Pseudofinite dimension and measure in pseudofinite fields

Martin Bays

19.05.2021

Contents

1	Preliminaries 1.1 Notation 1.2 Pseudofinite cardinality	1 1 1
2	Chatzidakis - van den Dries - Macintyre	1
	2.1 Finitary version \ldots	1
	2.2 Asymptotic version	1
	2.3 Pseudofinite version	1
	2.4 "Local" version	1
3	Proof	1
	3.1 Case 1: $\phi(F,b) = V(F)$, V absolutely irreducible.	1
	3.2 Case 2: $\phi(F,b) = V(F)$	1
	3.3 Case 3: $\phi(F,b) = X(F), X$ constructible	1
	3.4 Case 4: $\phi(F,b) = X(F)$ arbitrary	1

Preliminaries 1

1.1 Notation

- $\mathcal{L} := \{+, \cdot\}.$
- x, y, z, a, b, c, \ldots denote tuples.
- |x| denotes the length of the tuple x.
- $M^x := M^{|x|}$.

Pseudofinite cardinality 1.2

Definition 1.1. If \mathcal{U} is an ultrafilter on a set I and $(X_i)_{i \in I}$ are finite sets, we define the **pseudofinite cardinality** of the ultraproduct by

$$\left|\prod_{i \to \mathcal{U}} X_i\right| := \lim_{i \to \mathcal{U}} |X_i| \in \mathbb{N}^{\mathcal{U}}.$$

In particular, if \mathcal{M}_i are finite \mathcal{L} -structures and $\phi(x, y)$ is an \mathcal{L} -formula, and $b_i \in$ $(\mathcal{M}_i)^y$, then

$$\left|\phi(\prod_{i \to \mathcal{U}} \mathcal{M}_i, \lim_{i \to \mathcal{U}} b_i)\right| = \lim_{i \to \mathcal{U}} |\phi(\mathcal{M}_i, b_i)|.$$

$\mathbf{2}$ Chatzidakis - van den Dries - Macintyre

$\mathbf{2.1}$ **Finitary version**

Theorem 2.1 (Chatzidakis - van den Dries - Macintyre). Let $\phi(x, y)$ be an \mathcal{L} -formula. Then there are

- $C \in \mathbb{R}_{>0}$,
- $G \subseteq_{\text{fin}} (\{0, \ldots, |x|\} \times \mathbb{Q}_{>0}) \cup \{(0, 0)\}, and$
- \mathcal{L} -formulas $(\theta_{\phi,d,m}(y))_{(d,m)\in G}$,

such that for any finite field \mathbb{F}_q ,

- $\mathbb{F}_q \vDash \forall y. \bigvee_{(d,m) \in G} \theta_{\phi,d,m}(y)$
- for each $(d,m) \in G$, for $b \in (\mathbb{F}_q)^y$,

$$\mathbb{F}_q \models \theta_{\phi,d,m}(b) \Leftrightarrow \left| |\phi(\mathbb{F}_q,b)| - mq^d \right| \le Cq^{d-\frac{1}{2}}$$

Asymptotic version 2.2

To prove Theorem 2.1, it suffices to prove it with "for any finite field" replaced by "for all sufficiently large finite fields". Indeed, we can then increase C and modify the $\theta_{\phi,d,m}$ to handle the finitely many remaining finite fields.

Explicitly: to deal with fields of size $\leq q_0$, set

- $C' := \max(C, q_0^{|x|+\frac{1}{2}} + 1), \text{ so } |\phi(\mathbb{F}_{q_0}, b)| \le q_0^{|x|} \le C' q_0^{-\frac{1}{2}};$
- $\theta'_{\phi,0,0}(y) := \theta_{\phi,0,0}(y) \lor \exists^{\leq q_0} x. \ x = x;$
- $\theta'_{\phi,d,m}(y) := \exists^{>q_0} x. \ x = x \land \theta_{\phi,d,m}(y) \ for \ (d,m) \neq (0,0).$

Pseudofinite version 2.3

By Loś, this asymptotic statement is equivalent to the following, which we will prove using the model theory of pseudofinite fields.

Theorem 2.2 (CDM, pseudofinite version). Let $\phi(x, y)$ be an \mathcal{L} -formula.

