Notes on Polish topometric groups

Martin Bays

November 20, 2017

Notes from a seminar series on automatic continuity, Münster, Nov 2017, on Ben Yaacov, Berenstein, Melleray *Polish topometric groups*.

1 Aut([0, 1], λ)

Let MALG be the Lebesgue measure algebra

$$\begin{aligned} \text{MALG} &:= \{ X \subseteq [0,1] : X \text{Lebesgue measurable} \} / (\lambda(X \Delta Y) = 0) \\ &= \{ X \subseteq [0,1] : X \text{Borel} \} / (\lambda(X \Delta Y) = 0). \end{aligned}$$

Let $Aut([0,1], \lambda) := Aut((MALG; \lambda, \vee, \neg))$. This has two natural topologies:

- Aut([0,1], λ)_p: topology of pointwise convergence, i.e. the topology inherited from the product topology on MALG^{MALG};
- Aut $([0,1],\lambda)_u$: topology of uniform convergence, defined by the metric

$$\partial(\alpha,\beta) := \sup_{x \in M} \lambda(\alpha(x)\Delta\beta(x)).$$

Fact 1.1. $f \mapsto (X \mapsto f(X))$ induces a group isomorphism

$$\operatorname{Bij}_{\lambda}([0,1])/(\lambda(\operatorname{supp}(fg^{-1}))=0) \xrightarrow{\sim} \operatorname{Aut}([0,1],\lambda)$$

where $\operatorname{Bij}_{\lambda}([0,1])$ is the group of measure-preserving bijections.

Theorem 1.2. Any homomorphism from $Aut([0,1], \lambda)_p$ to a separable topological group is continuous.

- Outline of proof. (I) (Ryzikov,Kittrell-Tsankov,BBM): Using a result of Ryzikov that every element of Aut([0, 1], λ) is a product of 3 involutions, Aut([0, 1], λ)_u has the (38)-Steinhaus property and so has this automatic continuity property;
- (II) (Kechris-Rosendal): The automorphism group of the countable dense measure subalgebra $\mathcal{A} \subseteq$ MALG generated by dyadic rational intervals has ample generics;
- (III) (BBM): Hence Aut([0,1], λ) has ample generics as a "topometric structure", and so the automatic continuity of Aut([0,1], λ)_u lifts to Aut([0,1], λ)_p.

2 Metric structures

Definition 2.1. $\mathcal{M} = (M; d, (P_i)_{i \in I}, (f_i)_{i \in I'})$ is a metric structure if

- (M; d) is a complete bounded metric space,
- each $P_i: M^{k_i} \to \mathbb{R}$ is a uniformly continuous bounded map,
- each $f_i: M^{k'_i} \to M$ is a uniformly continous map.

 \mathcal{M} is **Polish** if (M; d) is Polish (i.e. if (M; d) is separable).

An isomorphism of metric structures is an isometry preserving the predicates and functions.

Example 2.2. MALG := (MALG; d, \lor, \neg) with metric $d(A, B) := \lambda(A \Delta B)$ is a Polish metric structure.

3 Topometric groups

Definition 3.1. A topometric space $(X; \tau, \partial)$ is a topological space $(X; \tau)$ equipped with a metric ∂ which refines the topology τ , such that ∂ is topologically lower semi-continuous, i.e. $\{(x, y) : \partial(x, y) \leq r\}$ is τ -closed for $r \in \mathbb{R}$.

A topometric group $(G; \tau, \partial)$ is a topometric space with a group structure such that $(G; \tau)$ is a topological group and ∂ is bi-invariant.

Fact 3.2. If (M; d) is a Polish metric space, then Iso((M; d)), with the topology of pointwise convergence is a Polish group.

Proof sketch. Say $A \subseteq M$ is countable dense. Then $\operatorname{Iso}((M;d))$ is homeomorphic to the space of isometric embeddings of A into M, which embeds as a closed subspace of M^A , which is Polish since it is the countable product of Polish spaces (explicitly: the product measure $\partial(\alpha,\beta) := \sum_i 2^{-1} \gamma(d(\alpha(a_i),\beta(a_i)))$, where $\gamma : \mathbb{R}_{\geq 0} \to [0,1); x \mapsto \frac{x}{1+x}$, is a complete metrisation of M^A , and M^A is second countable by definition of the product topology).

Fact 3.3. Let $\mathcal{M} = (M; d, ...)$ be a Polish metric structure. Consider Aut (\mathcal{M}) with the topology τ of pointwise convergence.

