Elekes-Szabó, weak general position, and generic nilprogressions

Martin Bays

LYMOTS 2022-01-05

Joint work with Jan Dobrowolski and Tingxiang Zou

Contents

1	Elel	kes-Szabó and general position conditions	1
	1.1	Coarse pseudofinite dimension	1
	1.2	1-dimensional Elekes-Szabó	1
	1.3	Example: Orchard problem	1
	1.4	Higher-dimensional Elekes-Szabó	1
	1.5	Coherence without cgp	1
	1.6	Examples of wgp-coherence	1
	1.7	Test case: higher orchard	1
2	\mathbf{ES}	in a group	1
	2.1	Balog-Szemerédi-Gowers-Tao and reduction to approximate subgroups	1
	2.2	Wgp coarse approximate subgroup \Rightarrow nilpotent	1
	2.3	Nilprogressions	1
	2.4	Reducing to commutative G	1
	2.5	G commutative	1
		2.5.1 Case 1: $G = \mathbb{G}_a^d$	1
		2.5.2 Case 2: G is semiabelian	1
		2.5.3 Case 3: G arbitrary \ldots	1
	2.6	Sketch proof of Theorem 4	1

Elekes-Szabó and general position conditions 1

Coarse pseudofinite dimension 1.1

Fix a non-principal ultrafilter \mathcal{U} on \mathbb{N} . For a set A, an **internal** subset of $A^{\mathcal{U}}$ is an element X of $\mathbb{P}(A)^{\mathcal{U}}$, i.e. $X = \prod_{i \to \mathcal{U}} X_i$ where $X_i \subseteq A$. Let $X \subseteq A^{\mathcal{U}}$ be internal.

The non-standard cardinality of X is $|X| = \lim_{i \to U} |X_i| \in \mathbb{N}^U \cup \{\infty\};$ X is **pseudofinite** iff $|X| < \infty$.

For a given "gauge" $N = \lim_{i \to \mathcal{U}} N_i \in \mathbb{N}^{\mathcal{U}} \setminus \mathbb{N}$, the Hrushovski-Wagner coarse pseudofinite dimension of X with respect to N is

 $\boldsymbol{\delta}(X) = \boldsymbol{\delta}_N(X) = \operatorname{st}(\log_N |X|) \in \mathbb{R}_{\geq 0} \cup \{\pm \infty\}.$

Note $\delta(X \times Y) = \delta(X) + \delta(Y)$, and $\delta(X \cup Y) = \max(\delta(X), \delta(Y))$. Say X is **broad** if $0 < \delta(X) < \infty$, i.e. $N^{\frac{1}{n}} < |X| < N^n$ for some $n \in \mathbb{N}$.

1.21-dimensional Elekes-Szabó

Say an algebraic surface $V \subseteq \mathbb{C}^3$ is **coherent** if there are pseudofinite $X_1, X_2, X_3 \subseteq \mathbb{C}^{\mathcal{U}}$ with (for a suitable gauge) $\delta(X_i) = 1$ and $\delta(V(\mathbb{C}^{\mathcal{U}}) \cap (X_1 \times X_2 \times X_3)) = 2$.

The graph $\{x + y = z\}$ of addition is coherent,

 $-N, N] = \prod_{i \to \mathcal{U}} \{-N_i, \dots, N_i\}.$ vitnessed by an arithmetic progression $X_i :=$ Similarly for multiplication, and for the group operation of an elliptic curve.

Coherence is preserved under a finite-to-finite algebraic correspondence on a co-ordinate, e.g. $\{x^2 + y^3 = z^5\}$ is coherent.

To rule out degenerate cases: call an algebraic surface $V \subseteq \mathbb{C}^3$ a "ternary correspondence" if it projects dominantly to any pair of co-ordinates.

Theorem (Elekes-Szabó '12). A ternary correspondence $V \subseteq \mathbb{C}^3$ is coherent if and only if it is in co-ordinatewise finite-to-finite correspondence with the graph of addition in a 1-dimensional algebraic group.

1.3Example: Orchard problem

<u>Problem</u>: Find large finite subsets of \mathbb{R}^2 with many collinear triples. One precise formulation: Find $X \subseteq (\mathbb{R}^2)^{\mathcal{U}}$ with $\boldsymbol{\delta}(X) = 1$ and $\delta(\{(x_1, x_2, x_3) \in X^3 : x_1, x_2, x_3 \text{ are distinct and collinear}\}) \ge 2.$

Solutions: Take X a length N arithmetic progression in a plane cubic curve.

(Image adapted from Green-Tao)

Theorem (Elekes-Szabó '13). There are no solutions with X on an irreducible plane curve of degree > 3.

Higher-dimensional Elekes-Szabó 1.4

Elekes-Szabó can be seen as a matter of modularity of the geometry of acl.