- Then there are
- $C \in \mathbb{R}$,
- $G \subseteq_{\text{fin}} (\{0, \ldots, |x|\} \times \mathbb{Q}_{>0}) \cup \{(0, 0)\}, and$
- \mathcal{L} -formulas $(\theta_{\phi,d,m}(y))_{(d,m)\in G}$,

such that for any infinite ultraproduct of finite fields F,

- $F \vDash \forall y. \bigvee_{(d,m) \in G} \theta_{\phi,d,m}(y)$
- for each $(d,m) \in G$, for $b \in F^y$,

$$F \vDash \theta_{\phi,d,m}(b) \iff \left| |\phi(F,b)| - m|F|^d \right| \le C|F|^{d - \frac{1}{2}}$$

Remark. Given $b \in F^y$, we can recover the corresponding d, m from $N := |\phi(F, b)|$ as

$$d = \operatorname{st}(\log_{|F|}(N)); \ m = \operatorname{st}\left(\frac{N}{|F|^d}\right)$$

Hence the $\theta_{\phi,d,m}(y)$ are pairwise inconsistent, so form a partition. *Remark.* In fact $d = \dim(\phi(F, b)^{\text{Zar}})$. We will see that this falls out of the proof.

Remark. $|\phi(F,b)| < (m+1)|F|^d$ since $|F|^{\frac{1}{2}} > \mathbb{R} \ni C$. *Remark.* Let $F \vDash Psf$ and $b \in F^y$.

If F is not an ultraproduct of finite fields, then |F| and $|\phi(F, b)|$ are undefined. But F is elementarily equivalent to an ultraproduct of finite fields,

so $b \models \theta_{\phi,d,m}(y)$ for some unique $(d,m) \in G$,

so this assigns a well-defined dimension and measure to $\phi(F, b)$.

$\mathbf{2.4}$ "Local" version

Since an ultraproduct of ultraproducts of finite fields is an ultraproduct of finite fields, Theorem 2.2 is in turn equivalent to:

Theorem 2.3 (CDM, local version). Let $\phi(x, y)$ be an \mathcal{L} -formula.

Let F be an infinite ultraproduct of finite fields, and let $b \in F$. Then there are

- $(C, d, m) \in \mathbb{R} \times (\{0, \dots, |x|\} \times \mathbb{Q}_{>0} \cup \{(0, 0)\})$ and
- an \mathcal{L} -formula $\theta(y) \ni \operatorname{tp}^F(b)$ such that:

for any infinite ultraproduct of finite fields F' and any $b' \in F'$, (*) $F' \models \theta(b') \implies ||\phi(F',b')| - m|F'|^d| \le C|F'|^{d-\frac{1}{2}}$

Sketch proof of Theorem 2.2 from Theorem 2.3.

- Let $\Xi \subseteq \mathbb{N} \times \{0, \dots, |x|\} \times \mathbb{Q}_{>0} \cup \{(0, 0)\} \times \mathcal{L}$ be the set of 4-tuples (C, d, m, θ) satisfying (*).
- Theorem 2.2 asserts that for some finite subset of Ξ , the corresponding θ cover any F. (We use here the disjointness of the θ for distinct pairs (d, m).)
- If not, taking an ultraproduct over finite subsets of Ξ of counterexamples $b \in F$, we obtain $b^* \in F^*$ for which $F^* \models \neg \theta(b^*)$ for any $(C, d, m, \theta) \in \Xi$, contradicting Theorem 2.3.

Proof 3

We prove Theorem 2.3. So let $\phi(x, y)$ be an \mathcal{L} -formula.

Let F be an infinite ultraproduct of finite fields, and let $b \in F^y$.

We consider a series of increasingly complicated cases for the definable set $\phi(F, b)$, and in each case we find C, d, m, θ as required.

Case 1: $\phi(F, b) = V(F)$, V absolutely irreducible. 3.1

Fact 3.1. Let $\overline{f}(x,y) = (f_i(x,y))_{i < m}$ be polynomials over \mathbb{Z} , and let $d \in \mathbb{N}$. Then there is a quantifier-free ring formula $A_{\overline{f},d}(y)$ such that for any field F and $b \in F^y$,

$$F \vDash A_{\overline{f},d}(b) \Leftrightarrow \mathcal{V}(\overline{f}(x,b)))$$
 is absolutely irreducible of dimension d.

