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Groups in supersimple and pseudofinite theories

Richard Elwes, Eric Jaligot, Dugald Macpherson and Mark Ryten

Abstract

We consider groups G interpretable in a supersimple finite rank theory T such that T eq eliminates
∃∞. It is shown that G has a definable soluble radical. If G has rank 2, then if G is pseudofinite, it
is soluble-by-finite, and partial results are obtained under weaker hypotheses, such as ‘functional
unimodularity’ of the theory. A classification is obtained when T is pseudofinite and G has a
definable and definably primitive action on a rank 1 set.
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1. Introduction

Shelah’s notion of simple first-order theory provides a context, broader than that of stable
theories, where there is an abstract model-theoretic notion of independence. The initial
examples of simple (in fact, supersimple) theories include the random graph, smoothly
approximable structures, and pseudofinite fields. These all arise from finite structures, and
indeed have the finite model property. Our goal is to develop the structure theory for
groups with supersimple theory, often with extra hypotheses. One such extra assumption is
pseudofiniteness, which seems very natural in view of the wealth of examples.

The theory of groups definable in supersimple (or just simple) theories is not nearly as
well developed as under stability assumptions. The main source is [44]. There are results on
connected components over specific parameter sets, and a theory of generic types (but without
stationarity). There is a version of the Zilber Indecomposability Theorem, with some of the
expected consequences. Much of the theory in [44] is developed in the more general context
of hyperdefinable groups. But issues settled early for superstable groups are wide open in the
supersimple context. It is not known if there could be a non-abelian simple group of SU-
rank 1, or if every infinite group definable in a finite rank supersimple theory contains an
infinite abelian subgroup. Strong results have been obtained for groups definable in particular
classes of supersimple theories, such as theories of smoothly approximable structures [10, 28],
and of pseudofinite fields [26]. These theories are measurable, in the sense of [35], and there
are the beginnings of a theory of groups definable in measurable theories; see, for example,
[19, 20, 35, 40].
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In this paper we investigate groups definable in supersimple finite rank theories, often
working under the extra assumption that the theory of the group is pseudofinite, that is,
it has infinite models but every sentence in it has a finite model. Part of the motivation
is that every pseudofinite group which is simple (in the group-theoretic sense) has, as a pure
group, supersimple finite rank theory. This, partly stimulated also by the programme on simple
groups of finite Morley rank, makes it natural to try to approach finite groups from model-
theoretic hypotheses, for example, to recover families of finite simple groups, along with their
representations. The paper [32] also contains material in this direction. The present paper
builds on results in [20, 40].

We work under various assumptions, and with various classes of theories. When we say that
a theory T eq eliminates ∃∞, or that ∃∞ is definable in T eq, we mean that, for any uniformly
definable family of sets in the sense of M eq, there is an upper bound on the size of its finite
members. The broadest class we consider is the class S of all infinite structures of finite rank
interpretable in some supersimple theory T such that T eq eliminates the quantifier ∃∞. The
rank function considered here is SU -rank, and the rank of a definable set X is denoted by
rk(X). As far as possible, we work just with the assumptions for the class S, but sometimes
we work with the class M of members of S which are also ‘functionally unimodular’. Here, a
structure M is functionally unimodular [18] if, whenever X and Y are definable subsets of M eq

and f : X → Y and g : X → Y are definable surjections such that f is everywhere k-to-1 and g
is everywhere l-to-1 (k, l ∈ N), we have k = l. It is easily checked that functional unimodularity
is a property of the theory of M , that every pseudofinite theory is functionally unimodular, and
that every measurable theory is functionally unimodular; see, for example, [19, Section 3], and
see the end of this introduction for further remarks. Sometimes, we strengthen ‘functionally
unimodular’ to the assumption ‘pseudofinite’, to obtain the class F of pseudofinite members
of S; so F ⊂ M ⊂ S. The class F properly contains another class of structures introduced
in [18, 35], and occasionally mentioned below, namely, the class of structures elementarily
equivalent to a non-principal ultraproduct of an asymptotic class of finite structures. When
investigating groups in F we try, as far as possible, to work without the classification of finite
simple groups (CFSG).

Our main results are the following.

Theorem 1.1. Let G ∈ S. Then

(i) any soluble subgroup of G normalized by H � G is contained in a definable H-invariant
soluble subgroup of G;

(ii) G has a largest soluble normal subgroup R(G), and R(G) is definable.

Theorem 1.2. Let G ∈ F have rank 2. Then G is soluble-by-finite.

Theorem 1.3. Let (X,G) ∈ F be a definably primitive permutation group, and suppose
that rk(X) = 1. Let S = Soc(G). Then one of the following holds.

(i) rk(G) = 1, and S is divisible torsion-free abelian or elementary abelian, has finite index
in G, and acts regularly on X.

(ii) rk(G) = 2. Here S is abelian and so regular and identified with X. There is an
interpretable pseudofinite field F with additive groupX, andG � AGL1(F ) (a subgroup
of finite index), in the natural action.

(iii) rk(G) = 3. There is an interpretable pseudofinite field F, S = PSL2(F ), PSL2(F ) � G �
PΓL2(F ), and X can be identified with PG1(F ) in such a way that the action of G on
PG1(F ) is the natural one.
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The classification of finite simple groups is used in the proof of Theorem 1.3(iii), and for
results in Section 6, but is not used elsewhere.

We give in Section 2 some background results, mostly known, which are used repeatedly in
the paper. In Section 3 we consider soluble groups in S. If G is a stable group, then every soluble
subgroup of G is contained in a definable soluble subgroup of G of the same derived length, and
every nilpotent subgroup of G is contained in a definable nilpotent one of the same class; see,
for example, [43, Theorems 1.1.10, 1.2.11]. In Section 3 we obtain partial analogues (at least
in the soluble case) for groups in S, in particular Theorem 1.1. It follows from Theorem 1.1(ii)
that there is a good general description of groups in F (see, for example, Proposition 3.4),
and the fine structure of such groups will (assuming CFSG) in part reduce to understanding
soluble groups in F .

Then in Section 4, we investigate rank 2 groups in M. The aim is to show that such groups
are soluble-by-finite. This would be an analogue of results in the superstable case [11], the
o-minimal case [37], and, more technically, of the description of thorn-U rank 2 super-rosy
NIP groups with finitely satisfiable generics [16]. We have not managed this, but give partial
results (Theorem 1.2). This result was proved in [20], under the strong additional assumption
that the group is an ultraproduct of members of an ‘asymptotic class’. Unlike that of [20], the
proof given here does not use CFSG.

In Section 5 we consider permutation groups (X,G) in F , that is structures (X,G), where
G is a group with a faithful definable action on a set X. Recall that the transitive permutation
group (X,G) is primitive if there is no proper non-trivial G-invariant equivalence relation on
X, or equivalently, if point stabilizers Gx (for x ∈ X) are maximal subgroups of G. We work
under the assumption that rk(X) = 1, and that G is definably primitive on X, that is, there is
no proper non-trivial definable G-invariant equivalence relation on X. Using CFSG, we prove
Theorem 1.3, the expected analogue of Hrushovski’s theorem about groups in a stable theory
acting definably and transitively on a strongly minimal set; that is, we show that rk(G) � 3,
and that the expected classification holds. The paper concludes with a short section related
to the third and fourth questions below. Using CFSG, we note that any rank 3 simple group
in F is isomorphic to PSL2(K) for some pseudofinite field K. Then, we note that definably
primitive permutation groups in F arise from finite permutation groups (X,G) such that |G|
is polynomially bounded in terms of |X|.

There are several easily formulated further questions.

(1) If G ∈ S (possibly with extra assumptions, such as functional unimodularity), then is
the product of the nilpotent normal subgroups of G necessarily nilpotent and definable?
That is, is there a good notion of Fitting subgroup?

(2) Is every rank 2 group in M soluble-by-finite?
(3) Describe rank 3 simple groups in F without use of CFSG.
(4) Show that there is a function f : N → N such that if (X,G) is a definably primitive

permutation group in F , then rk(G) � f(rk(X)).

Regarding Question 4, the analogous result is proved in the finite Morley rank case in [5],
and in the o-minimal case in [34]. Using results from [32], it may be straightforward; see
Remark 6.3.

Notation, and conventions. In simple theories, there are various familiar notions of rank,
namely,D-rank, SU -rank, and S1-rank, defined in [30]. It is shown in [30] that in a supersimple
theory, if a definable set X has finite rank in any of these senses, then it has the same rank in
each sense. Here we just write it as rk(X), except in a few possibly infinite rank situations where
we specify that rank is SU -rank. (We remark that for types, even in a finite rank situation,
these ranks may differ; see [44, 5.1.15].) In addition, in a measurable theory, there is a notion
of dimension of a definable set. The dimension is an upper bound on the SU -rank, but they
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may not coincide. However, this dimension behaves essentially like rank, and in a measurable
theory the results of this paper all hold if rank is replaced by dimension.

We denote by (X,G) a permutation group G on a set X. Its degree is |X|. If x ∈ X, then Gx

denotes the stabilizer of x. A G-congruence on X is a G-invariant equivalence relation on X.
We write Cn for the cyclic group of order n. The socle of a group G, denoted by Soc(G), is the
subgroup generated by the minimal normal subgroups of G. If x, y are elements of the group
G, then xy denotes yxy−1 (rather than y−1xy), and if H � G, then Hx := {hx : h ∈ H}.

We tend to use the words ‘definable’ and ‘interpretable’ interchangeably, allowing quotients.
When considering ultraproducts of members of F , we typically consider an infinite family
{Mj : j ∈ J} of finite structures, and a non-principal ultrafilter on J (usually with no
specific notation). We say that some property P holds for ultrafilter-many j ∈ J if {j ∈ J :
Mj satisfies P} lies in the ultrafilter.

Unimodularity. We mention a confusion which arose in [24] and led to an error in [18].
It has been corrected carefully by Kestner and Pillay in [29]. In the context of a strongly
minimal set, Hrushovski in [24] gives two notions of unimodularity, functional unimodularity
above, and another, strictly stronger, condition in terms of multiplicities of types. Formally, it
is stated in [24] that they are equivalent, but this is probably a typographical error, with ‘type
definable’ omitted in the definition of functional unimodularity. An incorrect proof that they
are equivalent is given in [18, Lemma 6.4]. Here we work with ‘functional unimodularity’, as
defined in [18], and use the notion outside the stable context. Beyond [18, Lemma 6.4] itself,
we are not aware of any resulting errors in the literature. The result is used in [18] to obtain
that any measurable stable theory is 1-based, and a correct proof of this is given in [29].

2. Background results

We list here some tools which will be heavily used in the paper.
First, an easy consequence of the Lascar Inequalities for SU-rank, and our finiteness of rank

assumption, is the following. Below, G/H refers just to the coset space, a definable set in the
sense of T eq.

Lemma 2.1 [44, p. 168]. (i) If G is a group with supersimple theory, and H � G, then
|G : H| is finite if and only if SU(H) = SU(G).

(ii) Let G ∈ S, and H be a definable subgroup of G. Then rk(H) + rk(G/H) = rk(G).

Next, a version of the Zilber Indecomposability Theorem relevant to supersimple theories was
first proved around 1991 in some notes of Hrushovski, which led to the paper [25]. Hrushovski
assumed that the underlying theory is an S1-theory, which includes the assumption that rank is
definable, but this is not needed for Theorem 2.2 below. A more general statement was proved
by Wagner [44, Theorem 5.4.5] for hyperdefinable groups in simple theories. The consequence
we use is the following [20, Remark 3.5].

Theorem 2.2 (Indecomposability Theorem). Let G be a group in S and {Xi : i ∈ I} be a
collection of definable subsets of G. Then there exists a definable subgroup H of G such that:

(i) H � 〈Xi : i ∈ I〉, and there are n ∈ N, ε1, . . . , εn ∈ {−1, 1}, and i1, . . . , in ∈ I, such that
H � Xε1

i1
. . . Xεn

in
.

(ii) Xi/H is finite for each i ∈ I.

If the collection of Xi is setwise invariant under some group Σ of definable automorphisms of
G, then H may be chosen to be Σ-invariant.
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We mention some consequences of the Indecomposability Theorem used here. A definable
group G is definably simple if it has no proper non-trivial definable normal subgroups. The
proofs in [25] are for S1-theories, but the author uses the Indecomposability Theorem only in
the form stated above.

Corollary 2.3 [25, Corollary 7.4, 44, Proposition 5.4.9]. If G is a non-abelian definably
simple group in S, then G is a simple group.

Corollary 2.4 [25, Corollary 7.1]. If G is a group in S, then the derived subgroup G′ is
definable.

We occasionally use the following theorem of Schlichting [41], reproved by Bergman and
Lenstra [3], with the formulation below as in [44, Theorem 4.2.4]. If G is a group, subgroups
H and K of G are commensurable if both of |H : H ∩K| and |K : H ∩K| are finite. A family
H of subgroups of G is uniformly commensurable if there is n ∈ N such that |H1 : H1 ∩H2| < n
for all H1,H2 ∈ H. Likewise K � G is uniformly commensurable to H if there is some n ∈ N
such that, for all H ∈ H, we have |H : H ∩K| < n and |K : H ∩K| < n.

Theorem 2.5. Let G be a group and H be a uniformly commensurable family of subgroups
of G. Then there is a subgroup N of G which is uniformly commensurable to all members of
H and is invariant under all automorphisms of G which fix H setwise. The group N is a finite
extension of the intersection of finitely many elements of H.

In conjunction with Theorem 2.5 we make occasional use of the following easy lemma.

