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1. Preliminary results in model theory
In this section we recall some basic model theoretic notions and results which we will

assume throughout the course. We let L be a first-order language, T an L-theory, A, B,
C, . . . L-structures.

(1.1) Morphisms. Let A and B be L-structures, F : A → B a map.
(1) F is a homomorphism (of L-structures) if for all n, n-ary relation R, n-ary function f

and n-tuple a in A.

A |= R(a) ⇒ B |= R(F (a)) and f(F (a)) = F (f(a)).

(2) F is an embedding iff F is an injective homomorphism and for every n, n-ary relation
R and n-tuple a in A, we have

A |= R(a) ⇐⇒ B |= R(F (a)).

(3) F is an isomorphism iff F is an embedding and is surjective.
(4) F is an elementary embedding iff F (A) ≺ B. Equivalently, if for every formula ϕ(x)

and tuple a in A,
A |= ϕ(a) ⇐⇒ B |= ϕ(F (a)).

(5) A partial isomorphism g : A → B is an embedding g of some substructure A0 of A
into B.

(1.2) A test for being an elementary substructure. Let A ⊆ B be L-structures.
Then A ≺ B if and only if for every formula ϕ(x, y) and tuple a in A,

B |= ∃y ϕ(a, y)

if and only if there is some tuple b in A such that

B |= ϕ(a, b).

(1.3) Some consequences. The following results are easy:
(1) If A ≺ B and B ≺ C then A ≺ C.
(2) If A ≺ C, B ≺ C and A ⊆ B, then A ≺ B.
(3) Let (Ai)i∈N be an increasing chain with Ai ≺ Ai+1 for every i, and let Aω =

⋃
i∈N Ai.

Then Ai ≺ Aω for every i.

(1.4) Some preservation results. We start with a compactness result.
Proposition. Let T1 and T2 be theories, with T1 ∪ T2 consistent, and let ∆ be a set of
sentences closed under finite disjunctions. The following conditions are equivalent¿
(1) There is Γ ⊆ ∆ such that T1 ∪ Γ axiomatizes T1 ∪ T2.
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(2) For all models A and B of T1, if A |= T2 and B satisfies all sentences of ∆ satisfied
by A, then B |= T2.

Proof. (1) implies (2) is clear. Assume that (2) holds, and let Γ = {ψ ∈ ∆ | T1 ∪ T2 ⊢ ψ}.
We need to show that T1 ∪ Γ ⊢ T2, i.e., that every model of T1 ∪ Γ is a model of T2. Let
B |= T1 ∪ Γ, and let

Σ = {¬ψ | ψ ∈ ∆, B |= ¬ψ}.

We will show that T1 ∪ T2 ∪ Σ is consistent. Otherwise, using compactness, there are
¬ψ1, . . . ,¬ψm ∈ Σ, ϕ ∈ T2 such that T1 ∪ {¬ψ1, . . . ,¬ψm, ϕ} is inconsistent, i.e.,

T1 ∪ {ϕ} ⊢ ψ1 ∨ · · · ∨ ψm.

Since ∆ is closed under disjunction, the sentence ψ1∨ · · ·∨ψm is in Γ, and therefore cannot
be in Σ. This gives us the desired contradiction, and shows that T1 ∪ T2 ∪Σ is consistent.

Let A be a model of T1 ∪ T2 ∪ Σ. If ψ ∈ ∆ holds in A, then ¬ψ /∈ Σ, and therefore
B |= ψ. By condition (2), we obtain that B |= T2.
Corollary. Let T be a theory, ϕ(x) a formula such that T ∪{∃xϕ(x)} is consistent. Let ∆
be a set of formulas in the variables x, closed under disjunctions. The following conditions
are equivalent:
(1) There are formulas ψ1(x), . . . , ψm(x) ∈ ∆ such that

T ⊢ ∀x [ϕ(x) ↔ (ψ(x) ∧ · · ·ψm(x))].

(2) Whenever A and B are models of T , and a, b are tuples in A, B respectively, if
A |= ϕ(a) and every formula ψ(x) ∈ ∆ which is satisfied by a in A is also satisfied by
b in B, then B |= ϕ(b).

Proof. Assume x is of length n, and enlarge the language by adding an n-tuple c of (new)
constants. We apply the theorem to the sentence ϕ(c) and obtain formulas ψ1(x), . . . , ψm(x) ∈
∆ such that T ∪ {ψ1(c), . . .ψm(c)} axiomatizes T ∪ {ϕ(c)}, in other words

T ⊢ ϕ(c) ↔ (ψ1(c) ∧ · · · ∧ ψm(c)).

Since the symbols in c do not appear in T , we then obtain

T ⊢ ∀x [ϕ(x) ↔ (ψ(x) ∧ · · ·ψm(x))].

(1.5) The above results can be used to show the following preservation theorem. For more
details, see e.g. Chang and Keisler. We let T be a theory, ϕ(x) a formula.
(1) The following conditions are equivalent:

(a) For all models A and B of T , homomorphism F : A → B and tuple a in A, if
A |= ϕ(a) then B |= ϕ(F (a)).

(b) There is a positive formula ψ(x) (that is, ψ is built from atomic formulas using
∧, ∨, ∃, ∀, but not using ¬) such that T ⊢ ∀x ϕ(x) ↔ ψ(x).

(2) The following conditions are equivalent:
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(a) For all models A ⊆ B of T and tuple a in A, if A |= ϕ(a) then B |= ϕ(b).
(b) There is an existential formula ψ(x) such that T ⊢ ∀x ϕ(x) ↔ ψ(x).

(3) The following conditions are equivalent:
(a) For all models A ⊆ B of T and tuple a in A, if B |= ϕ(a) then A |= ϕ(a).
(b) There is a universal formula ψ(x) such that T ⊢ ∀x ϕ(x) ↔ ψ(x).

(4) The following conditions are equivalent:
(a) For every increasing chain (Ai)i∈N of models of T and tuple a in A0, if Ai |= ϕ(a)

for every i, then
⋃

i∈N Ai |= ϕ(a).
(b) There is a ∀∃-formula ψ(x) such that T ⊢ ∀x ϕ(x) ↔ ψ(x).

(1.6) Model complete theories, elimination of quantifiers.
Recall that a theory T is model complete iff whenever A and B are models of T and

A ⊆ B, then A ≺ B.
The theory T eliminates quantifiers iff for every formula ϕ(x) there is a quantifier-free

formula ψ(x) such that T ⊢ ∀x ϕ(x) ↔ ψ(x).
Remarks. Recall that if A is a subset of an L-structure M , the language L(A) is obtained
by adding to L new constant symbols, one for each element of A. We denote by ∆(A) (or
∆M (A)) the quantifier-free diagram of A, i.e., the set of quantifier-free sentences of L(A)
which hold in M . Using compactness, one easily obtains
(1) T is model complete if and only if for every model A of T , the theory T ∪ ∆(A) is

complete (in L(A)).
(2) T eliminates quantifiers if and only if for every subset A of a model M of T , the theory

T ∪ ∆M (A) is complete (in L(A)).
(3) If T is model complete, then it has an axiomatization by ∀∃-sentences.
Proof. (1) B is a model of T ∪∆(A) if and only if B contains an isomorphic copy of A. If
T ∪ ∆(A) is complete and B ⊇ A, then (B, a)a∈A ≡ (A, a)a∈A, i.e., A ≺ B.

(2) The left-to-right implication is easy, and the right-to-left implication follows from
Proposition (1.4).

(3) The union of an increasing chain of models of T is a model of T by (1.3). Apply
(1.5).

(1.7) Proposition. Let T be a theory.
(1) To show that T is model complete, it is enough to show that whenever A ⊆ B are

models of T and ϕ(x, y) is a quantifier-free formula, a is a tuple of elements of A, then

B |= ∃y ϕ(a, y) ⇐⇒ A |= ∃y ϕ(a, y).

(One then says that A is existentially closed in B, also denoted by A ≺1 B.)
(2) T is model complete if and only if every formula ϕ(x) is equivalent modulo T to an

existential formula ψ(x) (i.e., T ⊢ ∀x(ϕ(x) ↔ ψ(x))), if and only if every formula is
equivalent modulo T to a universal formula.

(3) To show that T eliminates quantifiers, it is enough to show that if C is a substructure
of the models A and B of T , then there is a model D of T which contains A and B
as elementary substructures.

(4) (Assume that L is countable) To show that T eliminates quantifiers, it is enough to
find a model M of T with the following properties:
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(a) Every countable model of T embeds in M .
(b) If F : A0 → B0 is a partial isomorphism, with A0, B0 finite subsets of M , and
c ∈ M , then there is some partial isomorphism extending F and having c in its domain.
Part (a) follows from a more general result:

(1.8) Back and forth Theorem. Let A and B be L-structures. Assume that there is a
family I of partial isomorphism from A to B such that
(a) (Forth) Pour tout a ∈ A and F ∈ I, there is F ′ ∈ I which extends F and with

a ∈ dom(F ′).
(b) (Back) Pour tout b ∈ B and F ∈ I, there is F ′ ∈ I which extends F and with

b ∈ Im(F ′).
Then A ≡ B.

Definition. A family of partial isomorphisms between two L-structures has the property
of the back-and-forth if it satisfies the above conditions (a) and (b).

(1.9) Proof of (1.7) (1) Let A ⊆ B be models of T . Since A ≺1 B, Th(A, a)a∈A ∪∆(B) is
consistent. Indeed, our hypothesis says that all universal formulas of L(A) which hold in
A also hold in B. Let A1 |= Th(A, a)a∈A∪∆(B), we may assume that A1 is an elementary
extension of A which contains B. Then B ≺1 A1, and using the same reasoning, there is
an elementary extension B1 of B which contains A1. Repeating the same argument, we
build by induction a chain

A0 = A ⊆ B0 = B ⊆ A1 ⊆ B1 ⊆ · · · ⊆ An ⊆ Bn ⊆ An+1 ⊆ · · ·

where An ≺ An+1 and Bn ≺ Bn+1. Then C =
⋃

n∈N An =
⋃

n∈N Bn is an elementary
extension of A and of B, whence A ≺ B (see (1.3)).

(2) If every formula is equivalent modulo T to an existential formula, it is also equiv-
alent modulo T to a universal formula (since the negation of an existential formula is a
universal formula). This shows the equivalence of the last two conditions. The equivalence
of the first two follows from the definition of model completeness and the preservation
result (1.5)(2).

(3) If T does not eliminate quantifiers, there is a substructure C of models A and B
of T such that (A, c)c∈C ̸≡ (B, c)c∈C. Then clearly one cannot find D in which both A
and B elementarily embed.

(4) We will show the theorem of the back and forth. One shows by induction on the
number of quantifiers of a formula ϕ(x) in prenex form that if F ∈ I and a is a tuple in
dom(F ), then

A |= ϕ(a) ⇐⇒ B |= ϕ(F (a)).

For quantifier-free formulas, this is exactly the definition of partial isomorphism. Write
the formula ϕ(x) as ∃y ψ(x, y), y a single variable, and assume that the result holds for
ψ(x, y). Let F ∈ I, a ∈ dom(F ), and assume that A |= ϕ(a). Then there is c ∈ A such that
A |= ψ(a, c). By hypothesis (forth), there is F ′ ∈ I extending F and with c ∈ dom(F ′).
By induction hypothesis, B |= ψ(F ′(a), F ′(c)), i.e., B |= ϕ(F (a)). One shows the other
direction in the same way, using now the “back” direction.

(1.10) Examples
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(1) The theory of the field C (or more generally, the theory of algebraically closed fields)
eliminates quantifiers in the language of rings {+,−, ·, 0, 1}.

(2) Let us now consider the field R in the language of rings. One can show that its theory
is model complete. However, it does not eliminate quantifiers. Indeed let C = Q(α),
where α2 = 2. One can embed C into R in two different ways: by sending α to

√
2

(the positive square root of 2) or to −
√

2. But clearly (R,
√

2) ̸≡ (R,−
√

2) since
√

2
has a square root in R, while −

√
2 does not.

(1.11) Ultraproducts
Definitions. Let I be a set, Ai, i ∈ I, a family of L-structures, and F a subset of P(I)
(the set of subsets of I).
(1) F is a filter (on I) iff: (i) ∅ /∈ F ; (ii) if X, Y ∈ F then X ∩ Y ∈ F ; (iii) if X ∈ F and

Y ⊇ X then Y ∈ F .
(2) F is an ultrafilter iff it is a maximal filter, i.e., is contained properly in no filter. One

shows easily that a filter F is an ultrafilter if and only if, for every X ⊆ I, either X
or I \ X is in F .

(3) A filter F is principal iff there is some i ∈ I such that {i} ∈ F . If there is no such i,
it is called non-principal.

(4) We define an L-structure on the Cartesian product
∏

i∈I Ai as follows. We view an
element a of

∏
i∈I Ai as a function from I to the disjoint union of the Ai’s, whose value

at i is in Ai. If f is an n-ary function symbol, R is an n-ary function symbol, and
(a1, . . . , an) ∈

∏
i∈I Ai, then f(a1, . . . , an)(i) = f(a1(i), . . . , an(i)), and

∏
i∈I Ai |=

R(a1, . . . , an) iff Ai |= R(a1(i), . . . , an(i)) for every i ∈ I. Finally, the interpretation
of a constant c is the function which to i associates the interpretation of c in Ai.

(5) Let F be a filter on I. We define an equivalence relation ≡F on
∏

i∈I Ai by setting

a ≡F b ⇐⇒ {i ∈ I | a(i) = b(i)} ∈ F .

The equivalence class of a ∈
∏

i∈I Ai will be denoted by [a]F , and the set of equiv-
alence classes by

∏
i∈I Ai/F .

∏
i∈I Ai/F has a natural L-structure: the constant c

is interpreted by [c]F ; f([a1]F , . . . , [an]F ) = [f(a1, . . . , an)]F , and R([a1]F , . . . , [an]F )
holds iff {i ∈ I | Ai |= R(a1(i), . . . , an(i))} ∈ F . The structure

∏
i∈I Ai/F is called

the reduced product of the structures Ai with respect to F . If F is an ultrafilter, then∏
i∈I Ai/F is called the ultraproduct of the Ai with respect to F . If all Ai are equal

to the same structure A, then we talk of reduced power and of ultrapower of A.
(6) Observe that the natural map

∏
i∈I Ai →

∏
i∈I Ai/F is a homomorphism of L-

structures.

(1.12) Examples. If I is finite, then all ultrafilters on I are principal. Note that if F is
principal, say {j} ∈ I, then the ultraproduct

∏
i∈I Ai/F is naturally isomorphic to Aj .

The best known non-principal filter (on an infinite set I) is called the Fréchet filter and
is the set of all subsets X of I such that I \X is finite. It is contained in all non-principal
ultrafilters on I (Exercise).

Observe that if A ⊂ I is infinite, then it intersects every cofinite subset of I; hence A
and the Fréchet filter generate a (proper) filter, and A belongs to a non-principal ultrafilter.
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(1.13) !Los’ Theorem. Let I be infinite, F a filter on I, (Ai)i∈I a family of L-structures,
and A =

∏
i∈I Ai/F .

(1) Let ϕ(x) be a positive L-formula, a a tuple in
∏

i∈I Ai. Then

A |= ϕ([a]F) ⇐⇒ {i ∈ I | Ai |= ϕ(a(i))} ∈ F .

(2) Assume now that F is an ultrafilter, and let ϕ(x) be any formula, a a tuple in
∏

i∈I Ai.
Then

A |= ϕ([a]F) ⇐⇒ {i ∈ I | Ai |= ϕ(a(i))} ∈ F .

This result is not difficult to prove, using induction on the complexity of the formulas.
Note the restriction in (1) of ϕ(x) being positive: the result definitely doesn’t hold for
formulas involving a negation, as can be shown by the following easy example. Let a, b ∈∏

i Ai. Then [a]F = [b]F ⇐⇒ {i ∈ I | a(i) = b(i)} ∈ F . But if F is not an ultrafilter,
choose A ⊂ I such that A and I \A are not in F ; then (assuming |Ai| ≥ 2 for all i, choose
b such that {i ∈ I | a(i) = b(i)} = A. Clearly [a]F ̸= [b]F but {i ∈ I | a(i) ̸= b(i)} /∈ F .

(1.14) One immediate consequence of &Los’ theorem is that if F is an ultrafilter on I, then
the L-structure A embeds elementarily into its ultrapower AI/F , via the map which to an
element a associates [â]F , where â is the function taking the value a on I.

(1.15) Theorem (Keisler-Shelah). Two L-structures A and B are elementarily equivalent
if and only if they have isomorphic ultrapowers.

(1.16) Let I be infinite, F a non-principal ultrafilter on I, and A an L-structure. Assume
that the language L is countable. Then AI/F is ω1-saturated, i.e., if B ⊂ AI/F is count-
able, and Σ(x) is a set of L(B)-formulas which is finitely satisfiable in AI/F , then there
is a tuple b ∈ AI/F which satisfies all formulas of Σ(x).
Proof. The set of L(B)-formulas is countable, and therefore we may choose an enumeration
ψn(x) of Σ(x). For each n, choose b(n) ∈ A satisfying

∧n
i=1 ψi(x), and let b = [(b(n))n]F .