Fact 3.2 (Lang-Weil). There is a function $C_{LW} : \mathbb{N}^2 \to \mathbb{R}$ such that if \mathbb{F}_q is a finite field and W is an absolutely irreducible variety defined by polynomials in $\mathbb{F}_q[X_1, \ldots, X_n]_{\leq D}$,

$$\left| |W(\mathbb{F}_q)| - q^{\dim(W)} \right| \le C_{LW}(n, D) q^{\dim(W) - \frac{1}{2}}.$$

We deduce:

Lemma 3.3. If $F = \prod_{i \to U} \mathbb{F}_{q_i}$ is an infinite ultraproduct of finite fields and W is an absolutely irreducible variety defined by polynomials in $F[X_1, \ldots, X_n]_{\leq D}$,

$$\left| |W(F)| - |F|^{\dim(W)} \right| \le C_{LW}(n, D) |F|^{\dim(W) - \frac{1}{2}}.$$

Proof.

$$TT = N \sqrt{\frac{2}{6}} (1) + 1 = 6 = 77 (1) + 1 = 1$$

- Say $W = \mathcal{V}(f(x, c))$ where $f_i \in \mathbb{Z}(x, y)$ and $c = \lim_{i \to \mathcal{U}} c_i \in F^y$.
- Let $d := \dim W$.
- By Łoś, the following holds for \mathcal{U} -many *i*:
 - $\mathbb{F}_{q_i} \models A_{\overline{f},d}(c_i)$; hence
 - $W_i := \mathcal{V}(\overline{f}(x, c_i))$ is absolutely irreducible of dimension d; hence
 - $\left| |W_i(\mathbb{F}_{q_i})| q_i^{\dim(W)} \right| \le C_{LW}(n, D) q_i^{\dim(W) \frac{1}{2}}.$
- We conclude since $|W(F)| = \lim_{i \to \mathcal{U}} |W_i(\mathbb{F}_{q_i})|$ and $|F| = \lim_{i \to \mathcal{U}} q_i$.

Now suppose $\phi(F, b) = V(F)$ for an absolutely irreducible variety $V = \mathcal{V}(\overline{f}(x, c))$ where $f_i(x, y)$ has degree $\leq D$ in x and $c \in F^y$.

- Then we can take:
- $C := C_{LW}(|x|, D),$
- $d := \dim(V)$,
- m := 1,
- $\theta(y) := \exists z. \ (A_{\overline{f},d}(z) \land \forall x. \ (\phi(x,y) \leftrightarrow x \in \mathcal{V}(\overline{f}(x,z)))).$

Case 2: $\phi(F, b) = V(F)$ 3.2

- Suppose $\phi(F, b) = V(F)$ where V is a Zariski-closed set.
- Replacing V with the Zariski closure of V(F), we may assume that V(F) is Zariski dense in V.
- V has an irreducible decomposition $V = \bigcup_{i < n} V_i$ where V_i is an absolutely irreducible variety, and $V_i \not\subseteq V_j$ for $i \neq j$.
- We show that our estimate on |V(F)| holds with

$$d := \dim V = \max_{i} \dim(V_{i})$$
$$m := |\{i : \dim(V_{i}) = d\}|.$$

- Since $V(F) = \bigcup_i V_i(F)$ is Zariski-dense in V, also $V_i(F)$ is Zariski-dense in V_i for all i.
- So each V_i is F-invariant, and F is perfect, so each V_i is defined over F.
- Any intersection of two or more of the V_i has dimension < d.
- By inclusion-exclusion,

$$|\phi(F,b)| = \left|\bigcup_{i} V_i(F)\right| = \sum_{\emptyset \neq I \subseteq n} (-1)^{|I|-1} \left|\left(\bigcap_{i \in I} V_i\right)(F)\right| = \sum_{i} |V_i(F)| + \dots$$

• Applying Case 1 to the V_i , and inductively applying the present case to the lower dimensional intersections, we conclude:

$$\phi(F,b) - m|F|^d \Big| \le \sum_{i < m} C_i |F|^{d-\frac{1}{2}} + C'|F|^{d-1} \le C|F|^{d-\frac{1}{2}},$$

where $C' \in \mathbb{R}$ is large enough to bound the terms in the inclusion-exclusion formula arising from the finitely many lower dimensional V_i and the intersections of two or more V_i , and setting $C := \sum_{i < m} C_i + 1$ (and using $|F|^{\frac{1}{2}} > \mathbb{R} \ni C'$).

• Set

$$\theta(y) := \exists y_0, \dots, y_{n-1}. ((\forall x. \phi(x, y) \leftrightarrow \bigvee_{i < n} \psi_i(x, y_i)))$$
$$\land \bigwedge_i \theta_i(y_i)$$
$$\land \bigwedge_{I \subseteq n, |I| \ge 2} \theta_I((y_i)_{i \in I})),$$

where

- $-V_i(F) = \psi_i(F, b_i),$
- $-\theta_i$ are as in Case 1 for ψ_i ,
- $-\theta_I$ are obtained by inductive application of the present case to $\bigwedge_{i \in I} \psi_i(x, y_i)$.
- Note that we do have $d = \dim(\phi(F, b)^{\text{Zar}})$ in this case.