Lemma 2.6. Let (X,G) be a transitive permutation group definable in a structure whose
theory eliminates ∃∞ and does not have the strict order property. Define ∼ on X by putting
x ∼ y (for x, y ∈ X) if and only if |Gx : Gxy| <∞. Then ∼ is a definable G-congruence.

Proof. A proof assuming measurability is given in [20, Proposition 6.1]. Measurability was
used just to prove symmetry, but if ∼ was not symmetric, it would be a definable partial order
on G with an infinite chain, yielding the strict order property.

The last lemma and the Indecomposability Theorem yield the following. The assumptions
in the proof in [20] include measurability. This is not needed, since the only use is through
the last lemma. Below, we say that a subgroup K of a group G is uniformly maximal in G
if there is a positive integer n such that, for any g ∈ G \K and h ∈ G, h is equal to a word
of length at most n of the form h = k1g

ε1k2g
ε2k3 . . . kt−1g

εt−1kt, where ki ∈ K for each i and
εi ∈ {1,−1}. If K is definable is G, this ensures that maximality is first-order expressible, and
preserved under elementary extensions.

Lemma 2.7 [20]. Let (X,G) be a definable primitive permutation group in S, with rk(G) >
rk(X). Then (X,G) is primitive and, for x ∈ X, the stabilizer Gx is uniformly maximal in G.
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Proof. See [20, Theorem 6.2]. For the last assertion, note that if Gx were not uniformly
maximal in G, then there would be an ω-saturated elementary extension (X∗, G∗) of (X,G)
which is definably primitive but not primitive, contrary to the first assertion.

The Zilber Field Interpretation Theorem for groups of finite Morley rank has the following
analogue in our context. If a definable group H acts definably on a definable group A, we say
that A is H-minimal if there are no proper non-trivial definable H-invariant subgroups of A.

Proposition 2.8 [20, Proposition 3.6] (Field Interpretation Theorem). Let G = AH be
a group in S. Suppose that A and H are each abelian and definable and H is infinite and
normalizes A, that A is H-minimal, and that CH(A) = {1}. Then the following hold.

(i) The subring K = Z[H]/annZ[H](A) of End(A) is a definable field; in fact, there is
an integer l such that every element of K can be represented as an endomorphism∑l

i=1(−1)εihi (hi ∈ H), where εi ∈ {1,−1}.
(ii) A is definably isomorphic to K+, H is isomorphic to a subgroup J of K∗, and the

action by conjugation of H on A is (after identification of K+ with A) its action by
multiplication on K.

Proof. This is essentially proved in [20, Proposition 3.6], but since it is assumed there that
rk(H) = rk(A) = 1, and since there are inaccuracies in the proof in [20], we give the details.
We write A additively.

Let B be the union of the finite H-orbits on A. Then B is an H-invariant subgroup of A,
and is definable as ∃∞ is definable. Hence B = {0} or B = A, by H-minimality.

We claim that B = {0}, so suppose for a contradiction that B = A. Let a ∈ A \ {0} and
h ∈ CH(a) \ {1}; such h exists, as |H : CH(a)| is finite (as aH is by assumption finite) and H
is infinite. Then CA(h) is a non-trivial definable subgroup of A, and is H-invariant as H is
abelian. The H-minimality of A then forces CA(h) = A, which is a contradiction as H acts
faithfully on A. Hence B = {0}.

(i) The group ring ZH can be viewed as a ring of endomorphisms of A, extending the H-
action by conjugation. If r ∈ ZH (or lies in a quotient which acts on A) and a ∈ A, then we
write r · a for the image of a under r. If r ∈ ZH, then as H is abelian, Ker(r) and Im(r) are
definable H-invariant subgroups of A. Thus either Ker(r) = A, in which case r ∈ annZH(A),
or Ker(r) = {0}, and Im(r) = A. In particular, if R = ZH/ annZH(A), then non-zero elements
of R act as automorphisms of A.

Let a ∈ A \ {0} and let W be the orbit of a under the action of H. Then W is infinite and
H-invariant. Thus, by Theorem 2.2, there is an infinite definable H-invariant subgroup C of
A, with C � 〈W 〉. By H-minimality, we have C = A. Furthermore, again by Theorem 2.2, for
some � we have A = (−1)ε1W + . . .+ (−1)ε�W , where ε1, . . . ε� ∈ {1,−1}.

Define K = {Σ�
i=1(−1)εihi : h ∈ H}/annZ[H](A). Then K ⊆ R ⊆ End(A).

Suppose r ∈ R \ {0}. Then r induces an automorphism of A, so there is b ∈ A with r · b = a.
Since b ∈ (−1)ε1W + . . .+ (−1)ε�W , by construction of K there is s ∈ K with sa = b. Thus,
(rs− 1) · a = 0, so as non-zero elements of R are automorphisms, rs = 1. Hence R is a field. In
addition, we have shown that every non-zero element of R has an inverse in K; in particular,
s−1 = r ∈ K, so R = K.

(ii) Define ia : K → A by ia(r) = r · a. Then (by the definition of K), ia is an additive
isomorphism K → A. Define a multiplication ⊗ on A as follows. If b = r · a and c = s · a, put
b⊗ c := ia(rs). Then ia is an isomorphism of fields sending H to a subgroup of (A,⊗).

Recall that a bounded finite conjugacy class group (BFC group) is a group G such that, for
some n ∈ N, all conjugacy classes in G have size at most n. We shall use the following theorem.
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Theorem 2.9 [38, Theorem 3.1]. Let G be a BFC group. Then:
(i) the derived subgroup G′ is finite;
(ii) G has a definable characteristic subgroup H of finite index such that H ′ is a finite

subgroup of Z(H).

Proof. For (ii), put H := CG(G′).

Corollary 2.10. LetG be a group such that Th(G) eliminates ∃∞. ThenG has a definable
characteristic subgroup N, consisting of the finite conjugacy classes of G, such that N ′ is finite.

Proof. The set of conjugacy classes is a uniformly definable family of sets, so there is an
upper bound n on the sizes of the finite ones. The union of the finite conjugacy classes of G
is clearly a characteristic subgroup, and is definable. It is a BFC group, so Theorem 2.9 is
applicable.

Together with counting arguments, Theorem 2.9 was used in [20] (see also [35, Theorem
5.1.5]) to prove the following.

Theorem 2.11. Let G ∈ M, with rk(G) = 1. Then G is finite-by-abelian-by-finite. More
precisely, G has a definable finite index characteristic subgroup N, contained in the union of
the finite conjugacy classes of G, such that N ′ � Z(N) is finite.

The proof of this yields also the following, noted in [19, Lemma 7.4].

Proposition 2.12. Let G ∈ M. Then some g ∈ G \ {1} has infinite centralizer.

Lemma 2.13. Let p be a prime and let A ∈ M be abelian, and have no p-torsion. Then A
is (uniquely) p-divisible.

Proof. Let f : A→ A be the group homomorphism x → px. Since A has no p-torsion, f is
injective, so B := f(A) has the same rank as A, and so has finite index in A by Lemma 2.1.
For p-divisibility, it suffices to show that A = B. As f is injective, each element of A will then
be uniquely p-divisible.

Suppose |A : B| = n, and write A = Bx1 ∪ . . . ∪Bxn (a disjoint union), where x1 = 1. Define
g : A→ A by putting g(y) = f−1(yx−1

i ) for y ∈ Bxi (for i = 1, . . . , n). Then g is a definable
n-to-1 surjection A→ A. Since the identity map A→ A is 1-to-1, it follows by functional
unimodularity that n = 1.

We record below a result of J.S. Wilson [45], slightly strengthened through results in the
PhD thesis of Ryten.

Proposition 2.14. Let G be a simple pseudofinite group. Then:
(i) G is a group of Lie type, possibly twisted, over a pseudofinite field;
(ii) the theory of G (as a pure group) is measurable.
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Proof. (i) By the main theorem of [45], G is elementarily equivalent to an ultraproduct
ΠG(q)/U of finite groups G(q) of a fixed Lie type over finite fields Fq. Furthermore, by the
results in [40, Chapter 5], the groups G(q) are uniformly bi-interpretable over parameters with
Fq (or, in the case of Suzuki and Ree groups, with structures (Fq, σ) for an appropriate field
automorphism σ). In particular, the theory of G states that there is a field F (or difference
field (F, σ)) and a group of Lie type over F which is definably (in G) isomorphic to G. Part (i)
follows.

(ii) Theorem 1.1.1 of [40] states that any family of finite simple groups of fixed Lie type is
an asymptotic class (a notion introduced in full generality in [18]). It follows, for example, by
[17, 2.1.10], that any non-principal ultraproduct of such a family is measurable.

Remark 2.15. In the contexts of this paper, a useful example to bear in mind is that of
extraspecial groups. Let p be an odd prime. A p-group P is extraspecial if P ′ = Z(P ) ∼= Cp (the
cyclic group of order p) and P/Z(P ) is elementary abelian. Extraspecial p-groups for odd p have
exponent p or p2. A finite extraspecial p-group of exponent p has order p2m+1 for some m > 0,
and is determined up to isomorphism by its order: it is a central product of extraspecial groups
of order p3. It was shown in [21] that countably infinite extraspecial p-groups of exponent p
are ℵ0-categorical. In fact, they are smoothly approximable, and also measurable of rank 1,
since the class of finite extraspecial p-groups of exponent p (a fixed prime) is a one-dimensional
asymptotic class; see, for example, [35, Proposition 3.11].

If P is an extraspecial p-group of (odd) exponent p, then P/Z(P ) has the structure of a
vector space over Fp (identified with Z(P )), and the commutator map to the centre endows
it with a symplectic bilinear form. In particular, if P is countable, then (viewed additively)
P/Z(P ) has a basis over Fp of the form {ei, fi : i ∈ I} such that [ei, fj ] = δij ∈ Fp (Kronecker
delta) and [ei, ej ] = [fi, fj ] = 0. If P is countably infinite, it does not have the descending chain
condition on centralizers; for putting I = ω, one has a strict descending chain P > CP (e1, f1) >
CP (e1, e2, f1, f2) > . . . with intersection Z(P ). Thus, centralizers of elements all have finite
index in P , and their intersection is Z(P ); in particular, there is no smallest definable subgroup
of ‘bounded’ index.

3. Soluble subgroups

In this section we obtain basic results about soluble subgroups of groups in S, in particular
proving Theorem 1.1 (Propositions 3.2 and 3.3). Note that the first two results below, and
hence also Theorem 1.1(i), do not require the finiteness of rank assumption.

Lemma 3.1. Let G be an infinite group definable in a supersimple theory T such that T eq

eliminates ∃∞.

(i) Let H � G be an infinite finite-by-abelian subgroup. Then H is contained in an infinite
definable finite-by-abelian subgroup K � G.

(ii) If H is in addition normalized by B � G, then K may be chosen to be normalized by B.

Proof. (i) Suppose F � H is finite and H/F is abelian. Now let J be a definable subgroup
of G of minimal SU -rank such that H � J and F � J . Such J exists, as NG(F ) is definable and
contains H. For h ∈ H, put h̄ := hF ∈ J/F . Let CJ(h̄) be the stabilizer of h̄ in the action of J
by conjugation on J/F . So CJ(h̄) � J . Also H/F is abelian, so H � CJ(h̄). As J has minimal
rank, |J : CJ(h̄)| <∞. Of course CJ (h) ⊆ CJ (h̄), and as F is finite, |CJ(h̄) : CJ(h)| <∞. It
follows that |J : CJ(h)| <∞, and so hJ is finite.
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Now let L := {j ∈ J : |jJ | <∞}. Then as ∃∞ is eliminable, L is definable, with H � L, and
L is a BFC group, so by Theorem 2.9, L′ is finite.

(ii) Let J be of minimal SU -rank among definable subgroups of G which are BFC and
contain H; such J exists, by (i). For b ∈ B let Jb := bJb−1. Then J := {Jb : b ∈ B} is a
family of definable supergroups of H, and for all b, b′ ∈ B we have |Jb : Jb ∩ Jb′ | <∞, by
the minimality of SU(J). Moreover, as ∃∞ is eliminated, this index is bounded, and J is a
uniformly commensurable family. So, by Theorem 2.5, there is a subgroup K0 of G which
is uniformly commensurable to J , and which is normalized by B. The group K0 is a finite
extension of some group Jb1 ∩ . . . ∩ Jbr , where b1, . . . , br ∈ B. In particular, K0 is definable
and contains H. Let K be the union of the finite conjugacy classes of K0. Then K is definable.
Since each Jbi is BFC, so is Jb1 ∩ . . . ∩ Jbr , and hence Jb1 ∩ . . . ∩ Jbr � K. Thus, as H � J
and B normalizes H, it follows that H � K. As K charK0, K is normalized by B. Finally, as
K is a BFC group, it is finite-by-abelian.

Proposition 3.2. (i) Let G be an infinite group definable in a supersimple theory T such
that T eq eliminates ∃∞, and let S be a soluble subgroup of G. Then S is contained in a definable
soluble subgroup H of G.

(ii) If S is also normalized by B � G, then H can be chosen to be normalized by B.

Proof. (i) We argue by induction on the derived length d of S. Let S(r) be the smallest
infinite term in the derived series of S, so S(r+1) is finite. We work in R := NG(S(r+1)), a
definable subgroup of G containing S.

The group S(r) is a finite-by-abelian subgroup of R which is normalized by S, so by
Lemma 3.1(ii), it is contained in a definable such group K. Let Q := NR(K). Then Q is
definable, and S � Q. Now S/K is a soluble subgroup of Q/K of derived length less than d,
so there is a definable soluble group H̄ with S/K � H̄ � Q/K. Let H be the preimage of H̄
under the natural map Q→ Q/K. Then H is a definable soluble subgroup of Q containing S.