It goes through in higher dimension, but we need a minimality condition to ensure exchange.

Definition. A be a broad pseudofinite subset X of an irreducible algebraic variety V is in coarse general position (cgp) in V if $\delta(X \cap W) = 0$ for any proper subvariety $W \subsetneq V$. If W_1, W_2, W_3 are varieties, a subvariety $V \subseteq \prod_i W_i$ is **cgp-coherent** if there are cgp $X_i \subseteq W_i$

with $\delta(X_i) = 1$ and $\delta(V \cap \prod_i X_i) = 2$. As before, V is a "ternary correspondence" if it projects dominantly and with generically finite fibres to any pair $W_i \times W_j$ of co-ordinates. (In particular, dim $(V) = 2 \dim(W_i)$.)

Theorem (Elekes-Szabo '12, B-Breuillard '18). A ternary correspondence $V \subseteq \prod_i W_i$ is cgpcoherent if and only if it is in co-ordinatewise finite-to-finite correspondence with the graph of addition in a commutative algebraic group.

Coherence without cgp 1.5

What happens if we relax the cgp hypothesis?

Some general position condition is necessary to rule out degenerate situations.

The following example shows that " X_i is Zariski-dense in W_i " is insufficient.

Example. Suppose $W_1 = W_2 = W_3 =: W$,

where W is an arbitrary variety containing a commutative algebraic group G as a subvariety. Let $V \subseteq W^3$ be a ternary correspondence (with everywhere finite fibres),

such that $V \cap G^3$ is the graph of addition.

Let $X_1 = X_2$ be the union of an arithmetic progression in G of length N,

and a Zariski-dense subset of W of size $\log(N)$,

and let X_3 be the image $\{z : (x, y, z) \in V, (x, y) \in X_1 \times X_2\}.$

Then $\boldsymbol{\delta}(X_i) = 1$ for i = 1, 2, 3, and $\boldsymbol{\delta}(V \cap \prod X_i) = 2$.

This example suggests the following definition.

Definition. A broad pseudofinite subset X of an irreducible algebraic variety V is in weak general position (wgp) in V if $\delta(X \cap W) < \delta(X)$ for any proper subvariety $W \subsetneq V$

If W_1, W_2, W_3 are varieties, a subvariety $V \subseteq \prod_i W_i$ is **wgp-coherent** if there are wgp $X_i \subseteq W_i$ with $\boldsymbol{\delta}(X_i) = 1$ and $\boldsymbol{\delta}(V \cap \prod_i X_i) = 2$.

1.6Examples of wgp-coherence

Example.

$$A := \begin{bmatrix} 1 & [-N, N] & [-N^2, N^2] \\ 0 & 1 & [-N, N] \\ 0 & 0 & 1 \end{bmatrix}$$

witnesses that the graph of the group operation in the Heisenberg group is wgp-coherent. *Example* (BB'18). The graph of $*: \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}^2$

$$(a_1, b_1) * (a_2, b_2) = (a_1 + a_2 + b_1^2 b_2^2, b_1 + b_2)$$

is wgp-coherent (witnessed by $[-N^4, N^4] \times [-N, N]$),

but is not in co-ordinatewise correspondence with the graph of a group operation.

Working hypothesis: Iterated abelian groups are the only source of wgp-coherence.

Test case: higher orchard 1.7

 $S \subseteq \mathbb{C}^3$ an algebraic surface, e.g. cubic. $V := \{(x, y, z) : x, y, z \in S \text{ and } x, y, z \text{ are distinct collinear}\}.$ For what S is V wgp-coherent? Expectation: S has to be the union of three planes.

$\mathbf{2}$ ES in a group

Question 1. For which connected algebraic groups $(G; \cdot)$ is the graph $\Gamma \subseteq G^3$ wgp-coherent?

I.e. when do there exist wgp $X_1, X_2, X_3 \subseteq G$ with $\delta(X_i) = 1$ and $\boldsymbol{\delta}(\{(x_1, x_2, x_3) \in \prod_i X_i : x_1 \cdot x_2 = x_3\}) = 2?$

For cgp-coherence, by the ES result above the answer is: iff G is abelian.

Theorem 1 (B-Dobrowolski-Zou). The graph of multiplication in a connected algebraic group G is wgp-coherent iff G is nilpotent.

As we see below, the forward direction is not really new. But the converse is.

2.1Balog-Szemerédi-Gowers-Tao and reduction to approximate subgroups

Coherence implies large "energy",

 $\delta(\{(x_1, x_2, x_1', x_2') \in X_1 \times X_2 \times X_1 \times X_2 : x_1 \cdot x_2 = x_1' \cdot x_2'\}) = 3.$

Tao's version of Balog-Szemerédi-Gowers obtains from this an approximate subgroup, some coset of which has large intersection with X_1 .