Then $\operatorname{Aut}(\mathcal{M})$ is a closed subgroup of $\operatorname{Iso}((M;d))$, so is Polish.

Let $\partial^{\mathcal{M}}(\alpha,\beta) := \sup_{x \in M} d(\alpha(x),\beta(x))$ be the metric of uniform convergence on Aut(\mathcal{M}).

Then $\partial^{\mathcal{M}}$ is bi-invariant, lower semi-continuous, and refines τ .

Definition 3.4. For \mathcal{M} as in the previous fact, we consider Aut (\mathcal{M}) as a Polish topometric group with the topometric structure $(Aut(\mathcal{M}); \tau, \partial^{\mathcal{M}})$.

Example 3.5. Aut([0,1]; λ) := Aut(MALG) as a topometric group. (So Aut([0,1]; λ)_p is the τ topology, Aut([0,1]; λ)_u is the ∂ topology.

Remark 3.6. Any Polish group is isomorphic as a topological group to $\operatorname{Aut}(\mathcal{M})$ for some Polish metric structure \mathcal{M} in a countable language (and \mathcal{M} can be taken approximately ultrahomogeneous).

(No analogous statement given for Polish topometric groups).

4 Topometric groups with ample generics

Definition 4.1. A Polish topometric group (G, τ, ∂) has **ample generics** if for each n, the diagonal conjugacy action on G^n has an orbit with comeagre ∂ -closure.

Theorem 4.2. If $(G; \tau, \partial)$ is a topometric group with ample generics and ϕ : $(G; \partial) \to H$ is a morphism of topological groups, where H is separable (or, more generally, H has uniform Souslin number¹ $\leq 2^{\aleph_0}$), then ϕ : $(G; \tau) \to H$ is continuous.

The proof is analogous to Kechris-Rosendal.

Remark 4.3. Metric version of the small index property: if $(G; \tau, \partial)$ is a Polish topometric group with ample generics, then any ∂ -closed subgroup of index $< 2^{\aleph_0}$ is open.

5 Lifting ample generics

Definition 5.1. If $(X; \tau, \partial)$ is a topometric space, $A \subseteq X$, and $\epsilon > 0$, define

$$(A)_{\epsilon} := \{ x : \partial(x, A) < \epsilon \}.$$

 $A \subseteq X$ has **open enlargements** in X if $(A)_{\epsilon} \subseteq X$ is open for any $\epsilon > 0$.

Definition 5.2. Let $\mathcal{M} = (M; d, ...)$ be a Polish metric structure. A good countable approximating substructure is a classical countable structure \mathcal{N} such that

- (i) the universe N of \mathcal{N} is a dense subset of (M; d);
- (ii) any automorphism of \mathcal{N} extends (necessarily uniquely) to an automorphism of \mathcal{M} ;
- (iii) with this embedding, $\operatorname{Aut}(\mathcal{N}) \subseteq \operatorname{Aut}(\mathcal{M})$ is dense;
- (iv) Consider $\operatorname{Aut}(\mathcal{N})$ with the topology of pointwise convergence where N has the discrete topology.

If $U \subseteq_{op} \operatorname{Aut}(\mathcal{N})$ is open as a subset of $\operatorname{Aut}(\mathcal{N})$, then U has open enlargements in $\operatorname{Aut}(\mathcal{M})$.

Lemma 5.3. Let $\mathcal{A} = (A; \lor, \neg) \subseteq$ MALG be the measure subalgebra generated as a boolean algebra by the dyadic intervals, being the subintervals of [0, 1] whose endpoints are dyadic rationals (i.e. of form $m2^{-n}$).

Then \mathcal{A} is a good countable approximating substructure.

Theorem 5.4. Suppose \mathcal{N} is a good countable approximating substructure of a Polish metric structure \mathcal{M} , and the Polish group $\operatorname{Aut}(\mathcal{N})$ has ample generics. Then the Polish topometric group $\operatorname{Aut}(\mathcal{M})$ has ample generics.

¹the **uniform Souslin number** of a group G is the least κ such that if $1 \in V \subseteq_{op} G$ then κ left-translates of V cover G.

5.1 Banach-Mazur

Let X be a topological space, $A \subseteq X$. The **Banach-Mazur game** for $A \subseteq X$ is as follows:

- Players P1 and P2 alternate making moves.
- At any time, the game state is a non-empty open subset of X.
- a move consists of playing a non-empty open subset of the current game state; the game state is then replaced by this set.
- The initial game state is X, and P1 plays first.
- P2 wins a game whose successive game states are $X = V_0 \supseteq V_1 \supseteq \dots$ if $\bigcap_{i \in \omega} V_i \subseteq A$.