(ii) This is a straightforward adaptation of (i).

Remark. In Proposition 3.2, the group H, obtained as in the proof, has derived series
which has the same number of infinite factors as in the derived series of S. We do not know if
in (i) one can require that S and H have the same derived length.

Proposition 3.3. Let G ∈ S. Then G has a largest soluble normal subgroup R(G), and
R(G) is definable.

Proof. First note that definability follows from the first assertion by Proposition 3.2(ii).
To see the first assertion, let S be a definable soluble normal subgroup of G of maximal

rank, and for X � G with S � X write X̄ for X/S. Then, if Q is any soluble normal subgroup
of G, then QS/S is finite: indeed, we may suppose, by Proposition 3.2, that Q is definable,
so QS is definable, and the result then follows by maximality of the rank of S. Now work in
Ḡ = G/S. The union N̄ of the finite normal subgroups of Ḡ is a definable BFC group, as ∃∞
is definable. By Theorem 2.9, N̄ has a nilpotent class 2 definable subgroup M̄ of finite index.
Let M be the preimage of M̄ in G. Then M is definable and soluble, and contains S. So, by
the maximality of rank, it is a finite extension of S. Hence M̄ is finite, and so is N̄ . Now let
R̄ be the product of the finite soluble normal subgroups of Ḡ. Then R̄ is a subgroup of N̄ and
so is finite and soluble, and its preimage R = R(G) is the largest soluble normal subgroup of
G and is definable.
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Question. Is it true that if G ∈ S, then G has a unique largest nilpotent normal subgroup
N and that such N is definable?

The following result, combined with Proposition 3.3, gives some structure theory for members
of S and F . It builds on the results of [20, Section 5], where groups with no finite conjugacy
classes are considered.

Proposition 3.4. Let G ∈ S. Suppose R(G) = 1. Then:
(i) G has just finitely many finite conjugacy classes;
(ii) any infinite normal subgroup of G contains an infinite definable normal subgroup of G;
(iii) G has just finitely many minimal normal subgroups, they are all definable, and Soc(G)

is definable;
(iv) any minimal normal subgroup of G is the direct product of finitely many isomorphic

definable simple groups;
(v) if G ∈ F , then the simple groups in (iv) are all finite, or Chevalley groups (possibly

twisted) over a pseudofinite field;
(vi) (See [20, Lemma 5.2].) every non-trivial normal subgroup N of G contains a definable

minimal normal subgroup of G.

Proof. (i) As ∃∞ is eliminated, the finite conjugacy classes of G have bounded size. If M is
the union of the finite conjugacy classes, then M is a BFC group and so, by Theorem 2.9(ii),
has a characteristic soluble subgroup of finite index. If this were infinite, it would contradict
the assumption that R(G) = 1.

(ii) Let N be an infinite normal subgroup of G. By (i), N contains an infinite conjugacy
class C of G. By Theorem 2.2, there is a definable normal subgroup K of G such that K � 〈C〉
and C/K is finite. In particular, K is infinite.

(iii) Definability of the minimal normal subgroups follows from (ii). By (i), there can be
just finitely many finite minimal normal subgroups. By finiteness of the rank of G, along with
Lemma 2.1 and the definability of minimal normal subgroups, G also has just finitely many
infinite minimal normal subgroups. The definability of Soc(G) follows immediately.

(iv) Let N be a minimal normal subgroup of G. We may assume that N is infinite, since
any minimal normal subgroup is characteristically simple (that is, has no proper non-trivial
characteristic subgroup); and it is well known that any finite characteristically simple group is
a direct product of (isomorphic) simple groups, which, being finite, are definable. Also, by (ii),
N is definable.

We first show that N has no finite N -conjugacy classes. For suppose not; then the union
of the finite N -conjugacy classes of N is a characteristic subgroup of N , so normal in G, and
so, by the minimality of N , equals N . Thus, as finite conjugacy classes have bounded size (by
definability of ∃∞), N is a BFC group. Thus R(N) is infinite, by Theorem 2.9. Since R(N) is
characteristic in N , it is normal in G, contradicting that R(G) = 1.

By compactness and Theorem 2.2, and the assumption that N is minimal normal, there is
some r > 0 such that, for every infinite conjugacy class C of N , there are ε1, . . . , εs ∈ {1,−1}
for some s � r such that Cε1 . . . Cεs is a subgroup of N . It follows that if M is a normal
subgroup of N , and C is an infinite conjugacy class of N contained in M , then M contains
a definable normal subgroup of N of the form Cε1 . . . Cεs . Since such normal subgroups are
uniformly definable, and Th(G) does not have the strict order property (as it is supersimple),
there are no infinite chains of such normal subgroups. It follows that N has a minimal normal
subgroup, say, Q. By (ii), the group Q will be definable, and it is infinite by the last paragraph.
Since distinct conjugates of Q are disjoint (by minimality of Q), it follows by finiteness of rank
that N = Qg1 × . . .×Qgt for some t ∈ N and g1, . . . , gt ∈ G. Finally, Q is simple: for if X is
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a proper non-trivial normal subgroup of, say, Qg1 then as all the Qgi normalize X, it follows
that X is normal in N , contrary to the minimality of Q.

(v) This is immediate from Proposition 2.14.
(vi) Suppose that this is false, and N is a normal subgroup of G containing no definable

minimal normal subgroup of G. We may suppose that (G,N) is saturated, in a countable
language, and, by (ii), that N is definable. Let (φi(x, ȳi) : i ∈ ω) list all formulas with
distinguished single variable x. For each i, as G does not have the strict order property, any
definable subgroup of G either has no normal subgroup defined by a formula φi(x, ā), or has
a smallest such. Thus, there is a chain N � N0 � N1 � . . . of definable normal subgroups of
G such that for each i, Ni has no proper subgroup defined by any of φ0(x, ā), . . . , φi(x, ā) (for
any ā). Now M :=

⋂
i∈ω Ni � N is a normal subgroup of G which is infinite (by saturation)

and either is definable minimal normal, or contains no infinite definable normal subgroup of
G, contrary to (ii).

Note that (ii) of Proposition 3.4 would be false without the assumption that R(G) = 1.
Extraspecial groups (see Remark 2.15) provide a counterexample.

In general, the socle of a group in S may not be definable. An example is the group
Σi∈ωCpi

⊕ (Q,+), which has socle Σi∈ωCpi
and is an infinite model of the theory of the set

of groups {Σn
i=1Cpi

: n ∈ ω}; here (pi)i∈ω lists the primes. However, if G ∈ S has no finite
conjugacy classes, then Soc(G) is definable, by [20, Lemma 5.3(2)]. We also have the following
strengthening of [20, Lemma 5.2].

Lemma 3.5. Let G ∈ S, and A be a minimal normal subgroup of G. Then A is definable.

Proof. We may suppose that A is infinite. Let B be the union of the finite conjugacy classes
of G, a definable normal subgroup of G. Either A � B, or A ∩B = {1}.

Suppose first that A � B. It follows easily from Theorem 2.9 that A is abelian, and so we
write A additively. For any n > 0, nA is characteristic in A and so normal in G, and it follows
that A is elementary abelian or torsion-free. In fact, A is torsion-free, since otherwise, as sets
aG (a ∈ A) are finite, A would be finite. Now, for each n > 0, as nA is normal in G, nA = A, so
A is divisible. Let u ∈ A \ {0}. Then uG is finite and generates A. However, this is impossible,
as non-trivial torsion-free divisible abelian groups are not finitely generated.

Thus, we may suppose A ∩B = {1}. Let a ∈ A \ {1}. Then, by Theorem 2.2, there is a
definable normal subgroup N of G with N � 〈aG〉 and aG/N finite. As aG is infinite, N �= 1,
so by minimality A = N , and A is definable.

4. Rank 2 groups

In this section we investigate rank 2 groups in M and F . Since the results all depend on
Theorem 2.11, which uses functional unimodularity, our methods shed no light on rank 2
groups in S \M. Our results extend those of [20], where it is shown that any rank 2 infinite
ultraproduct of an asymptotic class is soluble-by-finite. Our eventual purpose, not yet achieved,
is to obtain a positive answer to the following question.

Question 4.1. Is every rank 2 group G ∈ M soluble-by-finite?

First, note the following result [20, Lemma 4.6]. In [20] the theory is assumed to be an
S1-theory (which includes an assumption that rank is definable), but definability of rank plays
no role.
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Proposition 4.2. Let G ∈ M have rank 2. Then either G has a definable soluble subgroup
of finite index and derived length at most 4, or G has a definable finite-by-simple subgroup of
finite index, so interprets a simple rank 2 group in M.

In view of Proposition 4.2, we assume in the rest of this section that G is a simple group in M
of rank 2. We obtain partial results and derive a contradiction from the additional assumption
of pseudofiniteness.

Lemma 4.3. Suppose G ∈ M is simple of rank 2. Then G has no finite conjugacy classes.

Proof. This is immediate from the simplicity of G and Corollary 2.10.

Proposition 4.4. Let G ∈ M be a simple group of rank 2. Suppose that Ω is a definable
rank 1 set upon which G acts definably and transitively.

(i) For each x ∈ Ω, Gx acts on Ω \ {x} with finitely many infinite orbits and finitely many
finite ones.

(ii) There is a unique maximally coarse definable G-congruence on Ω. It has blocks of finite
size and is given by x ∼ y :⇔ [Gx : Gx ∩Gy] <∞ for all x, y ∈ Ω. It is maximal among
all proper G-congruences, and any G-congruence with finite blocks refines it.

Proof.

Claim 1. Let ≈ be any definable G-congruence on Ω. If ≈ is not the universal congruence
on Ω, then ≈ has finite blocks.

Proof of Claim 1. Suppose for a contradiction that there is an infinite ≈-class. Then, by
transitivity of the action of G, all the ≈-classes must be infinite. Thus as ≈ is definable, and
Ω has rank 1, there can be only finitely many classes. So we have found a finite set (the set of
≈-classes), on which G acts transitively. Then the kernel of this action is a non-trivial normal
subgroup of G, and so by the simplicity of G, there is in fact only one ≈-class, yielding the
claim.

Consider now the relation x ∼ y :⇔ [Gx : Gx ∩Gy] <∞. By Lemma 2.6, this is a definable
G-congruence. Denote the ∼-class of x ∈ Ω by x̃.

By the orbit-stabilizer theorem,

|OrbGx
(y)| <∞ ⇐⇒ [Gx : Gx ∩Gy] <∞ ⇐⇒ x ∼ y

Claim 2. Each ∼-class is finite.

Proof of Claim 2. Suppose not. Then, by Claim 1, Ω is a single ∼-class. It follows, as
∃∞ is definable, that the groups Gg

x (for x ∈ Ω) are uniformly commensurable, and so, by
Theorem 2.5, there is definable N � G commensurable with them. As rk(Gx) = 1, it follows
that rk(N) = 1, which contradicts the simplicity of G.

To see (i), note that, by the claims, x̃ is finite, so there are finitely many finite Gx-orbits.
Since Ω has rank 1, there can only be finitely many infinite orbits, yielding (i).
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For (ii), let ≈ be any definable non-universal G-congruence on Ω. Then, by Claim 1, the
≈-classes are finite, so if x ≈ y, then |Gx : Gxy| <∞, and so x ∼ y. Thus, the action of G on
Ω/ ∼ is definably primitive, and is also faithful, by the simplicity of G. Hence, by Lemma 2.7,
as rk(G) > rk(Ω/ ∼), this action is primitive, so ∼ is a maximal proper G-congruence (among
not necessarily definable ones). Finally, if ≈ is any G-congruence with finite blocks, then again
if x ≈ y then |Gx : Gxy| <∞, so x ∼ y.

Corollary 4.5. Let G ∈ M be a simple rank 2 group, and C be a rank 1 subgroup of
G. Then there is a maximal subgroup N of G which contains C, has rank 1, and is definable.
Furthermore, every definable rank 1 subgroup of G containing C is contained in N .

Proof. Let C � G be of rank 1. Then the left coset space X := Cos(G : C) has rank 1,
and G acts on it by left multiplication. Under this action, the stabilizer GC is C. So let ∼ be
the unique maximal definable G-congruence on Cos(G : C) defined in Proposition 4.4, let [aC]
denote the ∼-class of aC ∈ X, and let N be the stabilizer of [C] under the action of G on X/ ∼.
Clearly C � N . Note that G acts definably primitively on X/ ∼, so there is no definable H
with N < H < G. Hence, by Lemma 2.7, N is maximal in G. Since X/ ∼ is infinite, rk(N) < 2,
so rk(N) = 1.

For the second assertion, suppose that also C � H, where H is some rank 1 subgroup of
G. Now H acts transitively by left multiplication on Cos(H : C), and since |H : C| is finite,
the kernel of this action is infinite and is contained in hCh−1 (the stabilizer in H of the
coset hC) for every h ∈ H. Thus H-conjugates of C have pairwise-infinite intersection, so are
commensurable. It follows that, for any h1, h2 ∈ H, we have h1C ∼ h2C, and Cos(H : C) ⊆ [C].
Thus H (in the action on X/ ∼) fixes [C], so H � N .

Lemma 4.6. Let G ∈ M be a simple rank 2 group, and N be a rank 1 maximal definable
subgroup of G. Then:

(i) Conj(N) := {aNa−1 : a ∈ G} has rank 1;
(ii) any two non-identical conjugates aNa−1 and bNb−1 have finite intersection;
(iii) each x ∈ G \ {1} appears in only finitely many conjugates of N ;
(iv) N has finite (possibly empty) intersection with each rank 1 conjugacy class.