(1.17) Exercise. Under the same hypotheses on I,F ,L, show that the conclusion of
(1.16) also holds if one assumes that the tuple x of variables has length ω.

(1.18) Exercise (harder). Let I be infinite, F an ultrafilter on I, and (Ai)i∈I a family
of L-structures of cardinality ≤ ℵ0. Show that

∏
i∈I Ai/F is either finite or of cardinality

≥ 2ℵ0 .

(1.19) Exercise. Let F be a filter on a set I, and let J ∈ F , Ai, i ∈ I, a family of
L-structures. Let

G = {X ∩ J | X ∈ F}.

(1) Show that G is a filter on J , and that if F is an ultrafilter, so is G.
(2) Show that ∏

i∈I

Ai/F ≃
∏

i∈J

Ai/G.
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(1.20) Exercise. Let I and J be sets, and F , G be filters on I and J respectively.
(1) Let D be the set of subsets X of I × J satisfying:

{i ∈ I | {j | (i, j) ∈ X} ∈ G} ∈ F .

Verify that this set is a filter, and that F and G are ultrafilters, then so is D.
(2) Verify that if (Ai,j)i∈I,j∈J is a family of L-structures, then the natural isomorphism

∏

(i,j)∈I×J

Ai,j →
∏

i∈I

(∏

j∈J

Ai,j

)

induces an isomorphism
∏

(i,j)∈I×J

Ai,j/D →
∏

i∈I

(∏

j∈J

Ai,j/G
)
/F .

(1.21) More on saturated models. Let κ be an infinite cardinal (greater that |L|), M
an L-structure. Then M is κ-saturated iff for every n and subset A of M of cardinality
< κ, if Σ(x) (where x is an n-tuple of variables) is a set of L(A)-formula which is finitely
satisfiable in M , then there is an n-tuple a in M which satisfies all formulas in Σ. M is
saturated if it is |M |-saturated. One can then show that an L-structure M is κ-saturated
if and only if the two following conditions hold:
(i) (κ-universality) Every model of Th(M) of cardinality < κ embeds elementarily into

M .
(ii) (κ-homogeneity) If λ < κ and (ai)i<λ, (bi)i<λ are two sequences of elements of M

such that (M, ai)i<λ ≡ (M, bi)i<λ, and if a ∈ M then there is b ∈ M such that
(M, ai, a)i<λ ≡ (M, bi, b)i<λ.

(1.22) Theorem. Let M be an infinite L-structure, and κ an infinite cardinal. Then M
has an elementary extension which is κ-saturated.
Proof. Exercise. The proof is done in two steps.

(1) First show that M has an elementary extension M1 such that for every n and
subset A of M of cardinality < κ, if Σ(x) (where x is an n-tuple of variables) is a set of
L(A)-formula which is finitely satisfiable in M , then there is an n-tuple a in M1 which
satisfies all formulas in Σ.

(2) Now, using step 1, build an increasing chain Mα, α < κ+ of elementary extensions
of M such that
(i) M0 = M ;
(ii) if α is a limit ordinal then Mα =

⋃
β<α Mβ.

(iii) If α = β + 1, then Mβ ≺ Mα and for every n and subset A of Mβ of cardinality < κ,
if Σ(x) (where x is an n-tuple of variables) is a set of L(A)-formula which is finitely
satisfiable in Mβ, then there is an n-tuple a in Mα which satisfies all formulas in Σ.
You then verify that Mκ+ =

⋃
α<κ+ Mα is κ-saturated and an elementary extension

of M . Can you bound its cardinality? (Here we are using the fact that κ+ is regular, and
in particular that a subset of κ+ of cardinality < κ cannot be cofinal in κ+.)
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(1.23) Criterion for completeness of a theory. Let T be a theory in a language L,
and κ an infinite cardinal ≥ |L|. Then T is complete if and only if whenever M1 and M2 are
two κ-saturated models of T , there exists a (non-empty) family I of partial isomorphisms
M1 → M2 which has the property of the back-and-forth.

(1.24) Criterion for elimination. Let T , L, κ be as above, and ∆ a set of L-formulas
closed under disjunction. The following conditions are equivalent:
(1) Every L-formula is equivalent modulo T to a Boolean combination of formulas from

∆.
(2) For any two κ-saturated models M1 and M2 of T , consider the set I(M1, M2) of

partial isomorphisms from M1 to M2, with domain of cardinality < κ and which
preserve formulas from ∆ (i.e., if the tuple a is in the domain of f ∈ I and ϕ(x) ∈ ∆,
then M1 |= ϕ(a) ⇐⇒ M2 |= ϕ(f(a))). Then either this set is empty, or it has the
property of the back-and-forth.

Observe that this criterion works for theories which are not complete (e.g., the theory
of algebraically closed fields). The condition that I be non-empty is equivalent to: M1

and M2 satisfy the same sentences in ∆.

(1.25) Definability of structures. Let M be an L-structure, and N be an L′-structure.
We say that the L′-structure N is definable in M iff there is some definable subset S of
Mk for some k, and a bijection F : N → S such that:

– For each n-ary relation R ∈ L′, R∗ = F (R) is definable.
– For each n-ary function f ∈ L′, the image by F of the graph of f definable, and we

will denote by f∗ the function it defines on Sn.
Then the L′-structures N and S are isomorphic.

Comments. By definable, I mean possibly with parameters from M . To be precise, one
would say N is A-definable in M , whenever S, all R∗, f∗, c∗ = F (c) where c ranges over
all constant symbols of L′, are definable with parameters from A.

Exercise. Show that if N is definable in M (with parameters from A ⊂ M) and F is the
isomorphism N → S, then to every formula ϕ(x) ∈ L′ we can associate an L(A)-formula
ϕ∗(x̄) such that, for every tuple a in Nm, we have

N |= ϕ(a) ⇐⇒ M |= ϕ∗(F (a)).

Exercise. Show that the field C is definable in the field R.

(1.26) Interpretation of structures. Let M be an L-structure, N an L′-structure.
Then N is interpretable in M iff there is a definable subset S of Mk for some k, a definable
subset E of M2k which defines an equivalence relation on S, and a bijection F between N
and the set S/E of E-equivalences classes of S, such that:

– For each n-ary relation R ∈ L′, the set of tuples (a1, . . . , an) ∈ Sn such that
(F−1(a1/E), . . . , F−1(an/E)) ∈ R, is definable in M .

– For each n-ary function f ∈ L′, the set of tuples (a1, . . . , an, b) ∈ Sn+1 such that
f(F−1(a1/E), . . . , F−1(an/E)) = F−1(b/E), is definable in M .
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Exercise. Show that if N is interpretable in M (with parameters from A ⊂ M), and F
is the isomorphism N → S/E, then to every formula ϕ(x) ∈ L′ we can associate an L(A)-
formula ϕ∗(x̄) such that, for every tuple a = (a1, . . . , an) in Nn, and tuple b = (b1, . . . , bn)
where each bi ∈ F (ai), we have

N |= ϕ(a) ⇐⇒ M |= ϕ∗(b).

Exercise. Let G be a group (the language is the language of groups {·,−1 , 1}), and
assume that H is a definable normal subgroup of G. Show that the quotient group G/H
is interpretable in the group G.

These two exercises should convince you of the fact that “definability” and “interpre-
tation” are just fancy names for very natural concepts that you have already used.

(1.27) Theory of a class, models of a theory.
We fix a first-order language L. Given a class K of L-structures, one can consider its

theory, Th(K), consisting of the sentences which hold in all elements of K. Dually, given
an L-theory T , we may consider the class Mod(T ) of all models of T .

Clearly one has K ⊆ Mod(Th(K)), and the class Mod(Th(K)) is called the elementary
class generated by K. The inclusion is in general strict. If K = Mod(Th(K)) then K is
called an elementary class.
Proposition. Let K be a class of L-structures. Then K is an elementary class if and only
if it is closed under ultraproducts and elementary substructures.
Proof. The necessity of the condition is clear, since the class of models of a theory is closed
under these operations. For the sufficiency, it suffices to show that every model of Th(K)
embeds elementarily into an ultraproduct of members of K. By (1.15) and the fact that an
ultrapower of an ultraproduct of members of K is an ultraproduct of members of K (see
exercise (1.20)), it suffices to show that every model of Th(K) is elementarily equivalent
to an ultraproduct of members of K.

So, let M |= Th(K), and let I be the set of all L-sentences true in A. Observe that I is
closed under finite conjunctions. If θ ∈ I, then ¬θ /∈ Th(K), i.e., there is some Mθ ∈ K such
that Mθ |= θ, and we choose one such. For each ψ ∈ I, consider Xψ = {θ ∈ I | Mθ |= ψ}.
Then each Xψ is non-empty, and furthermore, since I is closed under finite conjunctions,
the set {Xψ | ψ ∈ I} has the finite intersection property. Let U be an ultrafilter on I
which contains all Xψ, ψ ∈ I. By &Los’ theorem, M ≡

∏
θ∈I Mθ/U .

(1.28) Example. If K = {M}, then Mod(Th(K)) is simply the set of L-structures
elementarily equivalent to M . By Keisler-Shelah (1.15), every member of Mod(Th(K))
embeds elementarily into an ultrapower of M .

(1.29) Example 2. Consider the class K of all finite fields, and Tf its theory. Then, every
model of Tf which is finite is in K, and every model of Tf which is infinite is elementarily
equivalent to an ultraproduct of finite fields. Thus, to show that the pseudo-finite fields
are exactly the infinite models of Tf , it suffices to show that if F is a pseudo-finite field,
then it is elementarily equivalent to an ultraproduct of finite fields.
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2. Finite fields - properties

(2.1) Basic properties
If p is a prime number, then pZ is a maximal ideal of Z and Z/pZ is a field with p

elements. This field is denoted by Fp, and it is the prime field of characteristic p, i.e., it is
contained in every field of characteristic p.

Let F be a finite field. Since 1 ∈ F , it necessarily contains one of the fields Fp, and is
therefore a vector space over Fp, whence of cardinality pn for some n ∈ N.

Let F be a field of characteristic p having q = pn elements, let K be an algebraically
closed field containing F . Let us consider the multiplicative group F× = F \{0} of F . It has
q− 1 elements and hence every non-zero element of F satisfies the equation Xq−1 − 1 = 0.
Thus all elements of F satisfy Xq − X = 0. The derivative of this equation equals −1, all
its roots are therefore simple roots, and we obtain

Xq − X =
∏

a∈F

(X − a).

Conversely, let us consider the set S ⊂ K of all solutions of Xq − X = 0. As above,
its roots are all distinct. S is closed under multiplication, and S \ {0} by multiplicative
inverse. Because we are in characteristic p and q is a power of p, we have (a+b)p = ap +bp

and (a + b)q = aq + bq. This implies that S is closed under addition, and is therefore a
subfield of K.

So, we have shown:
Theorem. Let F be a finite field. Then for some prime p and q = pn, F has q elements.
Its elements are exactly the roots of the equation Xq − X = 0.

(2.2) The multiplicative group of a finite field. Let F = Fq be a finite field. We will
show that F× is cyclic. It can be written as a direct sum of cyclic subgroups, and if it is
not cyclic, then its exponent m is a proper divisor of q − 1. But all roots of Xq−1 = 1 are
simple roots, whence all roots of Xm = 1 are simple as well (since m ̸≡ 0 modulo p). This
implies that q − 1 = m.

(2.3) Perfect fields. Recall that a field F of characteristic p > 0 is perfect if every element
of F has a p-th root. By convention, every field of characteristic 0 is perfect.

If F = Fpn is finite, then the order of F× is prime to p, which implies that every
element is (multiplicatively) divisible by p, i.e., F is perfect.

An example of imperfect field is Fp(t), where t is transcendental over Fp.
The perfect hull of a field F is the smallest perfect field containing F . If F is of

characteristic p > 0 and is not perfect, it is obtained by adjoining to F all pn-th roots of
elements of F . It is then denoted by F 1/p∞

.

(2.4) The algebraic closure of Fp.
Let m, n be positive integers, p a prime. Then

Fpm ⊆ Fpn ⇐⇒ m divides n,

and in that case we have [Fpn : Fpm ] = n/m.
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Indeed, if Fpm ⊆ Fpn then Fpn is a Fpm-vector space, hence m divides n and [Fpn :
Fpm ] = n/m. Conversely, if m divides n, then pm − 1 divides pn − 1, whence all roots of
Xpm−1 = 1 are contained in Fpn , i.e., Fpm ⊆ Fpn .

It follows easily that for any m, n ≥ 1, Fpm ∩ Fpn = Fpd and FpmFpn (the composite
field of Fpm and Fpn) = Fpe where d is the greatest common divisor of m and n, and e is
the least common multiple of m and n.

Let α be algebraic over Fp. Then Fp(α) is a finite-dimensional Fp-vector space, and
is therefore also finite. This implies that the algebraic closure Falg

p of Fp is
⋃

n∈N Fpn .

(2.5) The Frobenius map. Fix a prime p, and let F be a field of characteristic p. Using
the binomial rule, one has, for every a, b ∈ F , (a + b)p = ap + bp. Since xp = 0 implies
x = 0, this means that the map x ;→ xp is an injective endomorphism of the field F . This
map is called the Frobenius map. It is the identity on Fp (since every element of Fp satisfies
Xp − X = 0), and defines an automorphism of each Fpn . Hence it defines an element ϕ
of Gal(Falg

p /Fp). Observe that if d ∈ N, the elements of Falg
p which are fixed by ϕd are

precisely the elements of Fpd . Furthermore, one checks that the restriction ϕ|Fpd
of ϕ to

Fpd has order exactly d: ϕℓ being the identity on Fpd means exactly that all elements of
Fpd satisfy Xpℓ

= X , and therefore that d divides ℓ.
This will allow us to describe Gal(Falg

p /Fp) in a nice fashion, see below. But first we
need to do a little infinite Galois theory and introduce pro-finite groups.

3. Topological groups, profinite groups and infinite Galois theory

(3.1) Topological groups. A topological group is a group G endowed with a topology,
such that group multiplication : G × G → G and the inverse map G → G are continuous
(G×G is endowed with the product topology). It then follows that multiplication (on the
left or on the right) by an element g of the group defines a homeomorphism of G. Observe
also that in order to define the topology, it suffices to give a basis of open sets containing
1: if g ∈ G, then translating the basis by g will give us a basis of open sets containing g.
Some properties. Let G be a topological group.
(1) Let H be a subgroup of G. Then the closure H̄ of H in G is also a subgroup of G. If

H is normal in G so is H̄.
(2) Let H be an open subgroup of G. Then H is clopen, i.e., open and closed. If H is a

closed subgroup of G of finite index, then H is clopen.
(3) Assume that G is compact, and let H be an open subgroup of G. Then [G : H] < ∞.

[Note: in English, compact does not imply Hausdorff].
(4) Let U ⊂ G and assume that U and V are dense open subsets of G. Then U · V = G.
(5) Let U, V ⊂ G. Then Ū · V̄ ⊂ U · V .
(6) Let H be a subgroup of G and assume that H is dense in G, and that G is T1 (i.e.,

every singleton is closed). Then Z(G)∩H = Z(H). [Recall that the center of a group
G, denoted by Z(G), is the set of elements commuting with all elements of G].

(7) Assume that G is T1, and let g ∈ G. Then the centraliser of g in G, CG(g), is a closed
subgroup of G. If H is abelian, then so is H̄. Similarly for nilpotent and solvable.

Proof. (1) If X is a closed set containing H, then X−1 (= {g−1 | g ∈ X}) contains H−1 =
H. Hence H̄ is closed under the inverse map. Similarly, if g ∈ H, then gH̄ = gH ⊆ H̄,
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so that H · H̄ ⊆ H̄. Similarly, if h ∈ H̄, then Hh ⊂ Hh = H̄h, and Hh ⊂ H̄, so that
H̄ · H̄ = H̄, i.e., H̄ is a subgroup of G.

If H is normal in G, then for every g ∈ G we have gH = Hg; hence also gH̄ = H̄g.
(2) G is the disjoint union of the cosets gH, where g runs through a set of represen-

tatives of G/H. If H is open, so is every coset, and the union of the cosets gH for g /∈ H
is open, and is the complement of H in G. Hence H is also closed. Similar proof for the
second assertion, using the fact that there are only finitely many cosets.

(3) G is the union of the open sets gH, and therefore, by compactness, there are only
finitely many of them, i.e., [G : H] < ∞.

(4) Let g ∈ G. Then V −1 and gV −1 are also dense open subsets of G. Hence
U ∩ gV ̸= ∅, i.e., there are u ∈ U and v ∈ V such that u = gv−1, and g = uv.