A winning strategy for P2 is a deterministic choice of what to play on a given P2 move given the history of the game up to that point, such that if P2 plays according to the strategy, then P2 wins however P1 plays.

Theorem 5.5. P2 has a winning strategy iff A is comeagre.

Proof in the case that X *is second countable.* (Adapted from a math.stackexchange.org post by Andreas Blass.)

Suppose A is comeagre, so say $A \supseteq \bigcap_{i \in \omega} U_i$ with U_i open dense. Then the following is a winning strategy for P2: if on P2's *i*th move the state is V, play $V \cap U_i$.

Conversely, suppose P2 has a winning strategy. Let \mathcal{B} be a countable base for X; we may assume $\emptyset \notin \mathcal{B}$.

Suppose it is P1 to move, and the game state is V, so far P1 has always played sets from \mathcal{B} , and P2 has played according to the strategy. Let $K \subseteq V$ be the set of points $k \in V$ such that for any set from \mathcal{B} which P1 could play, P2's response (playing according to P2's strategy) doesn't contain k.

Then K is nowhere dense: if it were dense in an open, then it would be dense in some $V \supseteq U \in \mathcal{B}$, but then K would intersect P2's response to U.

Now there are countably many such K, and they cover $X \setminus A$: if $x \in X \setminus A$ is not covered by the K then P1 can play such that x survives throughout the game, contradicting P2's strategy being winning.

5.2 Lifting comeagreness

Theorem 5.6 (BBM). Let (X, τ, ∂) be a Polish topometric space. Let $Y \subseteq X$ be a dense subset equipped with a Polish topology refining the subspace topology, with complete metric d_Y . Suppose that any open (i.e. d_Y -open) $U \subseteq Y$ has open enlargements in X, and so does any open (i.e. τ -open) $U \subseteq X$.

Let $A \subseteq Y$ be comeagre in Y. Then \overline{A}^{∂} is comeagre in X.

Proof. Say $A \supseteq \bigcap_{1 \le n < \omega} O_n$ with $O_n \subseteq Y$ open dense in Y. Since Y is dense in X, also O_n is dense in X.

 $\overline{A}^{\partial} = \bigcap_{n} (A)_{\frac{1}{n}}$, so it suffices to show that for any $\epsilon > 0$, $(A)_{2\epsilon}$ is comeagre in X. We give a winning strategy for P2 in the Banach-Mazur game for $(A)_{2\epsilon} \subseteq X$.

Set $W_0 := Y$. On P2's *i*th move $(i \ge 1)$, if the game state is U_i , the strategy tells P2 to choose $W_i \subseteq Y$ an open non-empty d_Y -ball of radius $< 2^{-i}$ such that $W_i \subseteq W_{i-1} \cap (U_i)_{\epsilon} \cap O_i$, then play $V_i := U_i \cap (W_i)_{\epsilon}$.

Claim 5.7. Such a W_i exists.

Proof. $A_i := W_{i-1} \cap (U_i)_{\epsilon}$ is non-empty; this holds for i = 1 because $W_0 = Y$ is dense, and for i > 1 because $\emptyset \neq U_i \subseteq (W_{i-1})_{\epsilon}$ by the rules of the game.

Now A_i is open in Y since U_i has open enlargements and the topology on Y refines the subspace topology, so A_i intersects the dense open O_i in a non-empty open set.

Now V_i is open since W_i has open enlargements, and is non-empty since $\emptyset \neq W_i \subseteq (U_i)_{\epsilon}$.

Now say $x \in \bigcap U_i$ for a game where P2 plays according to this strategy. Then for each $i, x \in U_{i+1} \subseteq (W_i)_{\epsilon}$, so say $y_i \in W_i$ with $\partial(x, y_i) < \epsilon$. Let $y := \lim_i U_i^{d_Y} y_i$. Then $A \supseteq \bigcap O_n \supseteq \bigcap W_i = \{y\}$.

Now by topological lower semi-continuity of ∂ , $\partial(x, y) \leq \epsilon$. So $x \in (A)_{2\epsilon}$. So the strategy is winning.

5.3 Proof of Theorem 5.4

Proof of Theorem 5.4. Let $A \subseteq \operatorname{Aut}(\mathcal{N})^n$ be a comeagre orbit of the diagonal conjugation action of $\operatorname{Aut}(\mathcal{N})$. Let $A' \subseteq \operatorname{Aut}(\mathcal{M})^n$ be the orbit of the diagonal conjugation action of $\operatorname{Aut}(\mathcal{M})$ containing A.