Proof. (i) The group G acts on Conj(N) by conjugation. Now aNa−1 = N ⇔ a ∈ N , since
N is maximal and has rank 1, but is not normal, and so is self-normalizing. This shows that
there is a definable bijection between the coset space Cos(G : N) and Conj(N). As rk(N) = 1,
also Cos(G : N) has rank 1, and hence so does Conj(N).

(ii) For any a ∈ G, aNa−1 is maximal in G and has rank 1. But if H = bNb−1 ∩ aNa−1 is
infinite, then, by Corollary 4.5, H lies in a unique definable rank 1 maximal subgroup of G. So
H = bNb−1 = aNa−1.

(iii) Suppose that this is false. Let

S := {x ∈ G \ {1} : {Ng : g ∈ G, x ∈ Ng} is infinite}.
Then S is a union of conjugacy classes, and is non-empty, so as G has no finite conjugacy
classes, S is infinite (and definable).

Consider the definable set Y ⊆ Conj(N) × Conj(N) ×G where

Y = {(xNx−1, yNy−1, z) : x, y ∈ G, z ∈ xNx−1 ∩ yNy−1}
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We compute rk(Y ). By considering the first two coordinates first, and using (ii), rk(Y ) = 2.
On the other hand, by considering the third coordinate first, and choosing z ∈ S, we have
rk(Y ) = 3. This contradiction proves (iii).

(iv) Suppose that N has infinite intersection with some rank 1 conjugacy class C. This holds
also for each conjugate of N . Since there are infinitely many conjugates of N , and any two
have finite intersection, this contradicts that C has rank 1 (working, for example, with the
definition of S1 rank).

Definition 4.7. In G, we call elements with conjugacy class of rank at most 1 good, and
those with rank 2 conjugacy class bad.

Note that bad elements have centralizer of finite bounded size, so the set of bad elements is
definable, so ‘good’ is also definable.

Lemma 4.8. Let G ∈ M be simple of rank 2. If x ∈ G is good, then x lies in a unique
maximal rank 1 subgroup of G.

Proof. Since x is good, rk(CG(x)) = 1. So let N be the unique maximal definable rank 1
group containing CG(x) (see Corollary 4.5). Now suppose that M is another maximal rank 1
subgroup containing x. Consider the following set of conjugates of M :

C = {aMa−1 : a ∈ CG(x)}
Now C is a collection of maximal rank 1 subgroups each of which contains the element x.

But, by Lemma 4.6(iii), C must be finite. Let J be the kernel of the action by conjugation of
CG(x) on C. Then J is a subgroup of finite index in CG(x). Also,

∀j ∈ J jMj−1 = M

Since M is self-normalizing, J ⊆M . But J has rank 1 and so lies in a unique maximal rank 1
subgroup of G. Since J ⊆ N, we deduce N = M .

Lemma 4.9. Let G ∈ M be simple of rank 2. Suppose that N is a maximal definable rank 1
subgroup of G. Then the set of good elements that lie in N is a definable normal subgroup of
N of finite index.

Proof. By Theorem 2.11, the union of the finite N -conjugacy classes in N is an infinite
definable characteristic subgroup of N . Thus, it suffices to show that if x ∈ N , then x is good
if and only if xN is finite. For this, note that rk(Conj(N)) = 1 and

xG =
⋃

aNa−1∈Conj(N)

axNa−1

Now if x ∈ N is good, then CG(x) � N by Lemma 4.8, and it follows that rk(CG(x)) = rk(N) =
1 and hence xN is finite. On the other hand, if xN is finite, then, as rk(Conj(N)) = 1, we clearly
have rk(xG) = 1.

By Lemma 4.9 and Corollary 4.5, if G ∈ M is simple of rank 2 and M is any rank 1 definable
subgroup, then the set of all good elements of M forms a definable subgroup of M of finite
index. We denote the latter by Mo.
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Lemma 4.10. Let G ∈ M be simple of rank 2. Then G contains infinitely many rank 1
conjugacy classes.

Proof. First, by Proposition 2.12, there is non-identity x ∈ G with CG(x) infinite, and
so rk(xG) � 1. Thus, by Lemma 4.3, G has a rank 1 conjugacy class, namely xG. Since
rk(CG(x)) = 1, G has a rank 1 maximal subgroup, say, N .

Suppose that G has just finitely many conjugacy classes of good elements. Then as N
is infinite, No has infinite intersection with some conjugacy class C of good elements. This
contradicts Lemma 4.6(iv).

Lemma 4.11. Let G ∈ M be simple of rank 2. Then the collection of maximal rank 1
subgroups divides up into finitely many disjoint families of the form Conj(N).

Proof. Suppose that {Ni : i ∈ I} is a set of maximal definable rank 1 subgroups, none of
which is conjugate to any of the others. We claim that the Ni are uniformly definable, that is,
that there are finitely many formulas ϕi(x, ȳi) such that each Ni has the form ϕj(G, āj) for
some āj ∈ Gl(ȳj). To see this, observe that as the set of good elements is definable, the family S
of rank 1 groups {CG(x) : x good} is uniformly definable. For every maximal rank 1 group N ,
there is C ∈ S with C � N (see the proof of Lemma 4.9). The actions of G on the coset spaces
Cos(G : C) are uniformly definable. Since ∃∞ is definable, the maximal equivalence relation ∼
on Cos(G : C) with finite classes is also uniformly definable (as C varies). So N is uniformly
defined as the stabilizer of the ∼-class of C in the action of G on Cos(G : C); see Corollary 4.5.

Now {Conj(Ni) : i ∈ I} is a collection of disjoint families of conjugate subgroups. For any
i ∈ I, rk(

⋃
a∈G aN

o
i a

−1) = 2 by Lemma 4.6(i), (ii). Also, for any i, j ∈ I such that i �= j, we
have (⋃

a∈G

aNo
i a

−1

)
∩
(⋃

a∈G

aNo
j a

−1

)
= {1}

by Lemma 4.8. Since rk(G) = 2, it follows by rank considerations and the uniform definability
of the Ni that | I |<∞.

Lemma 4.12. Let G ∈ M be simple of rank 2. Then there is a definable rank 1 subgroup H
of G which consists solely of good elements, such that in the action of G by left multiplication
on the coset space Cos(G : H), all the bad elements of G act fixed-point-freely.

Proof. There is at least one good element by Lemma 4.10, so there is at least one maximal
definable rank 1 group N , and we may put H := No.

Suppose now that a ∈ G and abH = bH. So b−1ab ∈ H and a ∈ bHb−1. But then a is
conjugate to a good element, so is good.

Proposition 4.13. Let G ∈ M be simple of rank 2. Then G contains at least one rank 2
conjugacy class.

Proof. Suppose not. Then all non-identity conjugacy classes have rank 1. We may
suppose that G is ω-saturated. For elementary extensions will preserve simplicity of G by
Proposition 4.2, and existence of rank 2 conjugacy classes is equivalent to existence of elements
with finite centralizer, which is first order expressible.
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Let x ∈ G \ {1}. Then as G is simple, xG generates the whole of G. Moreover, by compactness
and ω-saturation, it does so in finitely many steps. Therefore, for some minimal n � 1, there
are ε1 . . . , εn+1 ∈ {−1, 1} and Y :=

∏n
i=1(x

εi)G such that rk(Y ) = 1 and rk(Y · (xεn+1)G) = 2.
Without loss of generality (by exchanging x with x−1 if necessary), we may assume that
εn+1 = 1.

Note that Y is closed under conjugation, and is therefore a disjoint union of finitely many
rank 1 conjugacy classes. Similarly Y · xG is a union of conjugacy classes, say, Y · xG =

⋃{Di :
i ∈ I}. For each i ∈ I define Ei := {y ∈ Y : yx ∈ Di}. Note that if y ∈ Ei and b ∈ CG(x), then
ybx = ybxb = (yx)b ∈ Di, so yCG(x) ⊆ Ei.

Now each Ei is non-empty. For suppose y′ · gxg−1 ∈ Di, where y′ ∈ Y . Then conjugating by
g, we find that g−1y′g · x ∈ Di and therefore g−1y′g ∈ Ei.

We claim that, for all but finitely many y ∈ Y , we have: if y ∈ Ei, then Ei is infinite. Indeed,
suppose U ⊆ Y is a conjugacy class. Then, for only finitely many y ∈ U, we have rk(CG(x) ∩
CG(y)) = 1, by Proposition 4.4 applied to the action by conjugation of G on U . Thus, for
cofinitely many y ∈ U, we have that CG(x) ∩ CG(y) is finite, and, for all such y ∈ U , if y ∈ Ei,
then yCG(x) ⊆ Ei (as noted above), so Ei is infinite. Recalling that there are only finitely many
such U ⊆ Y yields the claim.

Hence as Y has rank 1 and the Ei partition Y , it follows that I must be finite. But then as
Y · xG has rank 2, it follows that at least one of the conjugacy classes Di must have rank 2,
contradicting our assumption.

The following result, a strengthening of the last proposition but under a stronger hypothesis,
is not used elsewhere in the paper. It seems to be the only place in this section where we need
measurability, rather than just functional unimodularity or pseudofiniteness.

Proposition 4.14. Assume that G ∈ M is measurable simple of rank 2. Let N be a rank
1 maximal subgroup of G. Then N contains a bad element.

Proof. Suppose for a contradiction that all the elements of N are good. If X is a definable
set, we shall write μ(X) for the measure of X (in the sense of measurable structures, as in
[35]) of a definable set X. We may normalize to ensure μ(G) = 1.

We show that under these assumptions, the conjugates of N cover G, contradicting the last
result. Consider the definable map

ϕ : Cos(G : N) −→ Conj(N) where aN −→ aNa−1

Since N is self-normalizing, ϕ is bijective. It follows that μ(Cos(G : N)) = μ(Conj(N)).
Now let X :=

⋃
a∈G aNa

−1. Then

X \ {1} =
⋃

a∈G

(aNa−1 \ {1})

and, by Lemma 4.8, as all elements of N are good, the sets on the right are equal or disjoint.
So, by elementary properties of rank and measure, we have dim(X) = 2 and

μ(X) = μ(X \ {1}) = μ(N \ {1}) · μ(Conj(N))
= μ(N) · μ(Conj(N))
= μ(N) · μ(Cos(G : N))
= 1

as μ(G) = 1 by our assumption.
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Suppose now that y ∈ G \X. Then y cannot be bad, as then yG would be a rank 2 set disjoint
from X which is impossible: indeed, we would have μ(yG) > 0, μ(X) = μ(G), and μ(yG) +
μ(X) � μ(G). This shows that all points of G are good, which is impossible by Proposition 4.13
above.

We now answer Question 4.1 assuming G ∈ F . We do not use CFSG.

Lemma 4.15. Let G ∈ F be simple of rank 2. Then any two maximal rank 1 definable
subgroups of G are conjugate.

Proof. Suppose that G has non-conjugate maximal rank 1 subgroups N1 and N2. By
Lemma 2.7, N1 and N2 are abstractly maximal, and also are uniformly maximal. Suppose that
ϕi(x, āi) defines Ni for i = 1, 2. It follows that there is a sentence σ in Th(G) which expresses
that there are subgroups ϕi(G, āi) (for i = 1, 2) which are maximal and non-conjugate. We
may suppose that G is a non-principal ultraproduct Πj∈JGj/U .

Let Ci := No
i for i = 1, 2. Then Ni = NG(Ci). Let x ∈ C1 \ {1}. Then, as CG(x) has rank 1

and x is good and so lies in at most one maximal rank 1 group (Lemma 4.8), it follows that
CG(x) � N1 and, moreover, |C1 : C1 ∩ CG(x)| is finite.

Let G act on xG by conjugation and letX := xG/ ∼, where ∼ is the fundamental congruence:
x1 ∼ x2 :⇔ CG(x1) ∩ CG(x2) is infinite. We examine the action of the Ci on X.

Claim 1. Every orbit of C2 on X is regular.

Proof of Claim 1. Suppose h ∈ G, and g ∈ C2, and g(hxh−1)g−1 ∼ hxh−1, that is, conju-
gation by g fixes xh/ ∼. Then h−1ghxh−1g−1h ∼ x, so CG(xh−1gh) ∩ CG(x) is infinite. Thus
CG(xh−1gh) ∩ C1, and (CG(x))h−1gh ∩ C1 and so also Ch−1gh

1 ∩ C1 are all infinite. It follows
that Nh−1gh

1 = N1, as otherwise Ch−1gh
1 ∩ C1 is a rank 1 subgroup of two distinct maximal

rank 1 subgroups, contrary to Corollary 4.5. Thus, h−1gh ∈ N1, so g ∈ hN1h
−1. Since N1 and

N2 are non-conjugate, it follows that g = 1.

Claim 2. There is one orbit of C1 on X of size 1, namely the ∼-class of x, and the rest
are regular.

Proof of Claim 2. First note that if g ∈ C1, then CG(x) ∩ CG(xg) is infinite, so x ∼ xg; that
is, x/ ∼ is a singleton orbit of C1.

Arguing as in Claim 1, if h ∈ G, and g ∈ C1 with g(hxh−1)g−1 ∼ hxh−1, then g ∈ Nh
1 ∩N1.

Now there are 2 cases:
(i) hN1h

−1 = N1, and as N1 is self-normalizing, h ∈ N1, in which case hC1h
−1 = C1,

and thus, as CG(x) and hCG(x)h−1 are both commensurable with C1, we have that
hCG(x)h−1 ∩ CG(x) is infinite, and so hxh−1 ∼ x.

(ii) hN1h
−1 �= N1, in which case g = 1 by Lemma 4.8.