(5) As in the proof of (1), we first get that U · V̄ ⊆ U · V , then that Ū · V̄ ⊆ U · V .
(6) Clearly Z(G)∩H ⊆ Z(H). Assume h ∈ H, h /∈ Z(H), and let g ∈ G be such that

[g, h] = g−1h−1gh ̸= 1. Choose some open set U containing [g, h] and not containing 1
(here we use the T1-property of G). By continuity of the commutator map (x, y) ;→ [x, y],
there are some open subset U1 and U2 of G, with h ∈ U1 and g ∈ U2, and such that the
image of U1 ×U2 under the commutator map is contained in U . In particular, [h, U2] ⊂ U ;
by density of H, U2 ∩ H ̸= ∅, and this implies that h /∈ Z(H).

(7) CG(g) = {h ∈ G | [g, h] = 1}. The set X of pairs (h1, h2) such that [h1, h2] = 1 is
closed (because {1} is closed), hence so is X ∩ {g}×G, and the latter is homeomorphic to
CG(g).

Hence, if H is abelian, then for every h ∈ H, CG(h) is a closed subgroup of G which
contains H, and therefore H̄.

(3.2) Profinite groups and infinite Galois groups. There are several equivalent
definitions of profinite groups. A profinite group is a topological group, which is compact,
Hausdorff, and totally disconnected (i.e., has a basis of open sets which consists of clopen
sets). Equivalently, it is an inverse limit of a projective system of finite groups with the
corresponding topology. This might not be very informative, we will see how it works for
Galois groups.

Let F be a field. We know that F alg is the union of all finite normal algebraic
extensions of F . We are interested in Aut(F alg/F ), the group of automorphisms of F alg

which fix the elements of F , and I will (abusively) denote it by Gal(F alg/F ). Note that if F
is of characteristic p > 0, σ ∈ Aut(F alg), and ap = b ∈ F alg then necessarily σ(a)p = σ(b),
so that knowing σ on b forces the value of σ on a. Thus every automorphism of the
separable closure F sep of F (the set of elements of F alg which satisfy a separable equation
over F ) which is the identity on F will extend uniquely to an element of Aut(F alg/F ).

Let N be the family of all finite Galois extensions of F , and if L ⊆ M ∈ N , let
πLM : Gal(M/F ) → Gal(L/F ) be the restriction map. Then these maps are epimorphisms,
and if L ⊆ M ⊆ N ∈ N , we have πMNπLM = πLN . We endow each (finite) group
Gal(L/F ) with the discrete topology, and consider the group

∏
L∈N Gal(L/F ) (pointwise

multiplication), endowed with the product topology (recall that a basic set of the product
topology on

∏
i∈I Xi is a set

∏
i∈I Ui where each Ui is open in Xi and all but finitely

many of the Ui’s equal Xi). This space therefore has a basis consisting of clopen sets.
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Furthermore, since a finite discrete topological space is compact and Hausdorff, the group∏
L∈N Gal(L/F ) is also compact Hausdorff.

We then consider the subgroup

H = {(σL)L ∈
∏

L∈N
Gal(L/F ) | if L ⊆ M ∈ N then σM |L = σL}.

One verifies that H is a closed subgroup of
∏

L∈N Gal(L/F ), and that the map
Gal(F alg/F ) →

∏
L Gal(L/F ) defined by σ ;→ (σ|L)L embeds Gal(F alg/F ) into H. Fur-

thermore, one verifies that each element of H defines an automorphism of F alg which fixes
F , and therefore this map is in fact an isomorphism.

The embedding of Gal(F alg/F ) into
∏

L Gal(L/F ) gives it the structure of a topologi-
cal group, and it is compact, Hausdorff and totally disconnected. A basis for the topology
is given by the translates of the subgroups Gal(F alg/L), L ∈ N (exercise). It follows that
every open set containing the identity contains an open set of the form Gal(F alg/L) for
some L ∈ N .

The way of describing Gal(F alg/F ) as an inverse limit of a projective system of finite
groups is as follows: the inverse system is the set {Gal(L/F ), πLM | L ⊆ M ∈ N}, and we
write Gal(F alg/F ) = lim←Gal(L/F ).

(3.3) Description of Gal(Falg
p /Fp). The family of all finite Galois extensions of Fp can

be indexed by the integers n ≥ 2, and we have seen that Gal(Fpn/Fp) ≃ Z/nZ. The maps
πmn for m dividing n are then simply the epimorphisms Z/nZ → Z/mZ given by reducing
modulo m. Thus

Gal(Falg
p /Fp) = {(an)n≥2 ∈

∏

n≥2

Z/nZ | if m|n then am ≡ anmod(m)}.

This group is also denoted by Ẑ, or lim← Z/nZ. One can show that it is isomorphic
to

∏
ℓ aprime Zℓ, where Zℓ denotes the set of ℓ-adic integers, i.e., Zℓ = lim← Z/ℓnZ.

Exercise. Verify that the subgroup ⟨ϕ⟩ of Ẑ generated by (1)n is dense, i.e., that it
intersects every open subsets of Ẑ. (Observe that (1)n corresponds to the Frobenius in the
isomorphism Gal(Falg

p /Fp) ≃ Ẑ).

(3.4) The Galois correspondence. The Galois correspondence works almost as well as
in the finite case, but we need to consider closed subgroups instead of arbitrary ones. I.e.,
separable algebraic extensions of F correspond to closed subgroups of Gal(F alg/F ).

Thus if H0 is a subgroup of Gal(F alg/F ), E the subfield of F sep of elements fixed
by all elements of H0, then Gal(F alg/E) will be the closure of H0 in Gal(F alg/F ) for the
topology.

Note also that if E is a (maybe infinite) Galois extension of F , then one can define
Gal(E/F ) in a similar way, by restricting one’s attention to the family NE of finite Galois
extensions of F contained in E. Then the subgroup Gal(F alg/E) will be a normal (closed)
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subgroup of Gal(F alg/F ), and the quotient Gal(F alg/F )/Gal(F alg/E) is naturally isomor-
phic to Gal(E/F ), the restriction map Gal(F alg/F ) → Gal(E/F ) being continuous for the
topology.

Thus we have a correspondence between quotients of Gal(F alg/F ) by continuous ho-
momorphisms and Galois extensions of F .

An aside: to check that a group epimorphism G → H between profinite groups is
continuous, it suffices to check that the kernel of this map is a closed subgroup of G.

(3.5) Example. Consider again the Frobenius map ϕ ∈ Gal(Falg
p /Fp), and let H0 be

the subgroup it generates. Then the elements of Falg
p which are fixed by ϕ are all in

Fp. However, H0 being countable, it certainly doesn’t equal Ẑ (which has cardinality 2ℵ0 ,
exercise).

(3.6) More on Ẑ.
We will discuss a few properties of Ẑ, and in particular show that if F is a perfect field,

then Gal(F alg/F ) ≃ Ẑ if and only if F has exactly one (separable) extension of degree n
for every n > 1. (Since our field F is perfect, we do not need to worry about separability).

First observe that this condition is certainly necessary: for every n, Ẑ has a unique
open subgroup Hn of index n (namely, in the notation of (3.3), the set of sequences (ai)i≥2

such that ai is divisible by n in Z/iZ. Equivalently, if 1̄ denotes the sequence which equals
1 everywhere, then this subgroup is the closure of the subgroup generated by n1̄ in Ẑ, and
we will denote it by nẐ. Hence, by Galois theory, this implies that F has exactly one
separable extension of degree n: the subfield of F sep consisting of elements fixed by Hn.

Let us now assume that F has a unique separable extension of degree n for each n > 1,
and let us see what this implies. Let L be a finite Galois extension of F and G its Galois
group over F . First note that our hypothesis implies that all subgroups of G are normal
(since the conjugate of a subgroup of G has the same order as that subgroup). We will
show that G is cyclic. This is done by induction on its order, call it n. If n is prime, there
is nothing to prove, since G ≃ Z/nZ. Otherwise, let p be a prime dividing n, and a ∈ G
an element of order p. Then the subgroup ⟨a⟩ is a normal subgroup of G, and by induction
hypothesis, the quotient G/⟨a⟩ is cyclic. Hence there is b ∈ G such that G = ⟨a, b⟩. If
a ∈ ⟨b⟩, then G = ⟨b⟩ and we are done. Otherwise, we have ⟨a⟩ ∩ ⟨b⟩ = (1) (because a has
order p), and the commutator [a, b] = a−1b−1ab belongs to the intersection of the normal
subgroups ⟨a⟩ and ⟨b⟩, i.e., a and b commute. Thus G = ⟨a, b⟩ = ⟨a⟩ × ⟨b⟩. Because G has
a unique subgroup of order p, we get that p does not divide the order of b, and therefore
G is cyclic.

We have therefore shown the following: assume that the perfect field F has exactly
one extension of degree n for each n > 1. Then all (continuous) quotients of the profinite
Gal(F alg/F ) are cyclic, and for every n > 1 it has a quotient ≃ Z/nZ.

(3.7) Proposition. Let G be a profinite group.
(1) If all continuous finite quotients of G are cyclic, then there is a (continuous) epimor-

phism Ẑ → G.
(2) If moreover for every n > 1, G has a continuous quotient isomorphic to Z/nZ, then

any continuous epimorphism from Ẑ onto G is an isomorphism.
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Proof. (1) Note first of all that G is abelian. Using the compactness of G, we can therefore
find an element a ∈ G such that for every open subgroup H of G, aH generates G/H.
Indeed, for each open subgroup H of G, let SH be the set of elements whose image in G/H
is a generator of G/H. This set is closed (since it is a union of cosets of H), non-empty,
and if H ⊆ H ′ then SH′ ⊂ SH . Hence, if H1 and H2 are open normal subgroups of G, then
SH1H2 ⊆ SH1 ∩SH2 , and eveery finite intersection of SH is non-empty. By compactness of
G, there is some element a in the intersection of all SH .

Consider the set I of numbers n such that G has an open subgroup Hn of index n.
Then G embeds (continuously) into

∏
n∈I G/Hn [by definition of a profinite group, the

intersection of all open subgroups of a profinite group is 1; moreover, by compactness,
every open subgroup is of finite index and is therefore also closed]. By compactness, we
get that G is in fact isomorphic to

{(bn) ∈
∏

n∈I

G/Hn | if n|m then bn ≡ bm mod n}.

Thus the continuous epimorphism
∏

n>1 Z/nZ →
∏

n∈I G/Hn restricts to an epimorphism
f : Ẑ → G.

(2) Our hypothesis implies that the set I defined above coincides with the set of
integers > 1, whence the map f is injective, and G ≃ Ẑ.

So, we need to show that any (continuous) epimorphism g : Ẑ → Ẑ is injective. Let
N = Ker(g). Then N is a closed subgroup of Ẑ. Since g is an epimorphism, for every
n > 1 we have that g−1(nẐ) is the unique subgroup of Ẑ of index n, i.e., equals nẐ. As
N ⊂ g−1(nẐ) for every n > 1, we get that N ⊂

⋂
n>1 nẐ = (1), i.e., g is injective.

Remarks. (1) The result of (2) extends easily to a profinite group G such that for every
n > 1, G has only finitely many open subgroups of index ≤ n.

(2) Ẑ is also called the free profinite group on one generator. It can be defined using
universal properties. Similarly, one can define free profinite groups on 2, 3, . . . ,ℵ0, . . .
generators.

(3.8) Definition. If G is a profinite group, then X ⊂ G generates topologically G, or is
a set of topological generators, iff the subgroup of G generated by X is dense in G. This
means: if N is an open subgroup of G, then the image of X in G/N generates G/N . We
saw already that 1̄ is a topological generator of Ẑ.
Exercise.
(1) Find a necessary and sufficient condition on the sequence (an)n≥2 ∈ Ẑ ⊂

∏
n≥2 Z/nZ

to be a topological generator of Ẑ. Show that if (an)n≥2 is a topological generator of
Ẑ, then there is an automorphism of Ẑ which sends 1̄ to (an)n≥2.

(2) Show that if f : Ẑ → G is a continuous epimorphism, where G is a profinite group,
and σ is a topological generator of G, then f−1(σ) contains a topological generator
of Ẑ. [Hint: show that if g : A → B is an epimorphism between two finite cyclic
groups, then every generator of B lifts to a generator of A. This result is true in
more generality and is called Gaschütz lemma: let g : A → B be an epimorphism
of finite groups, and assume that A is generated by d elements. If X ⊂ B is of size
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d and generates B, then there is some set Y generating A, of size d, and such that
g(Y ) = X .]

4. Zariski topology, etc.
In this section I recall some basic terminology coming from old-fashioned algebraic

geometry, a good reference is Chapter III in Lang’s book Introduction to algebraic geometry.
We fix two algebraically closed field K ⊆ Ω. Let n ∈ N, X = (X1, . . . , Xn).

(4.1) The Zariski topology. The Zariski topology on Kn is given by the following basic
closed sets

V (f1(X), . . . , fm(X)) = {a ∈ Kn | f1(a) = · · · = fm(a) = 0},

where f1(X), . . . , fm(X) ∈ K[X ]. Similarly, if B ⊂ K[X ], we define V (B) = {a ∈ Kn |
f(a) = 0 for all f(X) ∈ B}. Zariski closed sets are also called algebraic sets.

Dually, given a subset S of Kn, we define I(S) = {f(X) ∈ K[X ] | f(a) = 0 for all a ∈
S}. Note that I(S) is a radical ideal (i.e., if it contains fn then it contains f). Hilbert’s
Nullstellensatz tells us that if I is a proper radical ideal of K[X ], then V (I) ̸= ∅, and
that if f1(X), . . . , fm(X) ∈ K[X ], then I(V (f1(X), . . . , fm(X))) is the radical of the ideal
generated by f1(X), . . . , fm(X).

Dually, if S ⊂ Kn, then V (I(S)) is the smallest Zariski-closed subset of Kn containing
S, it is called the Zariski closure of S, and denoted by S̄.

Thus there is a correspondence between Zariski closed subsets of Kn and radical ideals
of K[X ]. Since K[X ] is Noetherian, we get that every strictly descending chain of closed
subsets of Kn is finite.

One can show that the Zariski topology on Kn is the topology induced by the Zariski
topology on Ωn.

(4.2) Irreducible components, (affine) varieties. Recall that a closed set is irreducible
if it is not the union of two proper closed subsets. One verifies (fairly easily) that the Zariski
closed set S is irreducible if and only if the ideal I(S) is prime.

The Noetherianity of the topology then implies that every closed subset S of Kn can
be expressed as a finite union of irreducible closed sets, and these closed sets correspond to
the minimal prime ideals containing I(S). They will be called the irreducible components
of the closed set S.

By convention, an (affine) variety is an irreducible closed subset of Kn.

(4.3) Coordinate ring, field of definition of an algebraic set. Let S ⊂ Kn be an
algebraic set, I = I(S). We then form the ring K[S] = K[X ]/I, this is the coordinate ring
of S (over K). If S is a variety, then K[S] will be a domain, and the dimension of S is the
transcendence degree of the field of fractions K(S) of K[S] over K. If S is an arbitrary
algebraic set, then dim(S) will be the sup of the dimensions of the irreducible components
of S.

If F is a subfield of K such that I is generated by I ∩ F [X ], then we say that S
is defined over F , and the ring F [S] = F [X ]/I ∩ F [X ] is the coordinate ring of S over
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F . There is a smallest subfield of K over which S is defined, and it is called the field of
definition of S.
Warning. The algebraic set S may be definable over F without being defined over F ,
but this phenomenon only occurs in positive characteristic. Here is an example: if K is of
characteristic p, and t ∈ K is transcendental over Fp, then the closed set {t} is definable
over F = Fp(tp) (by the equation Xp = tp), but it is not defined over F , since the ideal of
K[X ] generated by Xp − tp does not contain the element (X − t).

(4.4) Rational points. Let S ⊆ Kn be an algebraic set, and F a subfield (or subring) of
K. Then S(F ) = S ∩Fn is the set of S-rational points of S. We define S(Ω) to be the set
of points in Ωn which satisfy f(X) = 0 for all f ∈ I(S). (We usually write S instead of
S(Ω)). If S is a variety, a point a in S(Ω) is generic over K iff tr.deg(K(a)/K) = dim(S).

(4.5) Tensor products of F -algebras. Let F be a field. Recall that an F -algebra is
simply a ring containing F , and it is therefore an F -vector space. Let A and B be two
F -algebras. The F -algebra A ⊗F B is defined as follows:

Let EA and EB be bases of the F -vector spaces A and B respectively; we assume that
they both contain 1. Then as a vector space, A ⊗F B is the F -vector space with basis
E = {a ⊗ b | a ∈ EA, b ∈ EB}.

We now need to define multiplication on A ⊗F B. By definition, every element of
A ⊗F B will be a finite F -linear combination of elements of the basis. Let c, c′ ∈ EA and
d, d′ ∈ EB. Write cc′ =

∑
a∈EA

αaa, dd′ =
∑

b∈EB
βbb, where the αa and βb are in F . Then

define
(c ⊗ d) · (c′ ⊗ d′) =

∑

a∈EA,b∈EB

αaβba ⊗ b.