Definition. An internal subset $X \subseteq G$ is a **coarse approximate subgroup** if X is broad, and $e \in X = X^{-1}$. and $XX \subseteq KX$ for some internal K with $\delta(K) = 0$.

Then BSGT essentially¹ reduces Question 1 to:

Question 2. Which connected algebraic groups G admit a wgp coarse approximate subgroup?

2.2Wgp coarse approximate subgroup \Rightarrow nilpotent

For this we can either directly use the result of Breuillard-Green-Tao that approximate subgroups of $\operatorname{GL}_n(\mathbb{C})$ are nilpotently controlled, or we can parallel the proof of that result as follows.

Suppose $X \subseteq G$ is a wgp coarse approximate subgroup.

- Replace X with a \wedge -internal subgroup $H \leq G$ with $X \subseteq H$ and $\delta(H) = \delta(X)$. $(H := \bigcap_{n \in \mathbb{N}} X^{\lfloor \log_2(\log_{|K|} N) \rfloor - n})$
- BGT(+Hrushovski(+Jordan)): A simple complex linear algebraic group has no broad \wedge -internal Zariski-dense subgroup.
- It follows that we may assume G is solvable.
- If G is not nilpotent, an argument of Breuillard-Green then cooks out a broad \wedge -internal subfield of $\mathbb{C}^{\mathcal{U}}$, contradicting sum-product theorems. The wgp hypothesis is used to obtain broadness of quotients of H and hence of this field.

2.3Nilprogressions

It remains to show that any nilpotent complex algebraic group admits a wgp coarse approximate subgroup. We will find one as a nilprogression of pseudofinite length.

Definition 2. Given elements a_1, \ldots, a_r of a group H and $m \in \mathbb{N}$, the **nilprogression** generated by \overline{a} of length m is the set $P(\overline{a}, m) \subseteq H$ of words in a_i and a_i^{-1} in which for each *i*, the number of occurences of a_i or a_i^{-1} is at most *m*.

For H nilpotent, $|P(\overline{a}, m)| < O(m^{O(1)})$, and $P(\overline{a}, m)$ is a $O_{H,r}(1)$ -approximate subgroup.

Now fix G a non-trivial connected nilpotent complex algebraic group.

Given $r \in \mathbb{N}$, set

$$P_r := P(\overline{a}, N) \subseteq G(\mathbb{C}^{\mathcal{U}}),$$

where $\overline{a} \in G^r(\mathbb{C})$ is algebraically generic

(i.e. $\operatorname{trd}(\overline{a}/C_0) = \dim G^r = r \dim G$ where G is defined over C_0).

Then P_r is a coarse approximate subgroup.

The difficulty is to show:

Lemma 1. For large enough $r \in \mathbb{N}$, P_r is wgp in G.

Remark 3. One might think to instead try to take $r \in \mathbb{N}^{\mathcal{U}} \setminus \mathbb{N}$. For commutative G this works, and one can even get cgp this way. But e.g. for the Heisenberg group, $|P_r| \approx N^{2\binom{r}{2}+r}$ while $|P_r \cap Z(G)| \approx N^{2\binom{r}{2}}$, so wgp fails (since st $\left(\frac{\binom{r}{2}}{\binom{r}{2}+r}\right) = 1$).

Reducing to commutative G $\mathbf{2.4}$

We first reduce Lemma 1 to the case that G is commutative. Rough idea for G of nilpotency class 2:

• Work in the Lie algebra \mathfrak{g} with a generic nilbox

$$B_r := \sum_{i} [-N, N] \cdot b_i + \sum_{i < j} [-N^2, N^2] \cdot [b_i, b_j]$$

where $\exp(b_i) = a_i$.

(Then $\exp(B_r) \approx P_r$; e.g. $a_2^n a_1^n = a_1^n a_2^n [a_2, a_1]^{n^2}$.)

- Then B_r/\mathfrak{g}' and $\mathfrak{g}' \cap B_r$ are generalised arithmetic progressions, $\sum_{i} [-N, N] \cdot b_i / \mathfrak{g}'$ and $\sum_{i < j} [-N^2, N^2] \cdot [b_i, b_j].$
- If $W \subsetneq G$ is a proper subvariety, either $W/G' \subseteq G/G'$ is proper or the fibres $W \cap cG'$ are generically proper. In either case we can apply the abelian case to bound $|W \cap \exp(B_r)|$.

Generally, we inductively quotient by the last non-trivial term \mathfrak{g}_n in the descending central series. Complications:

- Sometimes short Lie monomials in generics are already in \mathfrak{g}_n (e.g. free k-Engel Lie alge-
- bras).
- The monomials themselves might not have generic image in G_n ; but by Zilber indecomposability, if we take r large enough, we get enough independent generics in G_n by taking suitable disjoint Lie polynomials in the b_i .