By Los’s Theorem, for ultrafilter-many j ∈ J the sentence σ holds, with respect to the
groups N (j)

i := ϕi(G(j), ā
(j)
i ) (for i = 1, 2, and for some parameters ā(j)

i from G(j)). We drop the
superscript j, so we work with a finite group G and non-conjugate maximal subgroups N1, N2.
Let Ci be as above (that is, defined by the same formula defining it in the ultraproduct), with
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Ni = NG(Ci), and assume j ∈ J is chosen such that Claims 1 and 2 now hold in this finite
situation, where x ∈ C1 \ {1} and X := xG.

Putting the claims together, there are fixed (on an ultrafilter set) strictly positive integers
a1 and b1, where |X| = a1|C2| = b1|C1| + 1. Similarly there are a2 and b2 where a2|C1| =
b2|C2| + 1. Hence a1a2|C2| = b1a2|C1| + a2, and b1a2|C1| = b1b2|C2| + b1, and so a1a2|C2| =
b1b2|C2| + b1 + a2, and so |C2| = b1+a2

a1a2−b1b2
(note that a1a2 �= b1b2, as otherwise b1 + a2 = 0,

contradicting that they are strictly positive). But this is a contradiction, as a1, a2, b1, b2 are
fixed integers, and |C2| can be made arbitrarily large.

The following theorem completes the proof of Theorem 1.2.

Theorem 4.16. Let G ∈ F have rank 2. Then G has a definable soluble subgroup of finite
index.

Proof. We may suppose that G is an ultraproduct Πj∈JGj/U of finite groups. In addition
we may suppose, by Proposition 4.2, that G is simple.

By the analysis in this section, we may also suppose that G has finitely many (definable)
rank 2 conjugacy classes, and infinitely many rank 1 classes. Also, by Lemma 4.15, all maximal
rank 1 definable subgroups are conjugate. In particular, maximal rank 1 definable subgroups
of G are uniformly definable, say, by the formulas ϕ(x, ȳ).

By Lemma 2.7, if C is a maximal rank 1 subgroup of G, then C is uniformly maximal; that is,
there is t > 0 such that if g, h ∈ G \ C, then h = c1g

±1c2g
±1 . . . ct, where c1, . . . , ct ∈ C. Thus,

there is a formula ψϕ(ȳ) expressing that the group defined by ϕ(x, ȳ) is maximal, via uniform
maximality with parameter t. In particular, for any group H and ā from H, if H |= ψϕ(ā),
then ϕ(H, ā) is a maximal subgroup of H. Let ϕ∗(x, ȳ) be the formula ϕ(x, ȳ) ∧ ψϕ(ȳ).

There is n such that if x ∈ G \ {1} and |CG(x)| > n, then CG(x) is infinite. Since G is simple,
it follows that, for such x, CG(x) has rank 1, so is contained in a maximal rank 1 definable
subgroup of G. There is a sentence σ which expresses this: namely,

∀x((x �= 1 ∧ |CG(x)| > n) −→ ∃z̄∀y([x, y] = 1 −→ ϕ∗(y, z̄))).

We may suppose that σ holds in all Gj . We may also suppose that, for any Gj and tuples ā,
b̄ from Gj such that Gj |= ψϕ(ā) ∧ ψϕ(b̄), the maximal subgroups ϕ(Gj , ā) and ϕ(Gj , b̄) are
conjugate in Gj , since the corresponding assertion is true of G and is first order expressible.

Let P be a Sylow p-subgroup of some Gj . Then there is x ∈ Z(P ) \ {1}. Thus, if |P | > n,
then as P � CGj

(x) and Gj |= σ, there is some ā in Gj such that P ⊆ ϕ∗(Gj , ā). Let Cj be
the subgroup of Gj defined by ϕ∗(x, ā). Then |P | divides |Cj |. Suppose |Gj | = pa1

1 . . . par
r , the

prime power decomposition. Then, by the conjugacy of ϕ∗-definable subgroups, for all i such
that pai

i > n, it follows that pai
i divides |Cj |. Hence, |Gj : Cj | � nn. Since this holds for all i,

it follows that |G : C| � nn. This contradicts that rk(C) = 1.

We have not managed to prove that there is no simple rank 2 group G ∈ M. The proof
of Theorem 2.11 suggests that there might be one argument to handle the case when G has
an involution, and another to handle the involution-free case. We conclude this section with
some remarks on the first case. The goal has been to eliminate involutions using arguments
developed in [4, 16], but this has not been achieved.

First we recall an easy fact.

Fact 4.17. Let G be a group. Then every x ∈ G lies in a definable abelian subgroup of G.
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Proof. It suffices to take the double centralizer CG(CG(x)) of x.

Lemma 4.18. Let G ∈ M. Suppose that i, j ∈ G are involutions. Let x = ij, and suppose
that x �= 1. For any definable abelian group A such that x ∈ A, either there is an involution
k ∈ A such that x commutes with both i and j, or i and j are conjugate by an element of A.

Proof. Let A be a definable abelian subgroup of G with x ∈ A. Let y ∈ G be an
involution and let By = {a ∈ A : yay = a−1}. Note that this is a definable subgroup of A.
Definability is clear. For closure under inversion, suppose a ∈ By. Then ya−1y · yay = 1, so
ya−1y = (yay)−1 = (a−1)−1 = a. To see closure under multiplication, suppose a1, a2 ∈ By.
Then ya1a2y = ya1y · ya2y = a−1

1 a−1
2 and the latter equals a−1

2 a−1
1 by commutativity of A.

Now notice that ixi = i · ij · i = ji = x−1 and jxj = j · ij · j = ji = x−1, x ∈ Bi ∩Bj , and,
in particular, B := Bi ∩Bj is a non-trivial definable subgroup of A.

If B contains an involution k, then iki = k−1 = k and also jkj = k, so k commutes with both
i and j. Otherwise B has no involutions. It follows, by Lemma 2.13, that each element x of B
has a unique square root y in B. Now we have y−1iy = iiy−1iy = i(iy−1i)y = iy2 = ix = j.

Lemma 4.19. Let G ∈ M be simple of rank 2. Then G does not have a rank 2 conjugacy
class of involutions.

Proof. Suppose that such a conjugacy class gG exists. We fix g and consider the set Xg :=
{gh : h ∈ gG ∧ h does not commute with g}. Then rk(Xg) = 2, since rk(gG) = 2, and CG(g)
is finite.

By Lemma 4.8, if x is good, then there is a unique maximal definable rank 1 subgroup
containing x, denoted by Nx.

Let Yg := {gh ∈ Xg : gh is good} and Sg := {Ngh : gh ∈ Yg}. Suppose for a contradiction
that rk(Yg) = 2. Then rk(Sg) = 1, by Lemmas 4.6(i) and 4.11. For each gh ∈ Yg we have g ·
gh · g−1 = g · gh · g = hg = (gh)−1. Now Ngh = N(gh)−1 , so it follows, by Lemma 4.8, that if
gh ∈ Yg, then gNghg

−1 = Ngh. But Ngh is self-normalizing and so g ∈ Ngh. Thus g lies in every
element of Sg. Since, by Lemma 4.11, there are only finitely many distinct sets Conj(N) for
maximal definable rank 1 groups N , it follows that Sg contains some group N and a rank
1 set of its conjugates. But then g lies in all these conjugate subgroups, which contradicts
Lemma 4.6.

So now, for gi ∈ gG, we may consider the set S2(gi) = {x : gixgi = x−1 ∧ rk(xG) = 2}. Then
from above rk(Ygi

) = 1, so rk(Xgi
\ Ygi

) = 2. For any gih ∈ Xgi
\ Ygi

we have that rk((gih)G) =
2 and that gi(gih)gi = hgi = (gih)−1, and so gih ∈ S2(gi). So rk(S2(gi)) = 2.

Let k be the maximal size of the centralizer of an element of a rank 2 conjugacy class.
Suppose x ∈ ⋂k+2

i=1 S2(gi) for elements g1, . . . , gk+2 ∈ gG. Then, for each i � k + 1, we have
gigk+2xgk+2gi = x, which contradicts the maximality of k. Thus {S2(gi) : gi ∈ gG} is an
infinite, (k + 2)-inconsistent family of rank 2 definable sets, which contradicts the assumption
that rk(G) = 2.

Proposition 4.20. Let G ∈ M be simple of rank 2. If there are any involutions, then
there is exactly one conjugacy class of involutions, and this class has rank 1.

Proof. Suppose that there are two distinct conjugacy classes of involutions, say, gG and hG.
We know from Lemma 4.18 that, for every x ∈ gG and every y ∈ hG, x and y both commute
with a third involution, call it zxy. Now, by Lemma 4.19, zxy must have rank 1 conjugacy



1068 R. ELWES, E. JALIGOT, D. MACPHERSON AND M. RYTEN

class. So zxy is an element of a unique maximal definable rank 1 group Nzxy
. Since zxy =

xzxyx
−1 ∈ xNzxy

x−1, it follows that Nzxy
= xNzxy

x−1. But then, by the self-normalization
of Nzxy

, it follows that x ∈ Nzxy
. So Nx = Nzxy

. Similarly, Ny = Nzxy
, so Nx = Ny. But this

was for arbitrary x ∈ gG and y ∈ hG. Fixing x and picking two distinct y1, y2 ∈ hG, we may
deduce that Ny1 = Ny2 = N , say. Thus N , and hence any conjugate of N , contains hG, which
contradicts Lemma 4.6(iv).

The techniques developed in [4, 16] (the ‘Borovik–Cartan decomposition’ – see also
[13, Section 7]) take the analysis further when there are involutions. It can be shown that
if G ∈ M is simple of rank 2 and i is an involution of G, then each right coset of CG(i) (apart
from finitely many) contains exactly one involution, of the form i(igi)−1/2; each such coset also
contains exactly one non-involutory element inverted by i, namely (igi)−1/2 (a bad element of
odd order). Analogous problems are also treated, slightly differently, in [39].

5. Groups acting on a rank 1 set

Our main goal in this section is to prove the following theorem (Theorem 1.3 of the
Introduction).

Theorem 5.1. Let (X,G) ∈ F be a definably primitive permutation group, and suppose
that rk(X) = 1. Let S = Soc(G). Then one of the following holds.

(i) rk(G) = 1, and S is divisible torsion-free abelian or elementary abelian, has finite index
in G, and acts regularly on X.

(ii) rk(G) = 2. Here S is abelian and so regular and identified with X. There is an
interpretable pseudofinite field F with additive group X, and G is a subgroup of
AGL1(F ) of finite index, with the natural action.

(iii) rk(G) = 3. There is an interpretable pseudofinite field F, S = PSL2(F ), PSL2(F ) � G �
PΓL2(F ), and X can be identified with PG1(F ) in such a way that the action of G on
PG1(F ) is the natural one.

Theorem 5.1 follows from Propositions 5.3, 5.11, and 5.12. The characterization when G has
rank at most 2 does not use the classification of finite simple groups, but the proof that the
remaining possibility is that described in (iii) makes heavy use of CFSG, via the O’Nan-Scott
Theorem.

The theorem has some implications without the definable primitivity assumption, since it
can be applied to definable primitive components of definable transitive permutation groups.
Observe too that, just assuming transitivity of (X,G) ∈ F , if rk(X) = 1, then any definable
G-congruence has finite classes, or finitely many classes. However, without the assumption of
definable primitivity, there is no bound on rk(G): for example, PSL2(F )n (F pseudofinite) has
rank 3n and acts transitively on the disjoint union of n copies of PG1(F ), which has rank 1.

5.1. Preliminaries for Theorem 5.1

We begin with a standard observation.

Lemma 5.2. Let (X,G) ∈ S be a definably primitive permutation group and let A be a
non-trivial definable abelian normal subgroup of G. Then:

(i) A acts regularly on X, and has no proper non-trivial definable characteristic subgroups;
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(ii) A is an elementary abelian p-group for some prime p or a torsion-free divisible abelian
group, so (written additively) may be viewed as a vector space over a field F (which is
Fp or Q);

(iii) if we identify A with X (by first identifying 0 ∈ A with some chosen x ∈ X), then we
may identify (X,G) with (A,AG0), where G0 is the stabilizer of 0 ∈ A. There are no
definable proper non-trivial FG0-submodules of A.

Proof. (i) As G is definably primitive, A is transitive on X (for the orbits of A are the
classes of a definable G-congruence). Thus A is regular on X, as A is abelian. If A had a
proper non-trivial definable characteristic subgroup B, then its orbits would be the blocks of
a proper non-trivial G-congruence, contradicting definable primitivity.

(ii) This follows easily from (i), as A is abelian and ‘definably characteristically simple’: for
any n ∈ N, the group nA equals {0} or A.

(iii) Again this is standard, and elementary.

We first handle the (easy) case when rk(G) = 1. The following proposition yields Theo-
rem 5.1(i). Here, no pseudofiniteness assumption is needed.

Proposition 5.3. Assume (X,G) ∈ M is a definably primitive permutation group with
rk(X) = rk(G) = 1. Then G has a definable normal subgroup A of finite index which is divisible
torsion-free abelian or elementary abelian and acts regularly on X. If G0 denotes the stabilizer
in G of 0 ∈ A, and A is viewed as a vector space over a prime field, then G0 � GL(A) is finite
and irreducible, and G = AG0, so that if X is identified with A as in Lemma 5.2, then G acts
on A as an affine group (A by translation, G0 by conjugation).

Proof. By Theorem 2.11, G has a definable non-trivial abelian normal subgroup A. By
Lemma 5.2, A acts regularly on X, so rk(A) = 1 and |G : A| <∞. The remaining assertions
also follow from Lemma 5.2.