Note that this sum makes sense since almost all αa and βb are 0.
One extends multiplication to A ⊗F B in the unique fashion so that multiplication

is associative, distributive with the addition. Observe that A embeds into A ⊗F B by
identifying a ∈ EA with a⊗1, and similarly for B (identify b ∈ EB with 1⊗b). One denotes
these copies of A and B by A⊗1 and 1⊗B, and their elements by a⊗1, 1⊗b respectively.
One then defines a ⊗ b to be the element (a⊗ 1) · (1⊗ b). One important property is that
if a ∈ A, b ∈ B and c ∈ F , then c(a ⊗ b) = ca ⊗ b = a ⊗ cb.
Exercise. Convince yourself of the fact that the isomorphism type of A ⊗F B does not
depend on the choice of the bases EA and EB.

(4.6) Regular extensions. Let F ⊆ E be fields. Then E is a regular extension of F iff E
and F alg are linearly disjoint over F , i.e.: if elements of the F -vector space E are linearly
independent, then they are also linearly independent in the F alg-vector space EF alg. One
can show that this condition is symmetric. Equivalently, this happens iff the F -algebra
E ⊗F F alg is a domain. We will use this equivalent formulation.

If F is of characteristic 0 or is perfect, then E is a regular extension of F if and only
if E ∩ F alg = F . [This criterion does not work for imperfect fields.]

Let V be an algebraic set defined over F , and assume it is F -irreducible, i.e., cannot
be written as the union of two proper closed subsets defined over F , or equivalently, the
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ideal I(V ) ∩ F [X ] is prime. Consider the ring F [V ] = F [X ]/I(V ) ∩ F [X ], and its field of
fractions F (V ). Then one has:

V is a variety ⇐⇒ F (V ) is a regular extension of F

(4.7) Exercise. Show that if F is a subfield of E and L, and L is a Galois extension of
F , then E and L are linearly disjoint over F if and only E ∩ L = F .

5. Bounds on ideals in polynomial rings, and applications
We will want to express in a field F the following property: if V is a variety defined

over F , then V has a point with its coordinates in F . I.e., for all m, n, X = (X1, . . . , Xn),
we want to find axioms which are satisfied by F if and only if

For all f1(X), . . . , fm(X) ∈ F [X ] which generate a prime ideal in F alg[X ], there is an
n-tuple a such that f1(a) = · · · = fm(a) = 0.

The difficulty is of course to express that f1(X), . . . , fm(X) generate a prime ideal in
F alg[X ].

(5.1) Total degree. Let i = (i1, . . . , in) ∈ Nn. We define X i = X i1
1 X i2

2 · · ·X in
n , and

its (total) degree to be i1 + · · · + in. A polynomial in F [X ] is an F -linear combination
of monomials of this form, and we define its total degree to be the sup of the degrees of
the monomial occurring in it. For each integer d, the set of polynomials of total degree
≤ d forms a finite-dimensional vector space over F , and is denoted by F [X ]≤d. Say its
dimension is N(d). Then the vector space F [X ]≤d is definable in F (using N(d)-tuples),
as is the graph of the multiplication F [X ]≤d × F [X ]≤d → F [X ]≤2d. [For that one fixes an
enumeration mi of all monomials in X such that if the degree of mi is strictly less than the
degree of mj then i < j; thus the polynomial f(X) =

∑N(d)
i=1 aimi ∈ F [X ]≤d is encoded

by the N(d)-tuple (a1, . . . , aN(d)).]

(5.2) Bounds. The following result is classical, it was proved first by Hermann [He],
later by Seidenberg [S] (and there is a proof using ultraproducts in [DS]). I state it in its
entirety, although I will only need items (1) and (4).
Theorem. Let n, d be positive integers, X = (X1, . . . , Xn).
(1) There is a constant A = A(n, d) such that for every field F , polynomials f1, . . . , fm, g ∈

F [X ]≤d, if g belongs to the ideal of F [X ] generated by f1, . . . , fm, then there are
h1, . . . , hm ∈ F [X ]≤A such that g =

∑m
i=1 fihi.

(2) There is a constant B = B(n, d) such that for every field F , for every ideal I of F [X ]
generated by elements of F [X ]≤d and for every g ∈ F [X ]≤d, if gk ∈ I for some integer
k, then gB ∈ I.

(3) There is a constant C = C(n, d) such that for every field F , ideals I and J generated
by elements of F [X ]≤d, the ideals I∩J and J : I = {f ∈ F [X ] | fI ⊆ J} are generated
by elements of F [X ]≤C .

(4) There is a constant D = D(n, d) such that for every field F and ideal I of F [X ]
generated by elements of F [X ]≤d, if I is not prime, then there are g, h ∈ F [X ]≤D such
that gh ∈ I but g, h /∈ I.

(5) There is a constant E = E(n, d) such that for every field F and ideal I of F [X ]
generated by elements of F [X ]≤d, there are at most E minimal prime ideals containing
I, and they are generated by elements of F [X ]≤E.
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Note that the number m will be bounded by the number N(d) of monomials of degree ≤ d.

(5.3) Corollary. Let n ≥ 1. There is a formula ϕ(y), y an mN(d)-tuple of variables,
such that in every field F , for every mN(d)-tuple a in F , if f1, . . . , fm is the m-tuple of
elements of F [X ]≤d encoded by a, then

F |= ϕ(a) ⇐⇒ the ideal of F [X ] generated by f1, . . . , fm is prime.

Proof. Let D = D(n, d), A = A(n, D). Then f1, . . . , fm generate a prime ideal I in F [X ]
if and only if for all g, h ∈ F [X ]≤D, either gh /∈ I or one of g, h is in I,
if and only if for all g, h ∈ F [X ]≤D, either for all h1, . . . , hm ∈ F [X ]≤A, gh ̸=∑m

i=1 hifi, or there are h1, . . . , hm ∈ F [X ]≤A such that [g =
∑m

i=1 hifi or h =
∑m

i=1 hifi].
This last statement is clearly an elementary property of the mN(d)-tuple a of coeffi-

cients of f1, . . . , fm.

(5.4) Corollary. Let n ≥ 1. There is a quantifier-free formula ψ(y), y an mN(d)-tuple
of variables such that in every field F , for every mN(d)-tuple a in F , if f1, . . . , fm is the
m-tuple of elements of F [X ]≤d encoded by a, then

F |= ψ(a) ⇐⇒ the ideal of F alg[X ] generated by f1, . . . , fm is prime.

Proof. Take the formula ϕ(y) given by (5.3). By quantifier-elimination of the theory
of algebraically closed fields, there is a quantifier-free formula ψ(y) such that in every
algebraically closed field K, for every mN(d)-tuple a in K we have

K |= ϕ(a) ⇐⇒ K |= ψ(a).

But if the tuple a is in the subfield F of K, we have

K |= ψ(a) ⇐⇒ F |= ψ(a).

Thus F |= ψ(a) if and only if the m-tuple (f1, . . . , fm) of F [X ]≤d encoded by a
generates a prime ideal in F alg[X ].

(5.5) Pseudo-algebraically closed fields. A field F is pseudo-algebraically closed (ab-
breviated by PAC) if every variety V defined over F has an F -rational point. Using the
above, we therefore get:
Corollary. There is a theory (in the language of rings) whose models are exactly the PAC
fields.

(5.6) Side comments on PAC fields. Examples are: real closed fields, separably closed
fields, and we will see also that ultraproducts of finite fields are PAC.

An algebraic extension of a PAC field is also PAC.
In order to show that a field F is PAC, it suffices to show: every (irreducible) curve

C defined over F has infinitely many points with their coordinates in F .
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6. Pseudo-finite fields and their elementary theory

In this section, we will introduce pseudo-finite fields, study their theory, and show
that they are the infinite models of the theory of finite fields.

(6.1) Definition. A field F is pseudo-finite iff it satisfies the following three conditions.
P1 F is perfect (i.e., either char(F ) = 0 or if char(F ) = p > 0 then every element is a

p-th power).
P2 For every n > 1, Gal(F alg/F ) ≃ Ẑ.
P3 Every variety V defined over F has an F -rational point.

(6.2) Lemma. There is a set of sentences (in the language of rings) whose models are
exactly the pseudo-finite fields, and we denote this set (or rather, the deductive closure of
this set) by Psf.

Proof. In other words, we need to show that these properties can be expressed by sentences.

Property P1 is easy: you add a collection of sentences saying that if p = 0 then
∀x∃y yp = x (p is the term 1 + 1 + · · ·+ 1, p-times).

Property P3 is an infinite collection of sentences θn,d, one for each pair (n, d). The
sentence θn,d will say: for every variety V defined by polynomials in F [X1, . . . , Xn]≤d,
there exists x ∈ V .

Property P2 is a little more complicated. We will show below that it is enough to find
a collection of sentences, one for each n > 1, expressing that F has exactly one algebraic
extension of degree n. Let us assume this result, and fix some n > 1.

Consider the formula Irr(y) where y = (y1, . . . , yn) which says: ∀z1, . . . , zn, for all
1 ≤ d < n the polynomials Xn + y1Xn−1 + · · ·+ yn and (Xd + z1Xd−1 + · · ·+ zd)(Xn−d +
zd+1Xd−1 + · · · + zn) are not equal.

It is clear that it is a first-order formula, and it exactly says that the polynomial
Xn + y1Xn−1 + · · · + yn is irreducible (over F ).

Thus the sentence ∃y Irr(y) will guarantee that F has at least one algebraic extension
of degree n.

In order to show that having exactly one extension of degree n is an elementary
property of the field F , we will express the following fact in a first-order way: if Irr(y)
and Irr(y′) hold, then the algebraic extension obtained from F by adjoining a root of the
polynomial Xn +

∑n
i=1 yiXn−i contains a root of the polynomial Xn +

∑n
i=1 y′

iX
n−i.

To do that, we will show that if Irr(a) holds in F , and α is a root of the polyno-
mial Xn +

∑n
i=1 aiXn−i, then the structure (F (α), +,×, 0, 1, PF ) is definable in F , where

+,×, 0, 1 are the usual addition, multiplication and constants on the field F (α), and PF is
a predicate for the subfield F . The idea is to view F (α) as an F -vector space with basis
{1, α, . . . , αn−1}, and to define in this vector space operations that make it isomorphic to
the field F (α).

We let S = Fn, +∗ the usual addition on the vector space S, and 0∗ = (0, 0, . . . , 0),
1∗ = (1, 0, . . . , 0), P ∗

F the set of elements {(b, 0, . . . , 0) | b ∈ F}. Clearly these sets,
elements and relations are definable in F , with no parameters.
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Multiplication by α induces a linear transformation of the vector space F (α), and its
matrix is

Mα =

⎛

⎜⎜⎝

0 0 · · · 0 −an

1 0 · · · 0 −an−1
...

...
. . .

...
...

0 0 · · · 1 −a1

⎞

⎟⎟⎠

since αn = −
∑n

i=1 aiαn−i. Note that multiplication by αi is also a linear transformation,
and its matrix is simply M i

α. So, we define ×∗ as follows

(x1, . . . , xn) ×∗ (y1, . . . , yn) = (x1In + x2Mα + · · ·xnMn−1
α )

⎛

⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎠ .

Here In denotes the identity (n × n)-matrix. Observe that the definition of ×∗ uses the
tuple (a1, . . . , an), but is totally uniform.

Hence, there is a formula θ∗(y) of the language of fields, such that if Irr(b) holds for
some n-tuple b in F and β is a root of Xn +

∑n−1
i=1 biXn−i, then

F |= θ∗(b) if and only if F (β) satisfies that if c is an n-tuple of elements of F which
satisfies Irr(x) in F , then ∃z zn +

∑n
i=1 cizn−i.

(6.3) Lemma. Let F be a perfect field, and assume that Gal(F alg/F ) ≃ Ẑ. Let E be
an elementary extension of F . Show that Gal(Ealg/E) = Ẑ, that F alg ∩ E = F and that
Ealg = EF alg.

Proof. Exercise.

(6.4) Theorem. Let Q be the set of all prime powers, and let U be a non-principal
ultrafilter on Q. Then the field F ∗ =

∏
q∈Q Fq is a pseudo-finite field.

Proof. Since each Fq is prefect, F ∗ is perfect. Also, each Fq satisfies all axioms of P2, and
therefore so does F ∗. However, no finite field Fq will satisfy all axioms in P3. Indeed, fix
q, and consider the algebraic set V defined by

Y
∏

0≤i<j≤q

(Xi − Xj) = 1.

One verifies easily that this set is a variety (it coordinate ring is Fq[X0, . . . , Xq,
∏

0≤i<j≤q(Xi−
Xj)−1], which is a domain, and whose field of fractions is purely transcendental over Fq),
but it cannot have an Fq-rational point, since Fq only has q distinct elements. However,
this is essentially the only problem. A result of Lang-Weil (see below (6.5)) will tell us
that any axiom θn,d occurring in P3 will hold in all sufficiently large Fq’s. Hence given
n, d, the set of q ∈ Q such that Fq satisfies θn,d is cofinite, and therefore must be in U . By
&Los’ theorem, F ∗ satisfies all θn,d.
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(6.5) The theorem of Lang-Weil. For every positive integers n, d, there is positive con-
stant C (= C(n, d)) such that for every finite field Fq and variety V defined by polynomials
in Fq[X1, . . . , Xn]≤d, ∣∣|V (Fq)|− qdim(V )

∣∣ ≤ Cqdim(V )−1/2.

[Recall that V (Fq) is the set of points of V ∩ Fn
q , and dim(V ) is the dimension of V , i.e.,

tr.deg(Fq(V )/Fq).]
In particular, if q > C2, then any variety V as above will have a rational point in Fq.

Indeed, we get
0 < −Cqdim(V )−1/2 + qdim(V ) ≤ |V (Fq)|.

The constant C can in fact be effectively computed.

(6.6) Recall that we want to show that the pseudo-finite fields are exactly the models of
the theory Tf consisting of all sentences true in all finite fields. For that, we will study the
completions of Psf, and show that any pseudo-finite field is elementarily equivalent to an
ultraproduct of finite fields. In fact a stronger statement is true: a pseudo-finite field of
characteristic 0 is elementarily equivalent to an ultraproduct of fields Fp, p ranging over
all primes. But for that, we need first to find the elementary invariants of pseudo-finite
fields. The results given below will also allow us to show that the completions of Psf are
model complete if one enlarges the language in a certain way.

(6.7) Lemma. Let F be a perfect PAC field.
(1) Let a be a tuple in some field containing F , and assume that the field F (a) is a regular

extension of F . Then there is an F -morphism F [a] → F .
(2) Assume that F is ℵ1-saturated, that A is a countable subset of some field containing F

and that F (A) is a regular extension of F . Then there is an F -morphism F [A] → F .
Proof. (1) Consider the ideal I(a/F ) = {f(X) ∈ F [X ] | f(a) = 0}, where X is a tuple of
the same length as a. Then F [a] ≃ F [X ]/I(a/F ), and our regularity assumption tells us
that the algebraic set V defined by I(a/F ) is a variety. Hence there is b ∈ V (F ). The map
which sends a to b extends to an F -morphism F [a] → F : by definition of V , b satisfies all
polynomial equations over F which are satisfied by a.

(2) Finding this map is the same thing as finding some subset B of F which satisfies
all equations satisfied by the (infinite) tuple A. Use (1) and ℵ1-saturation.

(6.8) The embedding lemma. Let K, E, F be perfect fields, with K ⊂ E, F , F and E
are regular extensions of K, E is countable and F is an ℵ1-saturated pseudo-finite field.
Assume that we have a continuous isomorphism Φ : Gal(F alg/F ) → Gal(Ealg/E) such
that for every a ∈ Kalg and σ ∈ Gal(F alg/F ), Φ(σ)(a) = σ(a).

Then there is a Kalg-embedding ϕ : Ealg → F alg such that F is a regular extension
of ϕ(E), and for every a ∈ Ealg and σ ∈ Gal(F alg/F ),

ϕ(Φ(σ)(a)) = σ(ϕ(a)).

Comments. (1) Since all fields are perfect, the regularity of F over K is equivalent to
Kalg ∩ F = F .
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(2) What is important in this result, is the fact that there is a K-embedding ϕ of E
into F such that F is a regular extension of ϕ(E).