3.3Case 3: $\phi(F,b) = X(F), X$ constructible

(Constructible means: boolean combination of Zariski-closed.)

- Intersecting with $X(F)^{\text{Zar}}$, we can assume X(F) is Zariski-dense in X.
- We can write X as a disjoint union $X = \bigcup_i V_i \setminus W_i$ where V_i is absolutely irreducible and $W_i \subsetneq V_i$ is a proper closed subset.
- Set $d := \max_i \dim(V_i) = \dim(X(F)^{\operatorname{Zar}})$ and $m := |\{i : \dim(V_i) = d\}|.$

$$|X(F)| = \sum_{i} (|V_i(F)| - |W_i(F)|),$$

so the estimate follows by applying Case 2 to each V_i and W_i , using dim $(W_i) < d$ and the Zariski density of $V_i(F)$ in V_i .

(Note: we could alternatively use the Rabinovich trick here.)

(Alternative alternative (thanks to Martin Hils for suggesting this): note that $X^{\operatorname{Zar}} \setminus X$ is constructible of lower dimension; use this case inductively to handle it, and Case 2 for X^{Zar} (in which F-points are Zariski-dense).)

• θ expresses that this decomposition and the estimates for the various terms hold.

$\mathbf{3.4}$ Case 4: $\phi(F, b) = X(F)$ arbitrary

- Recall: there exists a Zariski-closed set V over F and a co-ordinate projection π such that $\pi_F := \pi|_{V(F)} : V(F) \twoheadrightarrow X(F)$ is surjective with boundedly finite fibres.
- So we have a definable partition $X(F) = \bigcup_{1 \le n \le M} X_n(F)$ where

$$X_n(F) := \{ a \in X(F) : |\pi_F^{-1}(a)| = n \}.$$

- We may assume that V(F) is Zariski-dense in V.
- Consider the constructible sets

$$W_k := \{ (x_1, \dots, x_k) : x_i \in V, \ \pi(x_i) = \pi(x_j), \ x_i \neq x_j \ (\forall i \neq j) \} \subseteq V^k,$$

and maps

$$\pi_{k,F}: W_k(F) \to X(F); \ (x_1, \dots, x_k) \mapsto \pi(x_1).$$

• For $a \in X_n(F)$ and $1 \le n, k \le M$,

$$|\pi_{k,F}^{-1}(a)| = P_{kn} = \begin{cases} \frac{n!}{(n-k)!} & (k \le n) \\ 0 & (k > n) \end{cases}$$

• Now the matrix P is lower triangular, and non-zero on the diagonal, so P has an inverse $P^{-1} \in \mathrm{GL}_M(\mathbb{Q})$.

$$W_k(F)| = \sum_{1 \le n \le M} P_{kn} |X_n(F)|,$$

hence

$$|X_n(F)| = \sum_{1 \le k \le M} (P^{-1})_{nk} |W_k(F)|.$$

• Now

$$X(F)| = \sum_{1 \le n \le M} |X_n(F)|.$$

By Case 3 we can estimate $|W_k(F)|$ with (d_k, m_k) say, so we obtain our estimate for |X(F)| with

$$d := \max_i d_i$$
$$m := \sum_{\{(n,k): d_k = d\}} (P^{-1})_{nk} m_k \in \mathbb{Q}.$$

- $\theta(y)$ expresses that $\phi(F, y)$ is a projection of $V^y(F)$ with fibres bounded by M, and the estimate works for the corresponding $|W_k^y(F)|$ (which we can express by Case 3).
- To see $d = \dim(X(F)^{\operatorname{Zar}})$:
 - Recall $V = V(F)^{\text{Zar}}$.
 - From the way V was obtained, $\pi: V \to X(F)^{\text{Zar}}$ has finite fibres on X(F), so also each $\pi_k : W_k \to X(F)^{\text{Zar}}$ has generically finite fibres.
 - Then $d_1 = \dim(V) = \dim(X(F)^{\operatorname{Zar}})$ and $d_k \leq \dim(W_k) \leq \dim(X(F)^{\operatorname{Zar}})$.
 - So $d = \dim(X(F)^{\operatorname{Zar}})$.