Remark 5.4. We give an example interpretable in pseudofinite fields where G �= A. Let
K be a pseudofinite field of characteristic 0, and denote by K+ its additive group, and K× its
multiplicative group. Let T � K× be exactly T = {±1}. Let G = K+T , where T acts on K+

by conjugation, and view G as a subgroup of AGL1(K) acting on K. Then G and K both have
rank 1. Here |T | = 2 but T is still definably maximal in G. To see the latter, note that if T were
not definably maximal, then G would be definably imprimitive, so there would be a proper
non-trivial T -invariant definable subgroup of K+. This would be infinite and of infinite index
(as K is of characteristic 0, so K+ is divisible), but the latter is impossible as rk(K+) = 1.

Next, we collect some general facts about the case when rk(G) > 1. Note that in this case
rk(G) > rk(X), and so, by Lemma 2.7, definable primitivity of (X,G) ∈ M implies primitivity.
This will be used without explicit mention.

Lemma 5.5. Assume (X,G) ∈ S is a definably primitive permutation group with rk(G) >
rk(X) = 1. Let x ∈ X. Then Gx has finitely many orbits on X \ {x}, all of which are infinite.

Proof. Define ∼ on X, putting x ∼ y if and only if |Gx : Gxy| <∞. By Lemma 2.6, ∼
is a definable G-congruence. If all ∼-classes are singletons, then each Gx-orbit on X \ {x} is
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infinite, so as rk(X) = 1, there are finitely many such orbits. So suppose for a contradiction
that ∼ is non-trivial. By definable primitivity, ∼ is the universal congruence. Hence, as ∃∞ is
definable, there is n ∈ N such that |Gx : Gxy| < n for all distinct x, y ∈ X. It follows that the
conjugates of Gx are commensurable, and so, by Schlichting’s Theorem (Theorem 2.5), there
is N � G commensurable with Gx. Since Gx is infinite, so is N , and so since G is primitive on
X (by Lemma 2.7), N is transitive. This contradicts that |N : N ∩Gx| is finite and N ∩Gx

fixes x. (This argument is essentially in [20, Section 5].)

Remark 5.6. In [32, Section 7] there is a description, which is close to a classification, of
primitive ultraproducts of finite permutation groups. It is pointed out there that if (X,G) is
an ultraproduct of finite primitive permutation groups and G has finitely many orbits on X2,
then (X,G) is primitive and so satisfies the description in [32]. In fact, suppose that (X,G)
is any definably primitive permutation group in F with rk(G) > rk(X). Then (X,G) has an
ω-saturated elementary extension (X∗, G∗) with the same properties. By Lemma 2.7, (X∗, G∗)
is primitive. Thus, it satisfies the structure theory given in [32, Section 7], which itself makes
heavy use of CFSG. We use this in Section 5.3.

Lemma 5.7. Let (X,G) ∈ S be a definably primitive permutation group with rk(G) >
rk(X) > 0. Then:

(i) G has no finite conjugacy classes;
(ii) Soc(G) is definable.

Proof. (i) Suppose that there is a non-trivial finite conjugacy class. Then G has a definable
characteristic subgroup N consisting of the finite conjugacy classes. By primitivity, N must act
transitively on X. As N is a BFC group, N ′ � G is a finite abelian group and so by primitivity
it must be the identity. So N is abelian and acts transitively and faithfully on X, and hence
regularly.

Let (X∗, G∗, N∗) be an ℵ1-saturated elementary extension of (X,G,N). Then G∗ acts
definably primitively on X∗, and hence primitively by Lemma 2.7. Let x ∈ N∗. Then xG∗

is finite, so 〈xG∗〉 is a countable normal subgroup of G∗ contained in N∗. Again, by saturation
X∗ is uncountable. So 〈xG∗〉 cannot act transitively on X∗, which contradicts the primitivity
of (X∗, G∗).

(ii) This is immediate from (i) and [20, Lemma 5.3(2)].

Lemma 5.8. Let (X,G) ∈ S be a non-principal ultraproduct of finite permutation groups
of the form (X,G) =

∏
j∈J(Xj , Gj)/U , with rk(G) > rk(X) > 0.

(i) The permutation group (X,G) is primitive if and only if the permutation group (Xj , Gj)
is primitive for ultrafilter-many j ∈ J .

(ii) Suppose that (X,G) is primitive. Let S(x) be a formula (guaranteed by Lemma 5.7)
defining the socle of G. Then, for ultrafilter-many j ∈ J, the formula S(x) defines the
socle in Gj .

Proof. (i) ⇒ If (Xj , Gj) is imprimitive for ultrafilter-many j, then the ultraproduct of the
proper non-trivial Gj-congruences is a proper G-congruence on X.
⇐ If ultrafilter-many of the (Xj , Gj) are primitive, then (X,G) is definably primitive, and

hence primitive by Lemma 2.7.
(ii) First observe that, by the proof of the O’Nan-Scott Theorem (see, for example, [15,

Theorem 4.3B]), if (Y,H) is a finite primitive permutation group, then either H has a unique
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minimal normal subgroup, or Soc(H) is the direct product of the two minimal normal subgroups
of H. In the latter case the two minimal normal subgroups of H both act regularly on Y .

By Lemma 5.7 and [20, Lemma 5.3(2)], Soc(G) is the direct product of finitely many minimal
normal subgroups N1, . . . , Nt, each definable (by Lemma 3.5) by a formula Ni(x). There is a
sentence in Th((X,G)) expressing that S(G) = N1(G) × . . .×Nt(G).

By (i), we may suppose that each (Xj , Gj) is primitive. For ultrafilter-many j the formula
S(x) defines a normal subgroup of Gj contained in Soc(Gj). For each i = 1, . . . , t and for
ultrafilter-many j, the formulaNi(x) defines a normal subgroup ofGj , and indeed, for ultrafilter
many j, this is a minimal normal subgroup of Gj , since otherwise an ultraproduct of smaller
normal subgroups will be a normal subgroup of G properly contained in Ni. Also, for ultrafilter-
many j, we have N1(Gj) × . . .×Nt(Gj) = S(Gj), since this is first order expressible. Thus, for
ultrafilter-many j, S(Gj) is a normal subgroup of Gj contained in Soc(Gj), and (by the first
paragraph) t � 2.

It remains to check that, for ultrafilter-many j, the containment S(Gj) � Soc(Gj) is not
proper, so suppose that it is. Thus, we may suppose that, for each j, Gj has a minimal normal
subgroup Mj disjoint from S(Gj). In this case, by the first paragraph, t = 1. Also, by the first
paragraph, Mj acts regularly on Xj , so the ultraproduct M of the Mj acts regularly on X, and
is a normal subgroup of G disjoint from S(G) (as this is first order expressible in a language
with an additional predicate for the Mj). Since M is a regular normal subgroup of a primitive
group, M is minimal normal in G, so M � Soc(G) = S(G). This is a contradiction.

By the last lemma, primitive permutation groups (X,G) ∈ S may be investigated via the
O’Nan-Scott Theorem for finite primitive permutation groups. The statement below of this
theorem is taken from [15, Theorem 4.1A]. More detail can be found in [33].

Theorem 5.9. Let (X,G) be a finite primitive permutation group of degree n and let H
be the socle of G. Then either:

(a) H is a regular elementary abelian p-group for some prime p, n = pm = |H|, and G is
isomorphic to a subgroup of the affine group AGLm(p) with its natural action on H (the
latter identified with X); or

(b) H is isomorphic to a direct power Tm of a non-abelian simple group T and one of the
following holds:
(i) m = 1 and G is isomorphic to a subgroup of Aut(T );
(ii) m � 2 and G is a group of “diagonal type” with n = |T |m−1;
(iii) m � 2 and for some proper divisor d of m and some primitive permutation group

(Y,K) with Soc(K) isomorphic to T d, G is isomorphic to a subgroup of the wreath
product K wr Sym(m/d) with the ‘product action’ on Y m/d and n = (|Y |)m/d;

(iv) m � 6, H is regular, and n = |T |m (the ‘twisted wreath’ case).

In the proof of Theorem 5.1, we may assume that (X,G) is an ultraproduct of finite primitive
permutation groups (Xj , Gj) which are all of one type from (a), (bi), (bii), (biii), or (biv). We
define the type of (X,G) to be the uniform type of the (Xj , Gj). In particular, (X,G) has type
(i) if and only if Soc(G) is abelian.

Suppose that (X,G) ∈ S is primitive, with rk(G) > rk(X) = 1, and that A := Soc(G) is
abelian. By Lemma 5.7, G has no non-trivial finite conjugacy classes and Soc(G) is definable.
Then Soc(G) is elementarily abelian or torsion-free divisible abelian, by Lemma 5.2, and so
can be viewed as a vector space over a prime field. Also, as in Lemma 5.2 and the finite
O’Nan-Scott Theorem, after identifying some x ∈ X with 0 ∈ A and each element a(x) ∈ X
with a ∈ A, we may identify X with A (acting on itself by translation) and G with AH;
here H is the stabilizer of the zero of A, its action on A is by conjugation, and under this
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action H � GL(A) is irreducible. Correspondingly, if (X,G) is a non-principal ultraproduct
Πj∈J(Xj , Gj)/U of finite permutation groups, then we may suppose that, for each j ∈ J , we
have Gj = AjHj with Aj elementary abelian and Hj an irreducible subgroup of GL(Aj). For
any definable subgroup Y � G we write Yj for the corresponding subset of Gj (it is a group
for ultrafilter-many j).

In the next lemma we use Clifford’s Theorem (see for example [22, p. 90], or [1, 12.13]). The
basic assertion is that if V is a finite-dimensional vector space over a field F , and T � GL(V )
is irreducible, and R � T , then we may write V = V1 ⊕ . . .⊕ Vl where T � GL(V1)wr Syml acts
naturally, and each Vi is a homogeneous FR-module, that is a module of the form 〈W ′ : W ′ �
V,W ′ ∼= W 〉 (isomorphism of FR-modules), for some simple FR-submodule W of V . We refer
to the Vi as the Wedderburn components of the FT -module V .

Note that if T � GL(A), then the affine group AT acts primitively on A if and only if there
is no T -invariant proper non-trivial subgroup of A. Hence primitivity implies that A is an
irreducible QT -module.

Lemma 5.10. In the above notation, suppose that (X,G) ∈ F is definably primitive of
affine type, with G = AH as above. Assume that 1 = rk(X) < rk(G), and that A is an
elementary abelian p-group. Suppose B � H, B is definable and that A is an irreducible
FpB-module. Let C be an infinite, definable normal subgroup of B. Then A is an irreducible
FpC-module.

Proof. We suppose for a contradiction that A is a reducible FpC-module.

Claim 1. (i) Let U be an FpC-submodule of A with no definable proper non-trivial
submodules. Then U is definable.

(ii) There is a definable proper non-trivial FpC-submodule of A.

Proof of Claim 1. (i) We may suppose that U is infinite, as otherwise it is definable. Let
u ∈ U \ {0}. We may also suppose that uC is infinite, as otherwise, since U is an Fp-vector space,
〈uC〉 is a finite, so definable, C-invariant non-trivial proper FpC-submodule of U , contrary to
the assumption. By Theorem 2.2, there is a definable C-invariant groupW such thatW � 〈uC〉,
and uC/W is finite. Then W is a non-trivial definable C-invariant subspace of U , and it follows
that W = U .

(ii) Since A is reducible, there is a proper non-trivial FpC-submodule U . By (i), either U is
definable, or it contains a proper non-trivial definable FpC-submodule.

It follows, in particular, from Claim 1 that, for ultrafilter-many j ∈ J , Cj acts reducibly on
Aj . (This also follows from ‘definably primitive implies primitive’).

Next, we examine the consequences of Clifford’s Theorem on the (finite) groups Cj � Bj �
GL(Aj).

Claim 2. There is a fixed positive integer t such that, for ultrafilter-many j ∈ J, the FpBj-
module Aj has exactly t Wedderburn components.

Proof of Claim 2. Suppose that the number of Wedderburn components were increasing
unboundedly over the ultraproduct members. Thus, for any n ∈ N, there is an ultrafilter set
Jn ⊆ J where, for all j ∈ Jn, Cj � Bj and Bj has more than n Wedderburn components. Thus
suppose that such an Aj has some set of Wedderburn components V1, V2, . . . , Vn. For each
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1 � k � n select vk ∈ Vk \ {0}. Let wk =
∑k

j=1 vj . Clifford theory shows that, for 1 � k �= l �
n, the vectors wk and wl are not in the same Bj-orbit. By our assumptions, there would be
infinitely many B-orbits on A. However, this is impossible. For since B acts irreducibly on
the Fp-vector space A, any non-trivial B-orbit on A is infinite, so as rk(A) = 1, there are just
finitely many B-orbits on A.

We now assume that there is a constant number t of Wedderburn components for all
j ∈ J . Note that if the Wedderburn components are definable, then t = 1: indeed, otherwise
A is a direct sum of t > 1 infinite Fp-subspaces W (i), and we have 0 < rk(W (i)) < rk(A),
contradicting our assumption that rk(A) = 1. We may write Aj = W

(1)
j ⊕ . . .⊕W

(t)
j , with

Bj � GL(W (1)
j ) wr Sym(t).

Claim 3. There is a positive integer s such that, for almost all j, each Wedderburn
component is a direct sum of exactly s FpCj-irreducibles.

Proof of Claim 3. Again, we suppose not. Then, for any positive integer n, it follows that,
for almost all j, each Wedderburn component W (i)

j in Aj is a direct sum of more than n

irreducible Cj-subspaces, each isomorphic to U (i)
j , say. The ultraproduct U (i) of the U (i)

j is an
FpC-module with no definable proper non-trivial submodules and so is definable (by Claim
1(ii)), and it follows by rank considerations that U (i) is finite, so we may suppose the U (i)

j have
a fixed finite size, which, by Clifford theory, does not vary with i. Hence, the kernel of the
action of Cj on U (i)

j , and hence on W (i)
j , has a fixed finite index. It follows that the groups Cj

have a fixed finite order, contradicting the assumption that C is infinite.