(3) Because E and F are regular extensions of K, the restriction maps Gal(Ealg/E) →
Gal(Kalg/K) and Gal(F alg/F ) → Gal(Kalg/K) are onto. Thus the first condition on Φ
simply tells us that the following diagram commutes:

Gal(F alg/F ) Φ−→ Gal(Ealg/E)
↘ ↙

Gal(Kalg/K)

The second condition on Φ simply tells us that it coincides with the map induced by
ϕ from Gal(F alg/F ) to Gal(Ealg/E), σ ;→ ϕ−1σϕ.
Proof of the embedding lemma. We work inside a large algebraically closed field Ω, and
we may actually “move” E and assume that it is linearly disjoint from F over K, so that
Ealg and F alg are linearly disjoint over Kalg. Indeed, replacing Ealg by a Kalg-isomorphic
copy ψ(E), it suffices to solve the problem for ψ(E), replacing Φ by the map Ψ−1Φ, where
Ψ : Gal(ψ(Ealg/ψ(E)) → Gal(Ealg/E) is the map σ ;→ ψ−1σψ. Getting the embedding ϕ
of ψ(Ealg) into F alg will then give us the desired embedding of Ealg into F : simply take
ϕψ.

Because Ealg and F alg are linearly disjoint over Kalg, and because E and F are regular
extensions of K, we get that E and F are linearly disjoint over K. We also get that

Gal(EalgF alg/EF ) ≃ Gal(Ealg/E) ×Gal(Kalg/K) Gal(F alg/F ),

where the right-hand-side group denotes the set of elements (σ1, σ2) of Gal(Ealg/E) ×
Gal(F alg/F ) such that σ1|Kalg

= σ2|Kalg
. Indeed, one shows (easily) that the Galois

extensions EalgF and EF alg are linearly disjoint over EFKalg, and the result follows by
Galois theory.

An alternate way of looking at it is to notice that the field EalgF alg is simply the
field of fractions of Ealg ⊗Kalg F alg . If σ1 ∈ Gal(Ealg/E) and σ2 ∈ Gal(F alg/F ) have the
same restriction to Kalg, one then defines (σ1, σ2)(a⊗ b) = σ1(a)⊗ σ2(b) for a ∈ Ealg and
b ∈ F alg, and then checks that this extends to an automorphism of Ealg ⊗Kalg F alg.

Under this identification, because of our condition on Φ, the graph of Φ−1 can be natu-
rally viewed as a closed subgroup H of Gal(EalgF alg/EF ). Moreover, if σ0 ∈ Gal(F alg/F )
is a topological generator of Gal(F alg/F ), then the element τ0 = (Φ(σ0), σ0) is a topo-
logical generator of H (and of course Φ(σ0) is a topological generator of Gal(Ealg/E)).
Observe that the map τ0 ;→ σ0 defines an isomorphism between H and Gal(F alg/F ).

Extend τ0 to an automorphism τ of (EF )alg, and let M be the subfield of (EF )alg of
elements fixed by τ . Then, because τ |Ealg

= Φ(σ0) and τ |F alg
= σ0, we have

M ∩ Ealg = E, M ∩ F alg = F,

i.e., M is a regular extension of E and of F . Observe also that the restriction maps H =
Gal((EF )alg/M) → Gal(Ealg/E) and H → Gal(F alg/F ) being isomorphisms (because
they are epimorphisms, and all groups are isomorphic to Ẑ), we obtain that

(EF )alg = MEalg = MF alg.
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Because M contains F , the field MF alg is in fact the ring generated by M and F alg.
Because E is countable, there is some countable subfield M0 of M containing E and such
that F alg[M0] contains Ealg. Then, F (M0) is contained in M and is therefore a regular
extension of F . By Lemma (6.7), there is an F -morphism F [M0] → F , and because
F alg and FM0 are linearly disjoint over F , this morphism extends to an F alg-morphism
ϕ : F alg[M0] → F alg. This is our desired ϕ.

Observe first that since M0 contains E, we have ϕ(E) ⊂ F . We need to show that Φ
coincides with the map induced by ϕ on the Galois groups. So, let a ∈ Ealg, and write it
a =

∑
i mibi for some mi ∈ M0 and bi ∈ F alg. Then

Φ(σ0)(a) = τ(a) =
∑

i

τ(mi)τ(bi) =
∑

i

miσ0(bi)

because τ is the identity on M and τ |F alg
= σ0. Thus

ϕ(Φ(σ0)(a)) =
∑

i

ϕ(mi)σ0(bi)

because ϕ is the identity on F alg. On the other hand we have

σ0(ϕ(a)) = σ0(
∑

i

ϕ(mi)bi) =
∑

i

ϕ(mi)σ0(bi)

because the ϕ(mi) are in F . This gives us the desired equality. Because σ0 is a topological
generator of Gal(F alg/F ), if σ ∈ Gal(F alg/F ) and a ∈ Ealg, then σ(ϕ(a)) = σj

0(ϕ(a)) for
some integer j, and thus we get the desired result.

To show that F is a regular extension of ϕ(E), it suffices to show that ϕ(E)alg ∩F =
ϕ(E). Let a ∈ Ealg. Then

ϕ(a) ∈ F ⇐⇒ σ0(ϕ(a)) = ϕ(a)
⇐⇒ ϕ(Φ(σ0)(a)) = ϕ(a)
⇐⇒ Φ(σ0)(a) = a

⇐⇒ a ∈ E.

(6.9) Comments. This is a rather weak version of the embedding lemma. The full version
of this lemma can be obtained by changing some of the hypotheses and the conclusion.
Here are the changes to be made:

– F does not need to be pseudo-finite, only PAC (but it is still ℵ1-saturated and
perfect).

– Φ is a (continuous) epimorphism from Gal(F alg/F ) → Gal(L/E), where L is a
Galois extension of E.

The conclusion on the regularity of the extension F of ϕ(E) is then replaced by:
ϕ(L) ∩ F = ϕ(E).

The strategy of the proof is essentially the same. Again, one has the graph H of Φ
sitting as a closed subgroup of Gal(F alg/F )×Gal(Kalg/K)Gal(Ealg/E), and one uses the fact
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that H ≃ Gal(F alg/F ) is projective to “lift” H to a closed subgroup of Gal((EF )alg/EF ).
See the book Field arithmetic by Fried and Jarden [FJ].

There is also a version of this lemma for imperfect PAC fields.

(6.10) Corollary. Let K1, K2, E, F be perfect fields, with E a regular extension of K1, F
a regular extension of K2, E countable and F pseudo-finite ℵ1-saturated. Assume that we
have an isomorphism Φ : Gal(F alg/F ) → Gal(Ealg/E) and an isomorphism ϕ0 : Kalg

1 →
Kalg

2 satisfying for all a ∈ Kalg
1 and σ ∈ Gal(F alg/F ),

ϕ0(Φ(σ)(a)) = σ(ϕ0(a)).

Then ϕ0 extends to an embedding ϕ : E → F such that F is a regular extension of ϕ(E),
and for all a ∈ Ealg and σ ∈ Gal(F alg/F ),

ϕ(Φ(σ)(a)) = σ(ϕ(a)).

Proof. If Kalg
1 = Kalg

2 and ϕ0 is the identity, then this is simply (6.8). We will show
how to reduce to the situation of that lemma. Extend ϕ0 to an isomorphism ψ defined
on Ealg. Now apply the previous lemma to the situation (ψ(Ealg), F alg, Ψ−1Φ) where
Ψ : Gal(ψ(E)alg/ψ(E)) → Gal(Ealg/E) is the map σ ;→ ψ−1σψ. One needs of course
to verify that they satisfy the hypotheses of Lemma (6.8), but this is easily done, since
ψ extends ϕ0. One then finds a Kalg

2 -embedding ρ of ψ(E)alg into F alg satisfying the
conclusions of (6.8). Take ϕ = ρψ, and verify that it works.

(6.11) Proposition. Let E and F be pseudo-finite fields, K a common subfield which is
perfect and such that E and F are regular extensions of K. Then

E ≡K F.

Proof. By ≡K we mean that E and F are elementarily equivalent in the language L(K) of
rings to which one has added constants for the elements of K. First of all we may assume
that K is countable (since K can be expressed as a union of perfect subfields which are
countable and relatively algebraically closed in E and F ). Then, we may assume that
E and F are ℵ1-saturated: indeed, let E∗ and F ∗ be elementary extensions of E and F
respectively, and which are ℵ1-saturated (see (1.22) for the existence). Then

E ≡K F ⇐⇒ E∗ ≡K F ∗.

Step 1. Let E0 ≺ E be countable and containing K. Then E is a regular extension of E0,
and E0 is a regular extension of K. We want to apply the embedding Lemma (6.8), but for
that we need to find the isomorphism Φ. Let σ1 be a topological generator of Gal(F alg/F ),
and consider its restriction σ0 to Kalg. Then σ0 extends to a topological generator σ2 of
Gal(Ealg/E) (see (3.8)) and sending σ1 to σ2 will define a group isomorphism Φ between
Gal(F alg/F ) and Gal(Ealg/E) (which are both isomorphic to Ẑ). By definition, σ1 and σ2

have the same action on Kalg.
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By Lemma (6.3), the restriction map Gal(Ealg/E) → Gal(Ealg
0 /E0) is an isomorphism,

and we let Φ0 be the composition of Φ with this isomorphism.
By (6.10), there is a Kalg-embedding ϕ0 : Ealg

0 → F alg, such that F is a regular
extension of ϕ0(E0), and the map Gal(F alg/F ) → Gal(Ealg

0 /E0) dual to ϕ0 coincides with
Φ0.
Step 2. Let F0 ≺ F be countable and contain ϕ0(E0). We want to find an embedding
of F0 into E which extends ϕ−1

0 and has certain properties. Obviously we will use (6.10).
Because F0 ≺ F , the restriction map Gal(F alg/F ) → Gal(F alg

0 /F0) is an isomorphism,
and this allows us (by composing it with Φ−1) to get an isomorphism Ψ0 : Gal(Ealg/E) →
Gal(F alg

0 /F0) such that the tuple (E, F0, ϕ
−1
0 , Ψ0) satisfies the hypotheses of (6.10).

Hence there is some ψ0 : F alg
0 → Ealg, which extends ϕ−1

0 , and is such that E is a
regular extension of ψ0(F0), and the map Gal(Ealg/E) → Gal(F alg

0 /F ) dual to ψ0 coincides
with Ψ0.
Step 3. We now use the same technique as in step 2 to build inductively sequences of
partial isomorphisms ϕi and ψi such that:
(i) The domain of ϕi is an elementary substructure Ei of E and F is a regular extension

of the image of ϕi; the domain of ψi is an elementary substructure of F , and E is a
regular extension of the image of ψi.

(ii) Each ψi extends ϕ−1
i , and each ϕi+1 extends ψ−1

i .
Consider now Eω =

⋃
i∈N Ei and Fω =

⋃
i∈N Fi. Then Eω ≺ E and Fω ≺ E. More-

over, Eω ≃K Fω: take
⋃

i ϕi (=
⋃

i ψ−1
i ). Since Eω and Fω are K-isomorphic, we have

Eω ≡K Fω. From Eω ≺ E and Fω ≺ F , we deduce E ≡K F .

(6.12) Corollary. Let E ⊂ F be pseudo-finite fields. Then E ≺ F ⇐⇒ Ealg ∩ F = E.
Proof. Immediate by (6.11).

(6.13) Theorem. Let E and F be pseudo-finite fields, and K a common subfield. Then

E ≡K F ⇐⇒ E ∩ Kalg ≃K F ∩ Kalg.

Proof. First note that since E and F are perfect, E∩Ksep ≃K F ∩Ksep ⇐⇒ E∩Kalg ≃K

F ∩ Kalg.
Assume that E ≡K F , and let N be the set of all finite Galois extensions of K. For

each L ∈ N , we consider the set SL = {σ ∈ Gal(Kalg/K) | σ(E ∩ L) = F ∩ L}. This
set is a union of cosets of the open subgroup Gal(Kalg/L), and is therefore open and
closed. If L ⊆ M ∈ N , then SM ⊆ SL; hence if L, M ∈ N , then SL ∩ SM ⊇ SLM . It
therefore suffices to show that each SL is non-empty: if we do that, we will have shown
that any finite intersection of SL’s is non-empty. By compactness of Gal(Kalg/K), it will
follow that

⋂
L∈N SL is non-empty, i.e., that E ∩ Kalg ≃K F ∩ Kalg. Fix L ∈ N , and

α ∈ L such that E ∩ L = K(α) (this is where we use the separability of L over K). Let
f(X) ∈ K[X ] be the minimal polynomial of α over K. Then E |= ∃x f(x) = 0, and
therefore F |= ∃x f(x) = 0. Thus there is a K-embedding of E ∩ L into F ∩ L, by some
σ ∈ Gal(L/K), and hence [F ∩ L : K] ≥ [E ∩ L : K]. Reasoning similarly with F ∩ L,
we obtain that [E ∩ L : K] ≥ [F ∩ L : K] and therefore [E ∩ L : K] = [F ∩ L : K], i.e.,
σ(E ∩ L) = F ∩ L, and SL ̸= ∅.
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This shows one direction. For the other, fix some K-isomorphism ϕ0 : E ∩ Kalg →
F ∩ Kalg, and extend it to a K-isomorphism ϕ defined on E. Then E ≡K ϕ(E) because
ϕ is a K-isomorphism, and ϕ(E) ≡F∩Kalg F by Proposition (6.11).
Remark. The left-to-right direction holds for arbitrary fields. Let E and F be fields, K a
common subfield. Then E ≡K F implies E ∩ Kalg ≃K F ∩ Kalg. If E and F are perfect,
then the above proof works with no change, and also if K is perfect. If K is not perfect,
then in particular K is infinite and one sets N to be the set of all finite normal extensions
of K, and defines SL as before. If L1, . . . , Ln are the conjugates of L∩F over K (under the
action of Aut(L/K)), one then shows (as in the separable case) that for every a ∈ E ∩ L,
there is some i such that a ∈ Li. Then the result follows from
Lemma. Let K be an infinite field, and V, V1, . . . , Vn subspaces of the K-vector space W .
If V ⊆ V1 ∪ · · · ∪ Vn, then V ⊆ Vi for some i.

The proof of this lemma is by induction on n. If n = 1 there is nothing to prove. If
V1 ∩ V ⊆ V2 ∪ · · · ∪ Vn, then actually V ⊆ V2 ∪ · · · ∪ Vn and we are done by induction
hypothesis. So, assume that V1 ∩ V ̸⊂ V2 ∪ · · · ∪ Vn, take a ∈ V ∩ V1, a /∈ V2 ∪ · · · ∪ Vn

and b ∈ V . For every k ∈ K, we have a + bk ∈ V , and therefore there is some i such that
a + bk ∈ Vi. Because K is infinite, there are k ̸= ℓ ∈ K and i such that a + bk and a + bℓ
belong to the same Vi. Then (a + bk)− (a + bℓ) = b(k− ℓ) ∈ Vi, which implies that b ∈ Vi,
a ∈ Vi and therefore i = 1, V ⊆ V1.

(6.14) Theorem. The completions of Psf are obtained by specifying the characteristic,
and adding a collection of sentences of the form ∃t f(t) = 0 and ∀t f(t) ̸= 0, where f(T )
ranges over all polynomials in the single variable T and with coefficients in Z.
Proof. This is a direct consequence of (6.13), or rather of its proof: the isomorphism type
of the relative algebraic closure of the prime field inside a field can be described by a
conjunction of sentences of that form.

(6.15) Theorem. Let ϕ(x) be a formula. Then there is a formula ψ(x) which is a Boolean
combination of formulas of the form ∃t f(x, t) = 0, where f(X, T ) is a polynomial over Z,
T a single variable (and X a tuple of variables of the same length as x).
Proof. This follows from Corollary (1.4) and (the proof of) Theorem (6.13). Indeed, let ∆
be the set of Boolean combinations of formulas of the form ∃t f(x, t) = 0, where f(X, T ) is
a polynomial over Z, T a single variable. This set is clearly closed under disjunctions. By
Corollary (1.4), we need to show that if E is a pseudo-finite field, a a tuple in E satisfying
ϕ(x), and if F is another pseudo-finite field, and b a tuple in F which satisfies (in F ) all
formulas in ∆ which are satisfied by a in E, then F |= ϕ(b).

So, let E, a and F, b be as above. Note that the formula expressing that p = 0 is in ∆
(nothing prevents the polynomial f(X, T ) to be constant). Hence our hypothesis implies
that the prime subfields k of E and F are isomorphic. Similarly, the tuples a and b satisfy
exactly the same equations over Z (hence over Z/pZ if the characteristic is p), and this
implies that there is an isomorphism ψ between the subrings k[a] of E and k[b] of F which
sends a to b. This isomorphism extends to an isomorphism ψ between the subfields k(a)
and k(b). Our assumption on a and b satisfying the same formulas from ∆ says that if
f(a, T ) ∈ k[a][T ], then

E |= ∃t f(a, t) = 0 ⇐⇒ F |= ∃t f(b, t) = 0.
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It follows that the isomorphism ψ extends to an isomorphism between k(a)alg ∩ E and
k(b)alg ∩F . The fact that F |= ϕ(b) now follows from the more general version of Theorem
(6.13):
Theorem (6.13)’. Let E and F be pseudo-finite fields, K1 a subfield of E and K2 a
subfield of F . Assume that we have an isomorphism ψ between K1 and K2. Then

(E, a)a∈K1 ≡ (F, ψ(a))a∈K1 ⇐⇒ there is ψ′ ⊃ ψ such that ψ(E ∩ Kalg
1 ) = F ∩ Kalg

2 .