2.5G commutative

We want to see that $P_r = [-N, N]^r \cdot \overline{a} = \sum_{i=1}^r [-N, N] a_i$ is wgp in G for large enough r.

2.5.1 Case 1: $G = \mathbb{G}_a^d$

 $[-N,N]^d$ is wgp in \mathbb{G}_a^d , since for $W \subsetneq G$ a proper subvariety, $W \cap [-N, N]^d < O(N^{\dim W})$. Hence $P_d = [-N, N]^d \cdot \overline{a}$ is also wgp. Similarly, P_r is wgp for $r \ge d$.

2.5.2 Case 2: G is semiabelian

Fact 1 (Mordell-Lang). If $\Gamma \leq G$ is a finitely generated subgroup, and $W \subseteq G$ is an irreducible subvariety, and $W \cap \Gamma$ is Zariski-dense in W, then W is a coset of an algebraic subgroup of G.

Take $\Gamma := \langle \overline{a} \rangle$.

By the genericity and rigidity, no $\gamma \in \Gamma \setminus \{0\}$ is in a proper algebraic subgroup of G. So if $W \subseteq G$ is infinite and $W \cap \Gamma$ is Zariski-dense in W, then W = G.

So if $W \subsetneq G$ is a proper subvariety, $\Gamma \cap W(\mathbb{C})$ is finite.

Moreover, for an algebraic family W_h of proper subvarieties, $|\Gamma \cap W_b(\mathbb{C})|$ is bounded uniformly in b (Scanlon).

Hence $P_r = [-N, N]^r \cdot \overline{a}$ is in (very) general position, certainly wgp.

2.5.3Case 3: G arbitrary

A connected commutative algebraic group G can be written as $G = G_0 \oplus V_0$, where $G_0 = G[\infty]^{\text{Zar}}$ is almost semiabelian, i.e. connected with Zariski-dense torsion, and V_0 is a vector group $V_0 \cong \mathbb{G}_a^n$.

We obtain the following "generic Mordell-Lang" result for G in terms of this decomposition. Let $\Gamma := \langle \overline{a} \rangle$.

Theorem 4 (BDZ). If $W \subseteq G$ is an infinite irreducible subvariety and $W \cap \Gamma$ is Zariski-dense in W

then $W = G_0 + W_0$ for some irreducible subvariety $W_0 \subseteq V_0$.

Moreover, this holds uniformly in the sense that it also holds for $\Gamma^{\mathcal{U}}$.

Combined with the \mathbb{G}_a^n case, this suffices to show that P_r is wgp for $r \geq \dim(V_0)$, completing the proof of Theorem 1.

Remark: Mordell-Lang for arbitrary f.g. subgroups of arbitrary commutative algebraic groups is an open problem (without a clear conjectural statement).

2.6Sketch proof of Theorem 4

Basic idea: adapt Hrushovski's DCF proof of char 0 function field Mordell-Lang to our setting of a generic f.g. subgroup of a <u>fixed</u> commutative algebraic group G.

(For G semiabelian this is not new; c.f. Hrushovski-Pillay "Effective bounds for the number of transcendental points on subvarieties of semi-abelian varieties".)

- We can assume we are working in $K \models \text{DCF}_0$, and G is defined over the constant field $C \leq K$, and Γ is generic over C.
- Consider the logarithmic derivative

$$0 \to G(C) \to G(K) \xrightarrow{\text{ID}} LG(K) \to 0.$$

- Set $H := \mathrm{lD}^{-1}(\langle \mathrm{lD}(\Gamma) \rangle_C)$, a finite Morley rank subgroup of G(K).
- Given $W \subsetneq G$, WMA by quotienting that W is stabilised by no non-trivial almost semiabelian subgroup.
- Let $\pi: G \to S$ be the maximal semiabelian quotient.
- One sees (roughly²) that $(lD_S^{-1} \circ L\pi \circ lD)(W \cap H)$ is almost internal to C; but the socle of $\pi(H)$, the maximal connected definable subgroup which is almost internal to C, is S(C). So $L\pi(lD(W \cap H))$ is a point.
- Suppose for contradiction $S \neq \{0\}$. Then by the genericity, also $lD(W \cap H)$ is point. So after translating, $W \cap H \subseteq G(C)$, so W has a Zariski-dense set of constant points, so W is over C, contradicting the genericity.

¹I'm lying here slightly. In fact, only part of the wgp condition on X_1 passes to the coarse approximate subgroup obtained from BSGT: it is Zariski dense and the image in any non-trivial group quotient is broad. Luckily, this suffices to prove nilpotence.

²Actually we should pass to an appropriate (still Z-dense) subset of $W \cap H$