Thus, for each j, each Wedderburn component is a direct sum of boundedly many Cj-
irreducibles. Hence, Wedderburn components are uniformly definable, by Claim 1. Also,
Wedderburn components are conjugate and so have the same size; so as (for ultrafilter-many j)
there are exactly t of them, for any n the Wedderburn components have size at least n for
ultrafilter-many j. It follows immediately (as rk(A) = 1) that (for ultrafilter-many j) there is
a unique, Cj-irreducible Wedderburn component of Aj . This proves the lemma.

5.2. rk(G) = 2

Proposition 5.11. Let (X,G) ∈ F be a definably primitive pseudofinite permutation
group, and suppose that rk(X) = 1 and rk(G) = 2. Then conclusion (ii) of Theorem 5.1 holds.

Proof. The proof proceeds in a series of claims.

Claim 1. The group G contains a definable normal subgroup S of finite index which is
soluble, and such that S′ has rank 1 and contains a definable abelian regular normal subgroup
A � G.

Proof of Claim 1. By Theorem 1.2, we know that G is definably a soluble-by-finite group.
Let T be such a definable, normal, soluble subgroup of G of finite index. Since T is soluble, there
is m such that T (m) = {1}, so there is a least n ∈ N such that rk(T (n+1)) < 2. Let S = T (n). By
Corollary 2.4, S is definable. Now by our choice of S, it has finite index in G, and S′ is of rank
1 or 0. Since S is normal in G, so is S′. If rk(S′) = 0, then S′ = {1} (by Lemma 5.7), so S must
be abelian, composed only of elements of finite G-conjugacy classes, which is a contradiction to
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Lemma 5.7. So rk(S′) = 1. From Theorem 2.11, we know that S′ has a definable characteristic
subgroup A of finite index which is finite-by-abelian (and BFC). Thus the bottom finite part
may be taken to be A′, hence characteristic in S′, hence normal in G, and hence trivial. Thus
S′ has a finite index abelian subgroup A, which is characteristic in S′. Thus A is normal in G,
and so is transitive on X. In particular, A is regular.

It follows from Claim 1 that (X,G) is of affine type as in Lemma 5.2. We therefore write
G = AH, adopting the notation Gi = AiHi used earlier, with (X,G) an ultraproduct of finite
permutation groups (Xi, AiHi), each of affine type as in Theorem 5.9(a). We view A as a vector
space over a prime field F . The group Ai is an elementary abelian pi-group, so may be viewed
as an Fpi

-vector space, with Hi � GL(Ai) irreducible.

Claim 2. There is f : N → N such that if Q is a finite group and R is a group of exponent
n acting semi-regularly on Q, then |R| < f(n).

Proof of Claim 2. See [1, 40.6].

Claim 3. The group H has a definable abelian normal subgroup Y of finite index such
that A is an irreducible FY -module.

Proof of Claim 3. There are two cases, according to whether or not char(F ) = 0.

Suppose first that char(F ) = 0, so pi is not constant on any ultrafilter-set. Let a ∈ A \ {0},
and suppose h ∈ H fixes a. Then CA(h) is a definable Q-subspace of A, so is infinite, and so has
finite index in A (as rk(A) = 1); hence, as A is divisible, CA(h) = A. As H acts faithfully on A,
it follows that h = 1, that is, H acts semi-regularly on A. Thus, we may suppose that Hi acts
semi-regularly on Ai for almost all i. Since H is infinite, and (by Claim 2) the exponent of the
Hi increases with |Hi|, it follows that H has infinite exponent. In particular, by ω-saturation of
ultraproducts there is h ∈ H of infinite order. Now C := CH(CH(h)), which equals Z(CH(h)),
is an abelian definable subgroup of H which contains 〈h〉, AND so is infinite. As rk(H) = 1, it
follows that |H : C| is finite, and Y :=

⋂
(Ck : k ∈ H) is a definable finite index abelian normal

subgroup of H. If v ∈ A \ {0}, then 〈vY 〉 contains an infinite definable Y -invariant subgroup
of A, by Theorem 2.2. Since rk(A) = 1, this subgroup equals A. Since v is arbitrary, Y is
irreducible on A.

Next, suppose that char(F ) = p, a prime. Then we may suppose pi = p for all i. Now, by
Lemma 5.10, any infinite definable normal subgroup of H is irreducible on A; so to prove the
claim, it suffices to show that H has an infinite definable abelian subgroup (for this will have
finite index in H, so we can then take Y to be the intersection of its conjugates). Arguing
by contradiction, we may suppose that H has finite exponent, as otherwise we may choose a
double centralizer C as above. By Lemma 5.10, we may replace H by any definable normal
subgroup of finite index. Therefore, using Theorem 2.11 and dropping to a finite index subgroup
of H if necessary, we may suppose that H ′ is a finite subgroup of Z(H); so, in particular, H
is nilpotent of class 2. We view H as a permutation group on A, and so, for a ∈ A, we write
Ha for CH(a). By Lemma 5.5, H has finitely many orbits on A \ {0}, say U1, . . . , Ur. For each
i = 1, . . . , r let ai ∈ Ui. Since H acts irreducibly on A and F = Fp is finite, each aH

i is infinite,
and so Hai

cannot have finite index in H so must be finite. Then, as H ′ is finite, H ′Hai
is a

finite normal subgroup of H. Put Li := CH(H ′Hai
). Then for each i, Li is an infinite definable

normal subgroup of H, so |H : Li| is finite. Put L := L1 ∩ . . . ∩ Lr, a definable normal subgroup
of H. Also |H : L| is finite and, by Lemma 5.10, L is irreducible on A. Also, Lai

� Z(L), since
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L � CH(Hai
). So as L � H, La � Z(L) for all a ∈ Ui, and so for all a ∈ A \ {0}. As L acts

faithfully on each orbit aL (by irreducibility), it follows that La = 1 for all non-zero a ∈ A,
that is, L acts semi-regularly on A \ {0}. Since H has finite exponent, so does L. It follows
by Claim 2, applied to the corresponding finite groups Li acting on Ai, that L is finite. Since
|H : L| is finite, this is a contradiction, and so Claim 3 is proved.

We now apply Proposition 2.8 to the abelian normal subgroup Y of H of finite index, acting
definably and F -irreducibly on A. So K := Z[Y ]/annZ[Y ](A) is an interpretable pseudofinite
field, and its additive group is identified with A. Now the action by conjugation of H on
Y extends naturally to an action on Z[Y ]: for

∑l
i=1(−1)εiyi ∈ Z[Y ] and h ∈ H we define

h(
∑l

i=1(−1)εiyi)h−1 =
∑l

i=1(−1)εihyih
−1. This action preserves both the additive structure

and multiplicative structure of Z[Y ].

Claim 4. The action of H on Z[Y ] fixes the ideal annZ[Y ](A).

Proof of Claim 4. Suppose y =
∑l

i=1(−1)εiyi ∈ annZ[Y ](A). Then, for any a ∈ A, we have
y · a = 0. Let h ∈ H and let x = hyh−1 = h(

∑l
i=1(−1)εiyi)h−1. We must show that the

endomorphism x maps a to 0. So we compute

x · a = h

(
l∑

i=1

(−1)εiyi

)
h−1 · a

=
l∑

i=1

(−1)εihyih
−1ahy−1

i h−1

= h

(
l∑

i=1

(−1)εiyi(h−1ah)y−1
i

)
h−1

= h(y · (h−1ah))h−1

= 0.

We conclude that there is an action of H on the field K, induced from conjugation,
that preserves its additive and multiplicative structure. In particular, H induces a group of
automorphisms of K. The group Y embeds in the multiplicative group K∗.

Claim 5. H induces the trivial group on K.

Proof of Claim 5. Since Y � CH(K) and |H : Y | is finite, H/CH(K) is a finite group
of automorphisms of the pseudofinite field K, of order m, say. Now we consider that G is an
ultraproduct of finite groups. So, for ultrafilter-many j ∈ J , the formulas for K interpret a field
Kj in the group Gj and the formulas for H/CH(K) interpret a group of automorphisms Dj of
Kj of order m. So, by Los’s Theorem, H/CH(K) is a cyclic group of order m. Furthermore, Kj

must be definably an m-dimensional vector space over the fixed field Ej of a generator of Dj .
In the ultraproduct this would mean that rk(K) = m rk(E) � m; for clearly, as K is infinite,
so is E, and so rk(E) � 1. Since K is in definable bijective correspondence with A, we have
rk(K) = 1, and so we deduce that m = 1. So H = CH(K).

Finally, we show that we may assume H = Y , and that |K∗ : Y | is finite. Let t, s ∈ H, and
let a ∈ A \ {0}. There are unique c, d ∈ K∗ such that tat−1 = c · a and sas−1 = d · a. Suppose
c =

∑l
i=1(−1)εici and d =

∑l
i=1(−1)δidi (with ci, di ∈ H), and so tat−1 =

∑l
i=1(−1)εiciac

−1
i
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and sas−1 =
∑l

i=1(−1)δidiad
−1
i . Then an easy calculation shows that stat−1s−1 = tsas−1t−1.

But the action by conjugation ofH on A is faithful. Since the above computation is for arbitrary
a ∈ A, it follows that st = ts. So H is an abelian group and hence in the above proof we may
take H = Y . Since rk(K) = rk(K∗) = 1 and rk(G) = 2, it follows that |K∗ : Y | is finite. It is
now clear that AH satisfies the conclusion of Proposition 2.8.

5.3. rk(G) � 3

To prove Theorem 5.1, it remains for us to prove the following proposition.

Proposition 5.12. Let (X,G) ∈ F be a definably primitive permutation group, and
suppose that rk(X) = 1 and rk(G) � 3. Then there is a definable pseudofinite field K such
that PSL2(K) � G � PΓL2(K), and G has the natural action on PG1(K) (identified with X).
Furthermore, |G : PSL2(K)| is finite, so rk(G) = 3.

The remainder of this paper is a proof of Proposition 5.12. As in the case when rk(G) = 2,
we suppose that (X,G) is a non-principal ultraproduct Πj∈J(Xj , Gj)/U of finite primitive
permutation groups, and that all the (Xj , Gj) have the same type in the sense of the O’Nan-
Scott Theorem, Theorem 5.9. The assumptions of Proposition 5.12 hold from now on.

We first eliminate the affine case. So suppose that Soc(G) is an abelian group A, that is,
case (a) of Theorem 5.9 holds. As in the proof of Proposition 5.11, we have G = AH, where
A is identified with X, and H is the stabilizer of the identity 0 of A. Again, we view A as a
vector space over a prime field, and H � GL(A) is irreducible. Replacing J by a subset in the
ultrafilter if necessary, we may suppose that there is a corresponding decomposition Gj = AjHj

for each j ∈ J .

Lemma 5.13. The characteristic of Aj is constant on an ultrafilter set.

Proof. Suppose not. Then since the Aj are uniformly definable, we deduce that A is a
Q-vector space. Now H � GL(A). Pick a ∈ A \ {0}. By the rank assumption rk(Ha) � 1, so
there is h ∈ Ha \ {1}. Since a has infinite order, CA(h) is an infinite definable subgroup of A,
and so |A : CA(h)| is finite. By the divisibility of A, h fixes the whole of A, contrary to the
faithfulness of G on X.

Thus, we may assume that A (and also the Ai) has the structure of a vector space over Fp,
with H � GLκ(p) for some infinite cardinal κ.

We consider now a maximal chain of definable groups 1 = N0 � N1 . . . � Nr = H, with
rk(Ni) < rk(Ni+1) for each i = 0, . . . , r − 1. By Lemma 5.10 and induction, Ni acts irreducibly
on A for each i > 0.

Consider first N1. Let B be the definable normal subgroup of N1 consisting of its finite
conjugacy classes.

Suppose first that B is infinite. In this case, B is a characteristic subgroup of N1 of finite
index, so we may replace N1 by B, that is, we assume that all H-conjugacy classes in N1 are of
finite (hence bounded) size. Thus, N1 is finite-by-abelian, and we may suppose it is centre-by-
abelian. By Lemma 5.10, N1 acts irreducibly on A. Hence all N1-orbits on A are infinite, and
so, for non-zero a ∈ A, rk((N1)a) = rk(N1) − 1. Thus, (N1)aN

′
1 is a definable normal subgroup

of N1 of rank strictly less than rk(N1), and so, by the minimality of rk(N1), it is finite.
Hence, rk(N1) = rk((N1)a) + 1 = 1. Since N1 is irreducible on A, it follows that (A,AN1) is a
primitive permutation group with rk(AN1) = 2, and it follows, by Proposition 5.11 that AN1
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is a subgroup of AGL1(F ) for some definable field F . Since rk(H) > 1, we have that N2 exists,
and, as F is a prime field, we must have AN2 � AΓL1(F ) (this is standard; compare the proof
of Proposition 5.11). Thus, as j ranges through J , there is a uniformly definable finite field Fj

with additive group Aj , and elements of (N2)j induce field automorphisms that are arbitrarily
large powers of the Frobenius. In particular, by taking fixed points, the Aj have definable
subgroups of arbitrarily large order and index, contradicting that rk(A) = 1.