[Here (E, a)a∈K1 ≡ (F, ψ(a))a∈K1 means that in the language L(K1), the constant corre-
sponding to a ∈ K1 is interpreted in F by the element ψ(a).]
Proof. Extend ψ to some isomorphism θ defined on E. Then (E, a)a∈K1 ≡ (θ(E), ψ(a))a∈K1.
By (6.13), we have

(θ(E), ψ(a))a∈K1 ≡ (F, ψ(a))a∈K1 ⇐⇒ θ(E) ∩ Kalg
2 ≃K2 F ∩ Kalg

2

and the result follows: K2-isomorphisms between θ(E) ∩ Kalg
2 and F ∩ Kalg

2 are in one-
to-one correspondence with isomorphisms between E ∩ Kalg

1 and F ∩ Kalg
2 which extend

ψ.

(6.16) Model completeness. We form the language Lc by adjoining to the language L
of rings new constant symbols ci,n, where 2 ≤ n ∈ N and 1 ≤ i ≤ n. The theory Psfc

is obtained by adding to the theory Psf for each n an axiom stating that the polynomial
Xn +

∑n
i=1 ci,nXn−i is irreducible.

Note that every pseudo-finite field expands to a model of Psfc: if F is pseudo-finite,
for each n choose the ci,n to be the coefficients of some (monic) irreducible polynomial of
degree n.
Theorem. The theory Psfc is model complete.
Proof. Let E ⊆ F be models of Psfc. If L is an algebraic extension of E of degree n, then
L is generated over E by a solution of the equation Xn +

∑n
i=1 ci,nXn−i. Since F |= Psfc,

this polynomial stays irreducible over F , i.e., F ∩ L = E. Then Corollary (6.12) gives us
E ≡E F , i.e., E ≺ F .

(6.17) Theorem. Let F be a pseudo-finite field, and S ⊂ Fn be definable. Then there is
an algebraic set W ⊆ Fn+m such that, if π : Fn+m → Fn is the natural projection, then
π(W ) = S, and for each y ∈ S, the fiber π−1(y) ∩ W is finite.
Proof. We may assume that S is ∅-definable. Expand F to a model of Psfc. By model
completeness of Psfc, we know that every formula ϕ(x) is equivalent modulo Psfc to an
existential formula (of Lc). Since an inequation x ̸= 0 is equivalent (modulo the theory of
fields) to the formula ∃y xy = 1, we may assume that ψ(x) is positive, and therefore there
is an algebraic set W ⊂ Fn+m such that π(W ) = S. To check that W can be chosen so
that the fibers are finite, we need to look a little closer at the way one obtains W .

By (6.15), we know that S is definable by a Boolean combination of formulas ∃t f(x, t) =
0, where f(X, T ) ∈ Z[X, T ], T a single variable. I.e., it is equivalent to a conjunction of
disjunctions of formulas ϕi(x), where ϕi(x) is either ∃t fi(x, t) = 0, or ∀t fi(x, t) ̸= 0.
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Step 1. Replace each formula ϕi(x) of the form ∃t fi(x, t) = 0 by an L-formula ψi(x)
expressing that either the polynomial fi(x, T ) is identically 0, (i.e., viewed as a polynomial
in T its coefficients are all 0), or that some coefficient of fi(x, T ) has a multiplicative
inverse and ∃t fi(x, t) = 0. Thus ψi(x) is the conjunction of a (positive) quantifier-free
formula in x, and of an existential formula ∃yρi(y, x) which is such that, in any field F ,
for any tuple a in F , the formula ρi(y, a) has only finitely many solutions.
Step 2. Assume now that ϕi(x) is of the form ∀t f(x, t) ̸= 0.

We will show that it is equivalent modulo Psfc to the disjunction of a formula which
says that the polynomial f(x, T ) is constant and takes a non-zero value (i.e., the conjunc-
tion of some equations with an existential formula saying that the constant coefficient is
invertible), and of an existential formula ∃y ρi(x, y) = 0 where y is a tuple of variables,
ρi(x, y) is a conjunction of equations, and for every field F and tuple a in F , the formula
ρi(x, a) has only finitely many solutions in F .

For that, it suffices to say the following: let m be the degree of f(x, T ) in T , and
assume that f(x, T ) is not identically constant. Then F does not contain a root of this
polynomial if and only adding a root of this polynomial defines a proper extension of F .
I.e., if and only if, in the Galois extension L of F of degree m! (which contains therefore
all roots of f(x, T )), the polynomial f(x, T ) can be written

∏m
i=1(T − ai) where the ai’s

are not in F . Using the interpretation of L in F (using the constants ci,m!), we see that
this is expressible by an existential formula (see (6.2)). The variables which appear in the
formula ρi with an existential quantifier will be:

– variables for the coefficients bi,j of the ai’s with respect to the basis {1, α, . . . , αm!−1,
where α is a root of Xm!+

∑
ci,m!Xm!−i. Up to a permutation of the ai’s, these are uniquely

determined.
– variables cj with 1 ≤ j ≤ m, which appear in the equation

∏m!
i=2 bi,jcj − 1 which

implies that the element aj is not in F .
This finishes the proof of the second step.

Step 3. So we have shown that ϕ(x) is equivalent modulo Psfc to a conjunction of
disjunctions of positive existential formulas ∃yψi(x, y) where for each field F and tuple
a, the set of elements satisfying ψi(a, y) is finite. The conclusion follows observing that
the conjunction of two formulas ∃y

∧
f1(x, y) = · · · = fm(x, y) = 0 and ∃y

∧
g1(x, y) =

· · · = gn(x, y) = 0 is (logically) equivalent to ∃y, z f1(x, y) = · · · = fm(x, y) = g1(x, z) =
· · · = gn(x, z) = 0, and that their disjunction is equivalent (modulo the theory of fields) to
∃y, z

∧
i,j fi(x, y)gj(x, z) = 0.

An alternate and more model-theoretic proof, is simply to use Corollary (1.4) and
Theorem (6.13). But one still needs to use the trick given in Step 2. Try it as an exercise,
considering the set ∆ of existential formulas of the form ∃y ψ(x, y), where ψ(x, y) is a
conjunction of equations, and satisfying that for every field F and tuple a the set ψ(a, y)
is finite.

(6.18) Theorem. The pseudo-finite fields are exactly the infinite models of Tf . The
pseudo-finite fields of characteristic 0 are exactly the infinite models of the set of sentences
true in all prime fields.
Proof. In order to prove the first assertion, by Proposition (1.27) we need to show that if
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F is a pseudo-finite field, then there is some non-principal ultrafilter U on the set Q of all
powers of prime numbers, and such that

F ≡
∏

q∈Q
Fq/U , i.e., by (6.14), F ∩ kalg ≃k

(∏

q∈Q
Fq/U

)
∩ kalg,

where k denotes the prime subfield of F .
The proof is actually easier when char(F ) > 0, but we will first do the case where
char(F ) = 0. In that case, note that the second assertion implies the first.
Let F be a pseudo-finite field of characteristic 0 and write Qalg as the union of an increasing
chain Ln, n ∈ N, of finite Galois extensions of Q. For each n, let En = Ln∩F , and let I(n)
be the (finite) set of subfields of Ln which properly contain En. We will find a sentence θn

which describes Ln ∩F . Choose a generator α of En over Q, and let fn(T ) be its minimal
polynomial over Q. Similarly, for each M ∈ I(n), choose a generator βM of M over Q,
let gM (T ) be the minimal polynomial of βM over Q, and define gn(T ) =

∏
M∈I(n) gM (T ).

Consider now the sentence θn : ∃t fn(t) = 0 ∧ ∀t gn(t) ̸= 0. This is a sentence satisfied by
F , and if E is any field of characteristic 0, then E |= θn ⇐⇒ E ∩ Ln ≃ En.

The formula θ0 ∧ · · · ∧ θn is still of the right form (since
∧

i ∀t gi(t) ̸= 0 is equivalent
to ∀t

∏
i gi(t) ̸= 0). It suffices to show that for every n, the set An = {p prime | Fp |=

θ0 ∧ · · · ∧ θn} is non-empty and infinite. Indeed, if U is an ultrafilter on the set P of all
prime numbers and which contains all An’s, then for each n, we will have, by &Los’ theorem

F ∗ =
∏

p∈P
Fp/U |= θn,

so that we will obtain
F ∗ ∩ Qalg ≃ F ∩ Qalg , i.e., F ∗ ≡ F.

The infiniteness of the sets An’s follows from Tchebotarev’s theorem. The consequence of
Tchebotarev’s theorem which we will use is :
Let f1(T ), . . . , fm(T ), g(T ) ∈ Z[T ], T a single variable. Let L be the Galois extension of Q
obtained by adjoining all roots of the polynomials fi(T ), i = 1, . . . , m. Assume that there
is a subfield E of L such that Gal(L/E) is cyclic and

E |=
m∧

i=1

∃t fi(t) = 0 ∧ ∀t g(t) ̸= 0.

Then the set of prime numbers p such that Fp |=
∧m

i=1 ∃t fi(t) = 0∧∀t g(t) ̸= 0 is infinite.
Let us now assume that F is of characteristic p > 0. If F ∩Falg

p is infinite, then let I be
an infinite sequence of integers such that if n < m ∈ I then n|m and F ∩Falg

p =
⋃

n∈I Fpn .
Take for U any non-principal ultrafilter containing {pn | n ∈ I}. One then verifies easily
that a polynomial f(T ) ∈ Fp[T ] has a root in F if and only if it has a root in all but finitely
many of the Fpn , n ∈ I, if and only if it has a root in

∏
n∈Q Fpn/U .
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If F ∩ Falg
p is finite, say of size pn, then consider the set I = {pℓn | ℓ a prime }, and

take for U any non-principal ultrafilter containing I. Again, one verifies that if F ∗ =∏
m∈N Fpm/U , then F ∗ ∩ Falg

p ≃ Fpn .

(6.19) Corollary/Remark. Observe that we have shown the following: let k be a prime
field, E and algebraic extension of k which has at most one algebraic extension of each
degree. Then there is some pseudo-finite field F such that F ∩ kalg ≃ E.

(6.20) Decidability issues. Observe first that by Theorem (6.18) we have

Psf ⊂ Psf0 ⊂ Tprime and Psf ⊂ Tf ⊂ Tprime.

We will first show that the theory Psf is decidable, that is, that there is an algorithm
which decides, given a sentence θ, whether it is true in all pseudo-finite fields or not. From
this we will be able to derive the decidability of the other theories.

We have an enumeration of a set Γ consisting of axioms for the theory Psf (this assumes
that the bounds given in (5.2) on degrees of polynomials can be computed effectively, but
they can). Hence, we can produce an enumeration of the set of all proofs made using axioms
of Γ, and therefore of the theory Psf (by the completeness theorem, if a sentence is true
in all pseudo-finite fields, then it is provable from Γ). Similarly, we have an enumeration
of a set Γ0 of axioms for the theory Psf0 of all pseudo-finite fields of characteristic 0, and
of the theory Psf0. Note that Γ0 = Γ ∪ {p ̸= 0 | p a prime}.

This tells us that if θ is in Psf, then going through the enumeration of Psf we will
find it. However, we need another procedure to decide if θ /∈ Psf. This is what we will do
below. Let us fix a sentence θ.

Let ψn, n ∈ N, be an enumeration of all sentences which are Boolean combinations
of sentences of the form ∃t f(t) = 0, where f(T ) ∈ Z[T ]. By (6.15), we know that
Psf ⊢ θ ↔ ψn for some n, i.e., θ ↔ ψn ∈ ∆, and therefore we can effectively find this ψn.
Note that the proof of θ ↔ ψn uses only a finite number of axioms expressing the PAC
property, and we can therefore find a constant C1 (given by Lang-Weil (6.5)) such that in
all finite field Fq with q > C1 we have

Fq |= θ ↔ ψn.

It now remains to decide whether ψn is true in all pseudo-finite fields. I.e., we need to
show that if k is a prime field, and E ⊂ kalg has at most one algebraic extension of each
degree, then E |= ψn.
Step 1 Decide whether ψn ∈ Psf0 or not.

Observe that ψn is (equivalent to) a disjunction of sentences of the form
∧

i ∃t fi(t) =
0∧ ∀t g(t) ̸= 0. If g(T ) is not identically constant, then Qalg ̸|= ∀t g(t) ̸= 0, and therefore,
we can assume that ψn is a disjunction of sentences of the form

∧
i ∃t fi(t) = 0. Let L be

the splitting field of all polynomials appearing in ψn. Then one can compute effectively
Gal(L/Q), as well as those subfields E of L such that Gal(L/E) is cyclic. Hence we an
decide whether or not ψn is true in all subfields E of L such that Gal(L/E) is cyclic. If it
is not, then ψn /∈ Psf0 and therefore ψn /∈ Psf, i.e., θ /∈ Psf0, θ /∈ Psf.
Step 2 Decide whether ψn ∈ Psf.
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Assume that ψn ∈ Psf0. The proof of ψn from Γ0 only uses finitely many axioms
expressing that the characteristic is ̸= p, and therefore there is a constant C2 such that
ψn holds in all pseudo-finite fields of characteristic p > C2. It therefore remains to check
whether ψn holds in all those of characteristic p ≤ C2. Fix one such p. Then, as in step 1
we can assume that ψn is positive, and (because Gal(Falg

p /Fp) is pro-cyclic), it suffices to
check that Fp |= ψn. This is certainly decidable.
Step 3. Decidability of Tf and of Tprime.

We know that the equivalence θ ↔ ψn is true in all fields of size > C1. If ψn /∈ Psf,
then θ /∈ Tf and we are done. Assume that ψn ∈ Psf. Then θ is true in all fields of size
> C1, and we can decide whether or not it is true in all fields of size ≤ C1. This gives the
decidability of Tf .

Similarly for Tprime, we reduce to the case where ψn ∈ Psf0. Then θ is true in all
fields Fp with p > C1, C2, and it suffices to check what happens in the others. This shows
the decidability of Tprime.

7. Measure, definability, and other applications

(7.1) Counting points. We saw in Theorem (6.18) that every pseudo-finite field is
elementarily equivalent to an ultraproduct of finite fields. This implies in fact that every
pseudo-finite field elementarily embeds into an ultraproduct of finite fields (an ultrapower
of ultraproducts is an ultraproduct). Now, every finite field can be equipped with a measure
(the counting measure), and one would think that the ultraproduct of these measures might
define something interesting on F . It turns out that this is the case, and we will see below
how it works. The main tool is the following
Theorem. Let ϕ(x, y) be a formula, x an n-tuple of variables (y an m-tuple of variables).
Then there is a finite set D ⊂ {0, 1, . . . , n}× Q>0 ∪ {(0, 0)} of pairs (d, µ), and a constant
C > 0, formulas ϕd,µ(y) for (d, µ) ∈ D such that:
(1) If Fq is a finite field and a an m-tuple in Fq, then there is some (d, µ) ∈ D such that

∣∣|ϕ(Fq, a)|− µqd
∣∣ < Cqd−1/2. (∗)

[Here ϕ(Fq, a) denotes the set {b ∈ Fn
q | Fq |= ϕ(b, a)}.]

(2) The formula ϕd,µ(y) defines in each Fq the set of tuples a such that (∗) holds.
I am not going to give a proof of this result, although I will later sketch a strategy for

the proof. With some work one can show that the constant C can be found effectively, see
[FHJ2], and also [[FS], [FHJ1]. First a few remarks.

(7.2) Remarks.
(1) Observe that the pair (0, 0) has been put in D to take care of the case when ϕ(Fq, a)

is empty.
(2) If ϕ(x, a) defines a variety V , then this is simply the Theorem of Lang-Weil, with

d = dim(V ) and µ = 1.
(3) Thus, if ϕ(x, a) defines an algebraic set W , all of whose irreducible components are

defined over Fq, then d will be the maximal dimension of the irreducible components
of W , and µ the number of these components of maximal dimension. Note that
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therefore, if ϕ(x, y) is quantifier-free, then the associated set of pairs will be contained
in {0, . . . , n}× N>0 ∪ {(0, 0)}.

(4) If q is sufficiently large, the formulas ϕd,µ(y) will define a partition of the parameter
set Fm

q .
(5) If n = 1, then there are positive numbers A ∈ N and r ∈ Q such that for every Fq and

tuple a in Fq,
either |ϕ(Fq, a)| < A or |ϕ(Fq, a)| ≥ rq.

Indeed, let D be the set of pairs (d, µ) associated to ϕ(x, y); define A0 = sup{µ |
(0, µ) ∈ D}, r0 = inf{µ | (1, µ) ∈ D}. Let r = r0/2 and A = sup{A0 + C, 4C2/r2

0}.
Using (∗), this gives the assertion.

