) for some unique (d,m) ∈ G,
so this assigns a well-defined dimension and measure to φ(F, b).

2.4 “Local” version

Since an ultraproduct of ultraproducts of finite fields is an ultraproduct of finite fields,
Theorem 2.2 is in turn equivalent to:

Theorem 2.3 (CDM, local version). Let φ(x, y) be an L-formula.
Let F be an infinite ultraproduct of finite fields, and let b ∈ F . Then there are

• (C, d,m) ∈ R× ({0, . . . , |x|} ×Q>0 ∪ {(0, 0)}) and

• an L-formula θ(y) 3 tpF (b) such that:

for any infinite ultraproduct of finite fields F ′ and any b′ ∈ F ′, (*)

F ′ � θ(b′) ⇒
∣∣|φ(F ′, b′)| −m|F ′|d

∣∣ ≤ C|F ′|d− 1
2

Sketch proof of Theorem 2.2 from Theorem 2.3.

• Let Ξ ⊆ N × {0, . . . , |x|} × Q>0 ∪ {(0, 0)} × L be the set of 4-tuples (C, d,m, θ)
satisfying (*).

• Theorem 2.2 asserts that for some finite subset of Ξ, the corresponding θ cover
any F . (We use here the disjointness of the θ for distinct pairs (d,m).)

• If not, taking an ultraproduct over finite subsets of Ξ of counterexamples b ∈ F ,
we obtain b∗ ∈ F ∗ for which F ∗ � ¬θ(b∗) for any (C, d,m, θ) ∈ Ξ, contradicting
Theorem 2.3.

3 Proof

We prove Theorem 2.3. So let φ(x, y) be an L-formula.
Let F be an infinite ultraproduct of finite fields, and let b ∈ F y.
We consider a series of increasingly complicated cases for the definable set φ(F, b),

and in each case we find C, d,m, θ as required.

3.1 Case 1: φ(F, b) = V (F ), V absolutely irreducible.

Fact 3.1. Let f(x, y) = (fi(x, y))i<m be polynomials over Z, and let d ∈ N. Then
there is a quantifier-free ring formula Af,d(y) such that for any field F and b ∈ F y,

F � Af,d(b) ⇔ V(f(x, b))) is absolutely irreducible of dimension d.

Fact 3.2 (Lang-Weil). There is a function CLW : N2 → R such that if Fq is a finite
field and W is an absolutely irreducible variety defined by polynomials in Fq[X1, . . . , Xn]≤D,∣∣∣|W (Fq)| − qdim(W )

∣∣∣ ≤ CLW (n,D)qdim(W )− 1
2 .

We deduce:

Lemma 3.3. If F =
∏
i→U Fqi is an infinite ultraproduct of finite fields and W is an

absolutely irreducible variety defined by polynomials in F [X1, . . . , Xn]≤D,∣∣∣|W (F )| − |F |dim(W )
∣∣∣ ≤ CLW (n,D)|F |dim(W )− 1

2 .

Proof.

• Say W = V(f(x, c)) where fi ∈ Z(x, y) and c = limi→U ci ∈ F y.

• Let d := dimW .

• By  Loś, the following holds for U-many i:

– Fqi � Af,d(ci); hence

– Wi := V(f(x, ci)) is absolutely irreducible of dimension d; hence

–
∣∣∣|Wi(Fqi)| − q

dim(W )
i

∣∣∣ ≤ CLW (n,D)q
dim(W )− 1

2
i .

• We conclude since |W (F )| = limi→U |Wi(Fqi)| and |F | = limi→U qi.

Now suppose φ(F, b) = V (F ) for an absolutely irreducible variety V = V(f(x, c))
where fi(x, y) has degree ≤ D in x and c ∈ F y.

Then we can take:

• C := CLW (|x|, D),

• d := dim(V ),

• m := 1,

• θ(y) := ∃z. (Af,d(z) ∧ ∀x. (φ(x, y)↔ x ∈ V(f(x, z)))).

3.2 Case 2: φ(F, b) = V (F )

• Suppose φ(F, b) = V (F ) where V is a Zariski-closed set.

• Replacing V with the Zariski closure of V (F ), we may assume that V (F ) is
Zariski dense in V .

• V has an irreducible decomposition V =
⋃
i<n Vi where Vi is an absolutely

irreducible variety, and Vi 6⊆ Vj for i 6= j.

• We show that our estimate on |V (F )| holds with

d := dimV = max
i

dim(Vi)

m := |{i : dim(Vi) = d}|.

• Since V (F ) =
⋃
i Vi(F ) is Zariski-dense in V , also Vi(F ) is Zariski-dense in Vi

for all i.

• So each Vi is F -invariant, and F is perfect, so each Vi is defined over F .

• Any intersection of two or more of the Vi has dimension < d.