Thus, B is finite. Then let yN1 be any infinite conjugacy class of N1. The Indecomposability
Theorem (Theorem 2.2) shows that there is a definable, normal subgroup Ny � N1 with Ny ⊆
〈yN1〉 and yN1/Ny finite. By our assumptions Ny must have finite index in N1. Furthermore,
the groups Ny are uniformly definable (compactness), so, as there are no infinite descending
chains of uniformly definable subgroups, N1 has a minimal, definable normal subgroup of finite
index (see also Proposition 3.4(vi)). Since this is characteristic in N1, we replace N1 with this
latter group. Now any definable normal subgroup of N1 is of rank less than rk(N1), and so is
finite. It follows, by Proposition 3.4, that either N1 is soluble, or R(N1) is finite and N1/R(N1)
is a product of finitely many definable finite or pseudofinite non-abelian simple groups, with
just one pseudofinite one. If N1 is soluble, then, as N ′

1 is definable (by Corollary 2.4), it is
finite, so N1 is a BFC group, contrary to our assumption.

We have reduced to the case when N1/R(N1) = M1 ×M2, where M1 is a simple pseudofinite
group and M2 is a product of finitely many finite simple groups. Let Mi be the preimage of
Mi in N1, for each i = 1, 2. The groups Mi are definable. By replacing N1 by CM1

(R(N1))
(a subgroup of finite index), we reduce to the case when N1 is a finite-centre-by-simple and
perfect, and so quasisimple. Note also, by our knowledge of rank 1 groups in M (Theorem 2.11),
that rk(N1) > 1. Since the groupN1/Z(N1) is an infinite pseudofinite simple group, it is a group
of Lie type, possibly twisted, over a pseudofinite field. Since A is an irreducible FpN1-module
(by Lemma 5.10), the affine permutation group (A,AN1) is primitive. Hence, by Lemma 5.5,
for each a ∈ A \ {0} the point stabilizer (N1)a has finitely many orbits on A. We claim that
there is a field F extending Fp such that AN1 � AΓLn(F ), that is, that A has the structure of
a finite-dimensional vector space over some field F , with N1 � ΓLn(F ). This follows from the
description of infinite-dimensional affine permutation groups with finitely many orbits on pairs
in [32] (see Proposition 3.6, and also Section 7). In fact, since N1 is quasisimple, easily N1 �
GLn(F ). Likewise, again via [32, Proposition 3.6], we may suppose that Aj(N1)j � AGLn(Fj).
Note that the finite fields Fj have unbounded size.

The following claim now eliminates the affine case in Proposition 5.12.

Claim. Suppose that (X,G) ∈ F satisfies all the reductions above. Then rk(X) > 1.

Proof of Claim. Suppose for a contradiction that rk(X) = 1, that (X,G) is an ultraproduct
as above, and that the above reductions and notation apply. By Lemma 5.13, A has prime
characteristic p. For ultrafilter-many j ∈ J , Aj is over a finite field of characteristic p. We
suppose that H is a Chevalley group Chev(K). By Lemma 5.5, G has finitely many orbits on
X2. So, by Remark 5.6, the assumptions of [32, Section 3] apply.

We claim that Hj has the same characteristic p as Aj . By the main theorem of Landazuri
and Seitz [31], if Hj = Chev(qj) and char(Hj) �= p, then the least possible dimension of an
irreducible characteristic p representation of Chev(qj) increases with qj . Thus, we would be
in the ‘unbounded dimension’ case of [32], handled by Proposition 3.6 there, and the cross-
characteristic case does not arise.

Thus, Hj has the form Chev(paj ) for some aj ∈ N. Let Pj be a Sylow p-subgroup of Hj , that
is, a maximal unipotent subgroup. It is easily checked that the Pj are uniformly definable, as j
varies in J . (This follows since maximal unipotent subgroups of finite simple groups of Lie type
are uniformly definable, by [7, 5.3.3(ii), 13.6.1].) Since non-trivial Pj-orbits on Aj have size a
power of p, and Pj fixes the zero vector and so acts on Aj \ {0}, which has size pnj − 1 for
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some nj , by divisibility considerations Pj has a non-trivial fixed point on Aj . Thus, CAj
(Pj)

is a definable non-trivial subspace of Aj , proper by faithfulness. Since A is finite-dimensional
and |F | is infinite, it follows that rk(A) � 2, completing the proof of the claim.

Next, we eliminate types (b) (ii)–(iv) of Theorem 5.9.

Lemma 5.14. If (X,G) ∈ F is a primitive permutation group with rk(X) = 1, then, for
ultrafilter many j ∈ J, (X,G) is not of diagonal type, product action type, or twisted wreath
type of the O’Nan-Scott Theorem.

Proof. In the diagonal case, by [32, Lemma 5.1], we may suppose that Soc(G) = T k for
some definable non-abelian pseudofinite simple group T , and that X may be identified with
the coset space in T k of a diagonal subgroup of T k. Thus, the rank of X equals the rank of
T k−1, which cannot be 1.

If (X,G) is of product action type, then there is a definable primitive infinite permutation
group (Y,H) such thatX is in definable bijection with Y l for some integer l > 1. Thus, rk(X) =
l rk(Y ) > 1, which is a contradiction.

Finally, [32, Lemma 5.3] eliminates the twisted wreath case.

To complete the proof of Proposition 5.12, it remains to handle the case of non-abelian
simple socle, that is, to prove the following.

Lemma 5.15. Suppose that (X,G) is a definable primitive permutation group in F , that
rk(X) = 1, and that Soc(G) is a non-abelian simple group. Then there is a pseudofinite field F ,
such that PSL2(F ) � G � PΓL2(F ), in its natural action on PG1(F ). Furthermore, rk(G) = 3.

Proof. The permutation group (X,G) is an ultraproduct of finite primitive permutation
groups (Xj , Gj). By Lemma 5.5, Gx has finite number, say r, of orbits on X, and the same
statement holds for ultrafilter-many j ∈ J . The group Soc(G) is a pseudofinite simple group,
and so is a Chevalley group (possibly twisted) over a pseudofinite field. It follows that there is
a fixed Lie type L(q) such that, for ultrafilter-many j ∈ J , Soc(Gj) has Chevalley type L(q).
In particular, as the Lie rank of L(q) is fixed, q is unbounded. By the main theorem of Seitz
[42], it follows that the action of Gj on Xj is parabolic (that is, is on the cosets of a maximal
parabolic subgroup Pj) for almost all j ∈ J . Thus, it suffices to show that the only possibility
for a coset space of a parabolic subgroup to have rank 1 is the projective line.

We may suppose thatGj = Soc(Gj) for all j, since the coset space Cos(Gj : Pj) is in definable
bijection with Cos(Soc(Gj) : Soc(Gj) ∩ Pj). We remark that Pj is (uniformly) definable in
Gj . This is proved in [14, Lemma 6.4], and follows rapidly from the uniform definability of
maximum unipotent subgroups (see the proof of the last claim) and the Bruhat decomposition.

Let P be the ultraproduct of the Pj . We may identify X with Cos(G : P ). Then G is bi-
interpretable (in fact, bi-definable) with a rank 1 field or difference field, and the same holds,
uniformly, for ultrafilter-many of the Gj . On an ultraproduct of finite fields, by the results in
[9] (see also [8, Section 3]), the rank of a definable set X is determined by the approximate
cardinalities of the corresponding Xj . The same holds for the difference fields over which the
Suzuki and Ree groups are defined, by [19, Theorem 5.8], (due to Ryten [40]) and [18, Corollary
5.4]. By bi-definability, this is transferred to G and the Gj ; that is, if Gj is bi-interpretable
with Fqj

, then an ultraproduct of uniformly definable sets (each of cardinality roughly μqd
j ) has

rank d. Thus, using that the Pj are uniformly definable in the Gj , we must verify the following
claim.
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Claim. Let G(q) be a group of Lie type (possibly twisted) over a field Fq, with G �=
PSL2(q), and let P (q) be a parabolic subgroup of G(q). Then |G(q) : P (q)| > O(q).

Proof of Claim. If G(q) is a classical group, then this follows from the main theorem of [12],
which determines the permutation representations of the classical groups of minimal degree.
(Recall that the degree of a permutation group (X,G) is |X|.)

So we may suppose that G is an exceptional group. We may also suppose that the Lie rank
of G(q) is at most 2. For otherwise, G(q) has a simple subgroup H(q) of Lie rank 2 with
H(q) � P (q). Since |G(q) : P (q)| � |H(q) : P (q) ∩H(q)|, we may then replace G(q) by H(q).

The degrees of the parabolic permutation representations of 2B2(q) and 2G2(q), which are
2-transitive, are listed in the proof of [6, Theorem 5.3], and are of order O(q2) and O(q3),
respectively. Those of the groups 2F4(22n+1), 3D4(q), and G2(q) correspond to the numbers of
points and lines in the corresponding generalized polygons: here, the point set and line set of
the polygon are coset spaces of appropriately chosen parabolics, two cosets incident if and only
if not disjoint. A generalized polygon has associated parameters s and t, where there are s+ 1
points incident with each line and t+ 1 lines incident with each point. By [27, A,4], the values
of (s, t) for the polygons of type G2, 3D4(q), and 2F4(q) are, respectively, (q, q), (q, q3), and
(q, q2). In [36, 1.5.4] there are formulas giving the numbers of points and lines in a generalized
polygon in terms of the parameters s, t. From this data, it is easy to see that, for parabolic
subgroups P (q) of these groups G(q), we have |G(q) : P (q)| � O(q2), as required.

Given the claim, we know that PSL2(F ) � G � PΓL2(F ), and G has the natural action on
the projective line. To check that rk(G) = 3, we must show that |G : PSL2(F )| is finite. If this
is false, there is a pseudofinite supersimple finite rank structure consisting of a pair (F,B),
where F is a field and B is an infinite group with a definable faithful action on F as a group
of automorphisms. It is easy to see that there is b ∈ B such that Fix(b) is an infinite field and
Fix(b) < F is an infinite degree extension. This contradicts that rk(F ) is finite.

6. Further observations

We note here two results related to Questions 3 and 4 from the Introduction, both proved using
CFSG. The first is an addendum to Theorems 1.2 and 1.3. We would like to prove it without
CFSG.

Proposition 6.1. Let G ∈ F be a simple group of rank 3. Then G ∼= PSL2(F ) for some
pseudofinite field F .

Proof. By Proposition 2.14, G is a group of Lie type.
First note that by Theorems 1.2 and 2.11, there is no infinite simple group in F of rank less

than 3. Hence, we may suppose that G has Lie rank 1. Indeed, otherwise G has a parabolic
subgroup P = UL, where L itself contains a simple group of Lie type over the same field, is
definable, and has infinite index in G, and so has lower rank. (Here, L is definable, since it is
a product of a maximal torus and a bounded number of root groups, all definable by results
from [40, Chapter 5]; see also [7, Section 8.5]. The simple group is L′, and so is also definable.)

Thus, it suffices to show that ultraproducts of Suzuki groups 2B2(22n+1) and Ree groups
2G2(32n+1) have rank greater than 3. By [40, Proposition 5.4.6], these groups are uniformly
bi-interpretable (over parameters) with difference fields (F22k+1 , x → x2k

) or (F32k+1 , x → x3k

),
respectively. The ultraproduct of the difference field has rank 1. As in the proof of Lemma 5.15,
it follows that, putting q := 22k+1 (or q = 32k+1 for the Ree groups), uniformly definable sets
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in the fields of cardinality roughly μqd yield definable sets in the ultraproduct of rank d. It
follows by consideration of orders (see for example [23, p. 135]) that an ultraproduct of finite
Suzuki groups has rank 5, and an ultraproduct of finite Ree groups of type 2G2 has rank 7.

Theorem 6.2. Let (X,G) = ΠJ∈J(Xj , Gj)/U be a non-principal ultraproduct of finite
primitive permutation groups, with (X,G) ∈ F . Then there is U ∈ U and some c ∈ N, such
that if j ∈ U , then |Gj | � |Xj |c.

Proof. If point stabilizers Gx are finite, then the result is obvious, so we may suppose
that, for x ∈ X, we have rk(Gx) � 1, and so (X,G) is primitive by Lemma 2.7. Thus, the
structure theory of [32], and in particular Section 7, applies. We may suppose that all the
finite permutation groups (Xj , Gj) are primitive, and all have the same type in the sense of
the O’Nan-Scott Theorem. In the affine case, by supersimplicity and [32, Theorem 1.1], it is
easy to check that there is a natural number n, fixed on an ultrafilter set, such that Xj can
be identified with a vector space Vn(q) with Gj � AΓLn(q). (Observe here that a family of
primitive permutation groups (Xj , Gj) = (Vn(q),AΓLn(q)), where n→ ∞ as j → ∞, cannot
have a supersimple non-principal ultraproduct; for AΓLn(q) has a chain of uniformly definable
subgroups, namely, stabilizers of linearly independent tuples of vectors, with successive indices
arbitrarily large.) Thus, |X| = qn and |G| � qn2+2, so it suffices to choose c so that cn � n2 + 2.
In the almost simple case, again by [32, Theorem 1.1.1] we find that, for some n, Soc(Gj) has
fixed Lie rank n. In this case, the result follows from the main theorem of [2]. The product
action and diagonal action cases are also easily handled, either directly or using [2].

Remark 6.3. From Theorem 6.2 and the results in [32] it should be possible to answer the
final question in Section 1, showing that there is a function f : N → N such that if (X,G) ∈ F
is definably primitive, then rk(G) � f(rk(X)). The idea is that (X,G) should essentially be an
ultraproduct of an asymptotic class, uniformly bi-interpretable with a class of finite fields or
difference fields, so that the asymptotic result in the last theorem should convert to a bound on
the rank. Care is needed with how the exponent c provided by [2] varies with the Lie rank n.
We have not verified the details.
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