(6) Observe that if q is sufficiently large, (0, µ) ∈ D and Fq |= ϕ0,µ(a), then, because
q−1/2 becomes very small, and in particular < 1/2, the number µ must give the exact
size of the set ϕ(Fq, a) defined by ϕ(x, a).

(7.3) Some simple applications of this result.
(1) There is no formula of the language of rings which defines in each field F2

q the subfield
Fq.

(2) We know that the multiplicative group of Fq is cyclic, of order q − 1. There is no
formula which defines in all fields Fq the set of generators of the multiplicative group
F×

q .
(3) Let G, H be groups definable in the pseudo-finite field F , and assume that f : G → H

is definable, Ker(f) is finite, and dim(G) = dim(H) = d. Then

µ(G)[H : f(G)] = µ(H)|Ker(f)|.

Proof. (1) If ϕ(x) is a formula, there are A > 0 and r ∈ Q>0 such that for every finite
field Fq, the size of the set defined by ϕ is either ≤ A or greater than rq. hence, we cannot
have a formula which defines in all Fq2 a set of size

√
q2.

(2) The function φ (called the Euler function) giving the number of generating elements
of a cyclic group can be computed. Note that if m, n are relatively prime integers then
φ(nm) = φ(n)φ(m) (since Z/mnZ ≃ Z/nZ × Z/mZ). Also one has that φ(pn) = (p −
1)pn−1, since any lifting of a generator of Z/pZ to Z/pn/Z is a generator of Z/pnZ.

First observe that if pn > 2, then φ(pn) ≥
√

n. Hence, for every A ∈ N, the set of
integers n such that φ(n) < A is finite.

We will now show that for every ε > 0, there is some prime power q such that
φ(q − 1) < ε(q − 1). Observe that

φ(n)/n =
∏

ℓ a prime divisor of n

(1 − 1
ℓ
).

Fix some prime p, and let ℓ1, . . . , ℓm be distinct prime numbers, M =
∏m

i=1(ℓi − 1). Then
for every i, we have pM ≡ 1 mod(ℓi) and therefore φ(pM − 1) ≤ (pM − 1)

∏m
i=1(1 − 1/ℓi).

Hence we can find arbitrarily small values of φ(pM−1)
pM−1 , which shows our assertion.
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The existence of a formula defining the set of generators in all Fq would then, as in
(1), contradict (7.2)(5).

(3) Let F ∗ =
∏

i∈I Fqi/U be an elementary extension of F , let a be a tuple of elements
of F needed to define f, G and H (and their group law, and (a(i))i a sequence such that
[a(i)i]U = a.

Let ϕ1(x, a) be the formula defining G, ψ1(x, y, z, a) the one defining its group law,
ϕ2(x, a) the formula defining H, ψ2(x, y, z, a) the one defining its group law, and θ(x, y, a)
the formula defining the graph of f . The following property is then a first order property
of the parameter a:

ψi(x, y, z, a) is the graph of a group operation on the set defined by ϕi(x, a) (i = 1, 2),
and θ(x, y, a) is the graph of a group morphism between the set defined by ϕ1(x, a) and
the set defined by ϕ2(x, a), whose kernel is of size m.

Hence, by &Los’ theorem, for a set J ∈ U , we have, for all j ∈ J , that the following
statement holds in Fqj :
ψ1(x, y, z, a(j)) is the graph of a group operation on the set Gj defined by ϕ1(x, a(j)),
ψ2(x, y, z, a(j)) is the graph of a group operation on the set Hj defined by ϕ2(x, a(j)), and
θ(x, y, a(j)) is the graph of a group morphism fj : Gj → Hj , whose kernel is of size m.

But Gj and Hj are finite!! Hence we have |Gj |[Hj : fj(Gj)] = |Hj||Ker(fj)|. For qj

sufficiently large, dividing by qd
j , we get µ(Gj)[Hj : fj(Gj)] = µ(Hj)|Ker(f)|.

There is a first-order formula which expresses that fact, is satisfied in all Fqj for j ∈ J ,
and therefore is satisfied by a in F ∗, whence also in F . This gives the result.

(7.4) Very rough sketch of the proof of Theorem (7.1). The result is proved by
induction on the complexity of formulas.

Let us first assume that ϕ(x, y) is positive quantifier-free, that is, it is a disjunction
of conjunction of equations (over Z).

Let Fq be a finite field, and a a tuple in Fq. Consider the set S defined by ϕ(x, a).
Then S = W (Fq), where W is the algebraic set given by the equations of ϕ(x, a). However,
we do not know that the Theorem of Lang-Weil can tell us the estimate of how many points
there are: we will be able to apply this theorem only if all irreducible components of W are
defined over Fq. In order to be able to use Lang-Weil, we must therefore find an algebraic
set W ′ such that W ′(Fq) = W (Fq) and all irreducible components of W ′ are defined over
Fq. This is done in the following fashion:

Write W = W1 ∪ · · · ∪ Wm where each Wi is irreducible over Fq. If Wi is a variety,
then we know by Lang-Weil (6.5) that |W (Fq)| ∼ qdim(Wi) and we do nothing. If Wi is
not a variety, then Wi has several irreducible components, and any point in Wi(Fq) will
belong to the intersection W ′

i of these components, and we replace Wi by W ′
i . We repeat

the procedure and find eventually an algebraic set W ′, all of whose irreducible components
are defined over Fq and such that W ′(Fq) = W (Fq). This procedure is effective, and using
the results on bounds in polynomial rings, and we can write W ′ = W ′

1∪ · · ·∪W ′
ℓ , where the

W ′
i are varieties defined over Fq. If d is the maximum of the dimensions of the W ′

i , and µ
is the number of components of W ′ of dimension d, the result of Lang-Weil will then give
us that |W (Fq)| ∼ µqd. One also knows that having dimension d is an elementary property
of the coefficients of a set of polynomials defining a variety. Thus, there is a formula ϕa(y)
satisfied by a in Fq and which expresses how we obtained W ′ from W , and that W ′ has
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exactly µ components of maximal dimension d. For each pair (Fq, a) we can find such a
formula. By compactness, there are a finite number of those, say ϕ1(y), . . . , ϕk(y) such
that in any finite field F, we have F |= ∀y (∃xϕ(x, y)) ↔ (

∨
j ϕj(y)). To each formula

ϕj(y) is associated a pair (d, µ), and we group them to obtain the desired ϕd,µ.
The case of a quantifier-free formula ϕ(x, y) follows, observing that modulo the theory

of fields, an inequation z ̸= 0 is equivalent to ∃y yz = 1. Thus, every quantifier-free
definable set is in bijection, via a projection, with an algebraic set. We then use the first
case.

Let us now assume that ϕ(x, y) is arbitrary. Then, Theorem (6.17) tells us, using
compactness, that there are positive quantifier-free Lc-formulas ψ1(x, y, z), . . . , ψm(x, y, z)
such that

Psf ⊢ ∀x, y (ϕ(x, y) ↔ ∃z
∨

j

ψj(x, y, z)),

and furthermore such that for some integer N , in any field F one has

F |= ∀x, y (∃z ψj(x, y, z) → ∃≤Nz ψj(x, y, z)).

The same equivalence holds in sufficiently large finite fields, say of size ≥ C′ for some
C′ (only depending on ϕ(x, y)). Given some sufficiently large finite field F and tuple a in F,
we know by the previous steps how to estimate the size of the sets defined by the formulas
ψi(x, a, z). The problem is that the set defined by

∨
j ψj(x, a, z) is not in bijection with the

set defined by ϕ(x, a): given some x in that set, there may be several z such that ψj(x, a, z)
holds. One uses a trick to transform the algebraic sets defined by the ψj , in such a way
that we are able to count how many z are sitting above an x. Then we use some counting
arguments and induction to conclude. The constant C of the Theorem will be sufficiently
large so that, in field of size smaller than C′ (and in which we do not necessarily have the
equivalence), the inequality still holds. E.g., one can choose C ≥ C′n, where n = |x|.

(7.5) Definition of the measure on pseudo-finite fields. Let ϕ(x, y) be a formula (x
and n-tuple of variables), and D, ϕd,µ(y) the set and formulas given by Theorem (7.1). It
follows from Remark (7.2)(6) that if F is a pseudo-finite field and a a tuple in F , then there
will be a unique pair (d, µ) ∈ D such that F |= ϕd,µ(a). We then define dim(ϕ(x, a)) = d
and µ(ϕ(x, a)) = µ. If S is the set defined by ϕ(x, a), then we also write dim(S) and µ(S)
respectively.
Proposition. Let F be a pseudo-finite field, S, T two definable sets.
(1) If V is a variety defined over F , then dim(V (F )) = dim(V ) and µ(V (F )) = 1.
(2) Assume that T ∩ S = ∅. Then

µ(S ∪ T ) =

⎧
⎨

⎩

µ(S) + µ(T ) if dim(S) = dim(T ),
µ(S) if dim(S) > dim(T ),
µ(T ) if dim(S) < dim(T ).

(3) Assume that f : S → T is a definable function, which is onto. If for all y ∈ T ,
dim(f−1(y)) = d, then dim(S) = dim(T )+d. If moreover for every y ∈ T , µ(f−1(y)) =
m, then µ(S) = mµ(T ).
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(4) Let us define a function mS on definable subsets of S as follows. Assume that T ⊂ S
is definable, and let (d, µ) = (dim(S), µ(S)), (e, ν) = (dim(T ), µ(T )). Then

mS(T ) =
{

0 if e < d,
ν/µ if d = e.

Then mS is a finitely additive measure on the set of definable subsets of S.
(5) Let S̄ be the Zariski closure of S (in F alg. I.e., the smallest Zariski closed set containing

S. It is defined over F ). Then dim(S) = dim(S̄). [That is, we are saying that the
algebraic dimension of the algebraic set S̄ coincides with the model-theoretic dimension
of the set S]

Proof. (1) is clear.
Recall that F embeds elementarily in some ultraproduct

∏
q∈Q /U of finite fields.

Assume that S is defined by ϕ(x, a), write a = [aq]U , and Sq for the subset of Fn
q defined

by ϕ(x, aq). Note that for some set A ∈ U , we will then have Fq |= ϕd,µ(aq) for all q ∈ A,
and therefore |Sq| ∼ µqd. A moment’s thought shows that this gives items (2) - (4).

(5) By (6.17), there is an algebraic set W (F ) ⊂ Fn+ℓ such that S = π(W (F )) and the
restriction of the projection π to W is finite-to-one. Without loss of generality, W (F ) is
Zariski dense in W , and by (3) we obtain that dim(W ) = dim(S). Working now in F alg,
we have that π is also finite-to-one on a Zariski-dense open subset of W , and therefore
dim(W ) = dim(V ) (algebraic dimensions). Since V ⊇ S̄, we get that dim(V ) = dim(S̄).

(7.6) Existence of certain bounds. Let ϕ(x, y) be a formula.
(1) There is a number M such that in any finite or pseudo-finite field F , the length of a

chain of definable subsets of Fn defined by formulas ϕ(x, a) for some tuples a in F , is
bounded by M .

(2) There is a number M such that in any finite field or pseudo-finite field F , if S is a
definable set and (ai)i∈I is a set of tuples such that each ϕ(x, ai) defines a subset of
S of the same dimension d as S, and for i ̸= j, dim(ϕ(x, ai) ∧ ϕ(x, aj)) < d, then
|I| ≤ M .

Proof. These two facts follow from general properties of measures. It suffices to show them
for all pseudo-finite fields, since then they will be true in all sufficiently large finite fields,
whence, taking into account the finitely many small finite fields, we will get the bound M .

(1) Assume that this is not the case, i.e., that there are such chains of arbitrarily
large length. Then, going to a sufficiently saturated pseudo-finite field F , we can find
a sequence (ai)i∈N of tuples in F such that if i < j then the set Sj defined by ϕ(x, aj)
is strictly contained in the set Si defined by ϕ(x, ai). Let D be the finite set of pairs
associated to ϕ. Because D is finite, we may, going to a subsequence, assume that for
every i ∈ N, dim(Si) = d and µ(Si) = µ. The proof is by induction on d.

If d = 0, then we know that µ is the size of the set Si, and therefore |I| = 1. Assume
d > 0 and that the result holds for all definable sets of smaller dimension. For i > 0 let
Ti = S0 \ Si. Then the sets Ti, i ∈ N, form a strictly increasing chain of subsets of S0,
and we have dim(Ti) < d (since (dim(Si), µ(Si)) = (dim(S0), µ(S0))). This contradicts the
induction hypothesis and proves the result.
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(2) Let D be the set of pairs associated to the formula ϕ(x, y), and let ν be the inf of
all µ such that (d, µ) ∈ D. If ϕ(x, ai), i ∈ I, define subsets Si of S such that dim(Si) = d
and dim(Si ∩ Sj) < d, then we get mS(Si) ≥ ν/µ(S) and mS(Si ∩ Sj) = 0. This gives
|I| ≤ µ(S)/ν.

8. Applications to finite fields
Applications are usually obtained in the following fashion. We have a family of sets

defined over finite fields (for instance, GLn(Fq), where n is fixed, q varies), and we know
it has a certain property P . From this we deduce that the corresponding set defined in
pseudo-finite fields (say, GLn(F )) has also property P . From this one deduces a certain
property Q of the set, and then conclude that Q is also true in all sufficiently large finite
fields. We saw already an application of this strategy in the previous section, where we
found bounds on the size of certain families of definable sets. Here are more applications.
Most of this material comes from the paper [HP2] by Hrushovski-Pillay. The proofs are
fairly elementary, and pleasant to read. They introduce some techniques which are classical
in simplicity theory.

(8.1) Projective varieties. We defined affine varieties in section 4. Projective varieties
are a more general concept. Let K be an algebraically closed field. We define the n-
dimensional projective space over K, Pn(K) as follows: consider Kn+1 \ {0}, and quotient
by the equivalence relation

(x0, . . . , xn)E(y0, . . . , yn) ⇐⇒ ∃λ x0 = λy0, . . . , xn = λyn.

The resulting object is Pn(K), and the E-equivalence class of (x0, . . . , xn) is (often) denoted
by (x0 : . . . : xn). (Observe that Pn(K) is interpretable in K). Zariski-closed subsets of
Pn(K) are the images (in Kn+1/E) of zero-sets of finite sets of homogeneous polynomials.
There is a covering of Pn(K) by affine subsets: namely, for each 0 ≤ i ≤ n, consider the
set Ui of elements (x0 : . . . : xn) with xi ̸= 0. There is a bijection fi : Ui → Kn obtained
by sending (x0 : . . . : xn) to (x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi) (i.e., one divides all
coordinates of a representing element by the i-th one, then deletes the i-th coordinate).
This bijection is continuous for the Zariski topology, and a subset W of Pn(K) is Zariski-
closed if and only if for every i, fi(W ∩ Ui) is Zariski-closed (in Kn).

A morphism f : V → W between two varieties is a function from V (K) to W (K),
whose coordinate functions are given locally by polynomials (i.e., for every a ∈ V (K),
f(a) ∈ W (K), and there is some open subset U of V (K) containing a, and on which f is
given by a tuple of elements of K[V ∩ U ].

(8.2) Algebraic groups. Recall that an algebraic group is an algebraic set G (affine or
projective), with a group law such that multiplication G × G → G and the inverse map
G → G are morphisms. This implies that these two maps are continuous (for the Zariski
topology), and that G is a topological group. Hence, all results of section 3 apply.

The connected component of G is the (unique) irreducible component of the algebraic
set G which contains the identity element 1, and it is denoted by G0. If G is defined over
K, then so is G0 (because 1 ∈ G(K)). The irreducible components of G are disjoint, and
are the cosets of G0 in G.

38



If G = G0, then one says that G is connected.
Examples. The best-known examples are probably GLn(K) (the group of n×n invertible
matrices), the additive group of K (usually denoted by Ga(K)) and the multiplicative
group K× (usually denoted by Gm(K)). A priori, GLn(K) is an open subset of Kn, since
it is defined by det(xi,j) ̸= 0, but it is in definable bijection with the subvariety of Kn+1

defined by det(xi,jy − 1 = 0. Similarly for K×. Non-affine examples are elliptic curves,
for instance the projective variety defined by y2z = x(x − z)(x − 2z) (which can also be
viewed as the affine variety defined by y2 = x(x − 1)(x − 2) to which one adds the point
at infinity (0 : 1 : 0)).

(8.3) Some properties of algebraic groups. Let G be an algebraic group. Then all
properties listed in (3.1) apply, since the Zariski topology on G is T1. Moreover we have:
(1) The center of G, Z(G), is an algebraic subgroup of G.
(2) A finite normal subgroup of a connected algebraic group is central.
Proof. (1) If g ∈ G, the centraliser CG(g) of g in G is a Zariski-closed subgroup of G (see
(3.1)(7)). Now, Z(G) is the intersection of all CG(g) and is therefore Zariski-closed.