• By inclusion-exclusion,

|φ(F, b)| =

∣∣∣∣∣⋃
i

Vi(F )

∣∣∣∣∣ =
∑
∅6=I⊆n

(−1)|I|−1

∣∣∣∣∣
(⋂
i∈I

Vi

)
(F )

∣∣∣∣∣ =
∑
i

|Vi(F )|+ . . .

• Applying Case 1 to the Vi, and inductively applying the present case to the lower
dimensional intersections, we conclude:∣∣φ(F, b)−m|F |d

∣∣ ≤∑
i<m

Ci|F |d−
1
2 + C ′|F |d−1 ≤ C|F |d− 1

2 ,

where C ′ ∈ R is large enough to bound the terms in the inclusion-exclusion
formula arising from the finitely many lower dimensional Vi and the intersections
of two or more Vi, and setting C :=

∑
i<m Ci + 1 (and using |F | 12 > R 3 C ′).

• Set

θ(y) := ∃y0, . . . , yn−1. ((∀x. φ(x, y)↔
∨
i<n

ψi(x, yi))

∧
∧
i

θi(yi)

∧
∧

I⊆n,|I|≥2

θI((yi)i∈I)),

where

– Vi(F ) = ψi(F, bi),

– θi are as in Case 1 for ψi,

– θI are obtained by inductive application of the present case to
∧
i∈I ψi(x, yi).

• Note that we do have d = dim(φ(F, b)Zar) in this case.

3.3 Case 3: φ(F, b) = X(F ), X constructible

(Constructible means: boolean combination of Zariski-closed.)

• Intersecting with X(F )Zar, we can assume X(F ) is Zariski-dense in X.

• We can write X as a disjoint union X =
⋃̇
iVi \ Wi where Vi is absolutely

irreducible and Wi ( Vi is a proper closed subset.

• Set d := maxi dim(Vi) = dim(X(F )Zar) and m := |{i : dim(Vi) = d}|.

•
|X(F )| =

∑
i

(|Vi(F )| − |Wi(F )|),

so the estimate follows by applying Case 2 to each Vi and Wi,
using dim(Wi) < d and the Zariski density of Vi(F ) in Vi.

(Note: we could alternatively use the Rabinovich trick here.)

(Alternative alternative (thanks to Martin Hils for suggesting this): note that
XZar \X is constructible of lower dimension; use this case inductively to handle
it, and Case 2 for XZar (in which F -points are Zariski-dense).)

• θ expresses that this decomposition and the estimates for the various terms hold.

3.4 Case 4: φ(F, b) = X(F ) arbitrary

• Recall: there exists a Zariski-closed set V over F and a co-ordinate projection
π such that πF := π|V (F ) : V (F ) � X(F ) is surjective with boundedly finite
fibres.

• So we have a definable partition X(F ) =
⋃̇

1≤n≤MXn(F ) where

Xn(F ) := {a ∈ X(F ) : |π−1
F (a)| = n}.

• We may assume that V (F ) is Zariski-dense in V .

• Consider the constructible sets

Wk := {(x1, . . . , xk) : xi ∈ V, π(xi) = π(xj), xi 6= xj (∀i 6= j)} ⊆ V k,

and maps
πk,F : Wk(F )→ X(F ); (x1, . . . , xk) 7→ π(x1).

• For a ∈ Xn(F ) and 1 ≤ n, k ≤M ,

|π−1
k,F (a)| = Pkn =

{
n!

(n−k)! (k ≤ n)

0 (k > n)
.

• Now the matrix P is lower triangular, and non-zero on the diagonal,
so P has an inverse P−1 ∈ GLM (Q).

|Wk(F )| =
∑

1≤n≤M

Pkn|Xn(F )|,

hence
|Xn(F )| =

∑
1≤k≤M

(P−1)nk|Wk(F )|.

• Now
|X(F )| =

∑
1≤n≤M

|Xn(F )|.

By Case 3 we can estimate |Wk(F )| with (dk,mk) say,
so we obtain our estimate for |X(F )| with

d := max
i
di

m :=
∑

{(n,k) : dk=d}

(P−1)nkmk ∈ Q.

• θ(y) expresses that φ(F, y) is a projection of V y(F ) with fibres bounded by M ,
and the estimate works for the corresponding |W y

k (F )| (which we can express by
Case 3).

• To see d = dim(X(F )Zar):

– Recall V = V (F )Zar.

– From the way V was obtained, π : V → X(F )Zar has finite fibres on X(F ),
so also each πk : Wk → X(F )Zar has generically finite fibres.

– Then d1 = dim(V ) = dim(X(F )Zar) and dk ≤ dim(Wk) ≤ dim(X(F )Zar).

– So d = dim(X(F )Zar).
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