(2) If H is a finite normal subgroup of G, and h ∈ H, then h has only finitely many
conjugates under the action of G (since they are all in the finite group H), and this implies
that CG(h) has finite index in G. Because G is connected, this implies that CG(h) = G,
i.e., that h ∈ Z(G).

(8.4) Definable subgroups of algebraic groups. Let F be a pseudo-finite field, G an
algebraic group defined over F , and H a definable subgroup of G(F ).
(1) Let H̄ be the Zariski closure of H. Then [H̄(F ) : H] is finite.
(2) Assume that H̄ = G. Then there is an algebraic group G′ and a surjective morphism

f : G′ → G, everything defined over F , such that f(G′(F )) is a subgroup of finite
index of H (and therefore of G(F )), and Ker(f) is finite (central).

Proof. (1) By Proposition (7.5)(5), we know that dim(H̄) = dim(H) = dim(H̄(F )), and
therefore mH̄(F )(H) > 0. Since the cosets of H in H̄(F ) are disjoint, there are at most
finitely many, i.e., [H(F ) : H] is finite.

(2) The proof of this result can be found in [HP2] and is fairly technical, I will not
give it. In view of Theorem (6.17) it is not very suprising.
Remarks. (1) A morphism f : G → H of algebraic groups which is onto and has finite
kernel is called an isogeny, and the groups G and H are said to be isogenous. Observe
that since G is connected, the kernel of f is necessarily central: Ker(f) is a finite normal
subgroup of G(K).

(2) Note the following immediate application of the fact that pseudo-finite fields be-
have like finite fields: if f : G → H is an isogeny of (connected) algebraic groups defined
over the pseudo-finite field F , then |Ker(f)(F )| = [H(F ) : f(G(F ))], see also (7.3).

(8.5) The following result is very useful. It is a generalisation of a theorem of Chevalley
for algebraic groups, and also a generalisation of a model-theoretic result called Zilber’s
irreducibility theorem and which holds in superstable groups of finite U-rank.
Theorem. Let F be a pseudo-finite field, G an algebraic group defined over F . Let
X(i), i ∈ I be a family of definable subsets of G(F ) (no uniformity is assumed).
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(1) Then there is a definable subgroup H of G(F ) and indices i1, . . . , iM ∈ I such that

H ⊂ X(i1)±1 · X(i2)±1 · · ·XiM
±1,

and for every i ∈ I, X(i)H/H is finite.
(2) If for every i ∈ I, the Zariski closure X(i) of X(i) is a variety and contains 1 (the

identity element of G), then in fact H equals the subgroup of G(F ) generated by all
X(i), i ∈ I, and its Zariski closure H̄ equals the algebraic subgroup of G generated
by all X(i), i ∈ I, and is contained in X(i1)

±1
· X(i2)±1 · · ·XiM

±1.
Very rough sketch of proof. I will not give the proof, it is rather long. One starts by showing
(2). The statement that the subgroup generated by the X(i) is an algebraic subgroup of
G is classical, due to Chevalley. Without loss of generality the family X(i) is closed under
inverses. Grosso modo one considers all sets Wα of the form Xα(1) · · ·Xα(m), takes one of
maximal dimension, and then shows that Wα · Wα is the group H0 generated by all X(i).

To get the result for the family X(i), one then considers the set U = Xα(1) · · ·Xα(m),
and show it has same dimension as H0. Lemma (8.6) below tells us that the subgroup H
generated by U is definable, and since it has the same dimension as H0, it must be of finite
index in H0(F ), and H0 = H̄.

Proof of (1) from (2). The irreducible components of each X(i) are defined over F ;
partitioning each X(i) into finitely many pieces if necessary (and enlarging the family),
we may therefore assume that each X(i) is irreducible. If X(i) does not contain 1, then
replace it by T (i) = g−1

i X(i) for some gi ∈ X(i). By (1), the group H generated by the
T (i) is definable, and we have X(i)H = g−1

i H.

(8.6) Lemma. Let U be a definable subset of G(F ), and assume that dim(U) = dim(G).
Then the subgroup H generated by U is definable, and there is an integer M such that
every element of H is the product of at most M elements of U or of U−1.

(8.7) Corollary. Let G be an algebraic group defined over the pseudo-finite field F , and
let H be a definable subgroup of G. Suppose that H is definably simple, i.e., that it has no
proper non-trivial definable normal subgroup, and that is non-abelian. Then H is simple.
Proof. Without loss of generality, H̄ = G. Then G = G0, since G0(F ) ∩ H is definable
and normal in H. Also, Z(G) ∩ H = (1). Furthermore, H has no definable subgroup of
finite index: if H1 is such a subgroup, then

⋂
g∈H Hg

1 is definable, of finite index in H, and
normal.

Let N be a normal subgroup of H. If N is finite, and 1 ̸= g ∈ N then CH(g) is a
definable subgroup of H of finite index, and therefore equals H. But then CG(g) = H̄,
which contradicts Z(G) ∩ H = 1. Hence N cannot be finite, and the conjugation class
of any 1 ̸= g ∈ N is infinite. Pick 1 ̸= g ∈ H, let X = gH = {h−1gh | h ∈ H} and let
Y = g−1X . Then Ȳ = g−1X̄ = g−1gG is irreducible, and contains 1. Hence, by (8.5), the
subgroup U of H generated by Y is definable. It is clearly normal, contained in N and
non-trivial: this give us the desired contradiction.

(8.8) Theorem. Let n > 1. There is an integer k such that every subgroup of GLn(Fp)
which is generated by elements of order p is of the form ⟨g1⟩·. . . ·⟩gk⟨ for some g1, . . . , gk ∈ G
of order p.
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Sketch of proof. If g ∈ GLn(Fp) is of order p > n, then

⟨g⟩ = {exp(t log(g)) | t ∈ Fp},

where log(g) = (g − In) − (g − In)2 + · · · + (−1)n−1(g − In)n−1/(n − 1) and exp(v) =
v + v2/2! + · · · + vn−1/(n − 1)!.

If there is no such k, we can find a increasing sequence p(i), i ∈ N, of prime numbers,
and for each i ∈ N, a subset Ai of elements of GLn(Fp(i)) of order p(i), such that the
subgroup Gi of GLn(Fp(i)) generated by Ai cannot be written as ⟨a1⟩ · . . . · ⟨ai⟩ for any
elements a1, . . . , ai ∈ Gi of order p(i).

Consider the structure Mi = (Fp(i), +, ·, Ai) and let M = (F, +, ·, A) a non-principal
ultraproduct of the Mi’s. Then F is a pseudo-finite field, and A is a set of unipo-
tent elements of GLn(F ). For each a ∈ A, consider the (definable) subgroup X(a) =
{exp(t log(a)) | t ∈ F}. Its Zariski closure is the subgroup (of GLn(F alg)) defined by
Y (a) = {exp(t log(a)) | t ∈ F alg}, which is a variety. Hence, by Theorem (8.5), the
subgroup H of GLn(F ) generated by the X(a), a ∈ A, is definable, and of the form
X(a1) · . . . · X(ak) for some k and a1, . . . , ak ∈ A.

There is a formula ψ(x1, . . . , xk) which is satisfied by a1, . . . , ak in M, and which
expresses that X(a1) · . . . · X(ak) is a subgroup G of GLn(F ) which contains A. if for
each 1 ≤ ℓ ≤ k, (aℓ(i)) is a sequence representing the element ai, by &Los’ theorem, there
is an infinite set J of integers i such that the tuples (a1(i), . . . , ak(i)) satisfy ψ. But this
contradicts our assumption on the structures Mi and gives the desired contradiction.
Remark. Observe also the following: let us call G∗ the algebraic subgroup of GLn(F alg

generated by the Y (a), a ∈ A. By (8.5) again, we have that [G∗(F ) : G] < ∞. By com-
pactness, this implies that there is some integer d such that, whenever G is a subgroup of
GLn(Fp) generated by elements of order p, if G∗ denotes the algebraic subgroup generated
by all Y (a), a ∈ G of order p, then [GLn(Fp) : G] ≤ d. Furthermore, it follows (easily)
that if p > d, then G contains all elements of order p of G ∗ (Fp). This result was proved
by Nori [N].

(8.9) Other results include:
Theorem. Let G be an almost simple algebraic group defined over the pseudo-finite
field F (G is almost simple if Z(G) is finite and G/Z(G) is a simple (non-abelian) simple
algebraic group). Then G(F ) has a smallest definable subgroup H of finite index, and
H/Z(H) is simple (as an abstract group).
Theorem. Let G be an almost simple algebraic subgroup of GLn defined over Z. Then
there are a finite number of formulas ψ1(x, y), . . . , ψm(x, y) such that whenever p is a prime
and M is a maximal subgroup of G(Fp) then for some i and tuple ai in Fp, M is defined
by the formula ψi(x, ai).

(8.10) Proposition (folklore). Let R be a domain which is finitely generated as a ring. If
R is a field, then R is finite. If R is infinite, then for every 0 ̸= a ∈ R, there are infinitely
many maximal ideals of R which do not contain a.
Proof. The proof is by induction on the number of generators of R, and it suffices to show
the second assertion, since it implies the first one (a field has no maximal ideal other than
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(0)). So, assume that R is infinite. If n = 1, then R = Z, and the assertion is clear.
Assume that the result holds for the subring S of R and that R = S[t]. There are two
cases to consider:
Case 1. t is transcendental over S.

Then R is a polynomial ring over S. Assume first that S is finite (so that it is a
field). Then S[t] contains infinitely many irreducible polynomials, and each irreducible
polynomial generates a maximal ideal. A non-zero element of R has only finitely many
irreducible factors, and this gives the result.

If S is infinite and 0 ̸= a(t) ∈ R, then S contains infinitely many elements c such that
a(c) ̸= 0. If a(c) ̸= 0, then by induction hypothesis, there are infinitely many maximal
ideals P of S such that a(c) /∈ P . Then (P, t − c) is a maximal ideal of R which does not
contain a(t).
Case 2. t is algebraic over S.

If S is finite, then so is R and we are done. Assume that R is infinite, let f(X) ∈ S[X ]
be a polynomial vanishing at t and of minimal degree. If b is its leading coefficient, then t
is integral over S[1/b], and therefore, if P is a maximal ideal of S not containing b, then P
extends to a maximal ideal of R (not containing b): indeed, the ideal P extends uniquely
to a maximal ideal P ′ of S[1/b]; the image of the monic polynomial f(X)/b in the ring
S[1/b][X ] is therefore non-constant, and has a non-constant irreducible factor.

Let 0 ̸= a ∈ R, and let g(X) ∈ S[X ] be a polynomial vanishing at a and of minimal
degree. Since a ̸= 0, the constant term c of the polynomial g(X) is non-zero. Let P be a
maximal ideal of R which does not contain bc (by induction hypothesis, there are infinitely
many of those). By the discussion above, P generates a proper ideal of S. If P ′ is a
maximal ideal of R which contains P , then P ′ ∩ S = P . This finishes the proof.

(8.11) Let R be a domain, generated by a1, . . . , an as a ring. Let X = Max(R) the set of
maximal ideals of R. We define a topology on X as follows: a basis of open sets are the
open sets Oa = {P ∈ X | a /∈ P}.
Proposition. Let R be as above, and assume that R is infinite.
(1) If P ∈ X , then R/P is finite.
(2) Let m ∈ N. The set {P ∈ X | |R/P | ≤ m} is finite.
(3) If a, b ∈ R are non-zero, then Oa ∩ calob = Oab. Hence a finite intersection of basic

open sets is a basic open set. The space X is compact, and every singleton is closed.
(4) Let 0 ̸= a ∈ R. Then Oa is infinite.
Proof. (1) The quotient R/P is a field, which is generated by the images a1/P, . . . , an/P
of a1, . . . , an in R/P . By (8.10), R/P must be finite.

(4) is also clear by (8.10).
(2) If P, P ′ ∈ X , we have P = P ′ if and only if a1/P, . . . , an/P and a1/P ′, . . . , an/P ′

satisfy the same equations with coefficients in Z. Hence, P = P ′ if and only if there is an
isomorphism between the field R/P and R/P ′ which sends ai/P to ai/P ′ for 1 ≤ i ≤ n.
But there are only finitely many isomorphism types of fields with n elements named, and
having size ≤ m.

(3) If P is a maximal ideal of R, then P is prime. Hence, if a, b ∈ R, then ab /∈ P ⇐⇒
a /∈ P and b /∈ P . This shows the first assertion.
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Let P ∈ X . If Q ∈ X , Q ̸= P , there is bQ ∈ Q \ P . Then {P} =
⋂

Q∈X,Q ̸=P ObQ .
Let Ui, i ∈ I, be a family of open sets such that X =

⋃
i Ui. By (1), every Ui is a union

of basic open sets, and we may therefore assume that every Ui is a basic open set, i.e., of
the form Oai for some 0 ̸= ai ∈ R. Then X =

⋃
i Oai is equivalent to ∅ =

⋂
i(X \Oai), i.e.,

no element of X contains all ai’s, i.e., the ideal generated by all ai’s contains 1. Hence there
are b1, . . . , bm ∈ R, i(1), . . . , i(m) ∈ I such that 1 =

∑m
j=1 biai(j). Then X =

⋃m
j=1 Oai(j) .

Note X is in general not Hausdorff.

(8.12) Exercise. Let R be an infinite domain, generated by a1, . . . , an as a ring. Let
(bm)m∈N be an enumeration of the elements of R. For each m choose a maximal ideal
P (m) of R such that b0 · · · bm /∈ P (m). Show that if U is any non-principal ultrafilter on
N, then R embeds naturally into

(∏
m∈N R/P (m)

)
/U .

(8.13) (8.12) can be used to show results on “reduction mod p” for almost all p. For
instance, the following result appears in [MVW], and is proved in [HP2] using model-
theoretic techniques:
Theorem. Let G be an algebraic subgroup of GLn which is defined over Q, and is almost
simple and simply connected (almost simple means that Z(G) is finite, and G/Z(G) is
simple non-abelian; simply connected means that there is no proper isogeny from any
algebraic group onto G). Let Γ be a finitely generated subgroup of G(Q) which is Zariski
dense in G. The homomorphism πp : Z → Fp, “reduction mod p”, then gives us for almost
all p an algebraic subgroup Gp of GLn (which is also almost simple and simply connected),
and sends Γ to a subgroup Γp of Gp(Fp).

Then for almost all p, πp(Γ) = Gp(Fp).

(8.14) The Frobenius. For each q = pn ∈ Q, consider the field Falg
p together with the

automorphism σq : x ;→ xq.
Let U be a non-principal ultrafilter on Q, and consider the difference field

(K, σ∗) =
∏

q∈Q
(Falg

p , σq)/U .

Hrushovski [H] and Macintyre [M] showed that this difference field is generic, i.e., that every
finite system of difference equations over K (i.e., polynomial equations in X, σ∗(X), . . . ,,
where X is a tuple of variables) which has a solution in some difference field extending
(K, σ∗) already has a solution in K∗. To do that, Hurshovski shows a Lang-Weil-type
estimate of the number of solutions of certain systems in the difference fields (Falg

p , siq). By
linearizing the system of equations, and applying a trick, one reduces genericity question to
the following question: given varieties U and V defined over K∗ and of the same dimension,
with V ⊂ U × Uσ∗

(Uσ∗
denotes the variety obtained by applying σ∗ to the defining

equations of U), and such that the projection maps V → U and V → Uσ∗
are dominant,

show that there is some a ∈ K∗ such that (a, σ∗(a)) ∈ V . The result of Hrushovski, which
implies the genericity of the difference fields (K∗, σ∗), is the following:
Theorem. Fix d and n. There is a constant C > 0 such that, for any q ∈ Q, whenever U
and V are varieties of dimension d defined over Falg

p by polynomials in Falg
p [X1, . . . , Xn]≤d
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and Falg
p [X1 . . . , Xn, Y1, . . . , Yn]≤d respectively, and are such that V ⊂ U × Uσq and the

projection maps V → U and V → Uσq are dominant, then

∣∣|{a ∈ Falg
p

n | (a, σq(a)) ∈ V }|− cqd
∣∣ < Cqd−1/2,

where c = [Falg
p (V ) : Falg

p (U)]/[Falg
p (V ) : Falg

p (U)]insep.
Generic difference fields have very nice model-theoretic properties, similar to the ones

exhibited by pseudo-finite fields. Observe that Fix(si), the subfield of elements fixed by σ,
is then pseudo-finite. Generic difference fields can be thought of as “universal models” for
difference fields. As for pseudo-finite fields, the elementary theory of a generic difference
field is entirely determined by the behaviour of the automorphism on the algebraic closure
of the prime field. Again, one almost obtains quantifier-elimination; every definable set
is the finite-to-one projection of a set defoned by difference equations. The theory of
generic difference field is decidable, and any of its completions is supersimple and eliminates
imaginaries. Furthermore, Ryten and Tomasic have shown that Hrushovski’s result allows
one to define a finitely additive measure on definable subsets of generic difference fields,
similar to the one defined for pseudo-finite fields.
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