It suffices to show that the conditions of Theorem 5.6 hold for the pair $\operatorname{Aut}(\mathcal{N})^n \subseteq \operatorname{Aut}(\mathcal{M})^n$, since then $\overline{A'}^{\partial} \supseteq \overline{A}^{\partial}$ is comeagre as required.

Claim 5.8. The topology on $\operatorname{Aut}(\mathcal{N})^n \subseteq \operatorname{Aut}(\mathcal{M})^n$ refines the subspace topology.

Proof. Assume n = 1; the same proof goes through in general. Let $U \subseteq \operatorname{Aut}(\mathcal{M})$ be a subbasic open set of the form

$$U = \{\beta \in \operatorname{Aut}(\mathcal{M}) : d(\beta(a), b) < \epsilon\}.$$

Let $\beta \in U \cap \operatorname{Aut}(\mathcal{N})$. Let $a' \in N$ such that $r := \epsilon - d(\beta(a'), b) > 0$ and $d(a, a') < \frac{r}{2}$.

Let $V := \{\beta' \in \operatorname{Aut}(\mathcal{N}) : d(\beta'(a'), \beta(a')) < \frac{r}{2}\} \subseteq_{op} \operatorname{Aut}(\mathcal{N})$. Then $\beta \in V$, and $V \subseteq U \cap \operatorname{Aut}(\mathcal{N})$ since if $\beta' \in V$ then

$$\begin{split} d(\beta'(a),b) &\leq d(\beta'(a),\beta'(a')) + d(\beta'(a'),\beta(a')) + d(\beta(a'),b) \\ &= d(a,a') + d(\beta'(a'),\beta(a')) + d(\beta(a'),b) \\ &< \frac{r}{2} + \frac{r}{2} + (\epsilon - r) \\ &= \epsilon. \end{split}$$

So $U \cap \operatorname{Aut}(\mathcal{N}) \subseteq_{op} \operatorname{Aut}(\mathcal{N})$.

Claim 5.9. Any open subset $U \subseteq \operatorname{Aut}(\mathcal{M})^n$ has open enlargements.

Proof.
$$(U)_{\epsilon} = (\{1\})_{\epsilon} \cdot U.$$

The other conditions follow immediately from the definition of a good approximating substructure. $\hfill \Box$

6 Automatic continuity for $Aut([0,1],\lambda)_p$

Fact 6.1 (Kechris-Rosendal). \mathcal{A} is the Frassé limit of the class of finite measured boolean algebras where the measure takes dyadic rational values.

- Proof of Lemma 5.3. (i) By regularity of Lebesgue measure, every $X \in MALG$ is of the form $X = \bigwedge_{i < \omega} U_i$ where U_i is open, so $X = \bigwedge_{i < \omega} \bigvee_{j < \omega} I_{ij}$ where I_{ij} is a dyadic interval.
- (ii) Extend $\sigma \in \text{Aut}(\mathcal{A})$ to MALG by continuity, $\sigma \lim_i X_i := \lim_i \sigma X_i$ if $X_i \in \mathcal{A}$.

Then σ preserves λ , and σ preserves boolean operations since they are continuous, e.g. $\sigma \neg \lim_i X_i = \sigma \lim_i \neg X_i = \lim_i \sigma \neg X_i = \lim_i \sigma \sigma X_i = \neg \lim_i \sigma X_i = \neg \sigma \lim_i X_i$.

(iii) It suffices to show that if $\beta \in \text{Aut}(\text{MALG})$ and $B_1, \ldots, B_n \in \text{MALG}$ and $\epsilon > 0$, then there exists $\beta' \in \text{Aut}(\mathcal{A})$ with $d(\beta(B_i), \beta'(B_i)) < \epsilon$.

We may assume B_1, \ldots, B_n are the atoms of a finite subalgebra of MALG. Take approximations from below $B_i \supseteq B'_i \in \mathcal{A}$ for i > 1 with $\lambda(B_i \setminus B'_i) < \epsilon/n$. Set $B'_1 := \neg(\bigvee_{i>1} B'_i) \in \mathcal{A}$, so $\lambda(B'_1 \setminus B_1) < \epsilon$.

Similarly obtain disjoint approximations $C'_i \in \mathcal{A}$ to $\beta(B_i)$ with $\lambda(B'_i) = \lambda(C'_i)$.

Then $B'_i \mapsto C'_i$ extends to an isomorphism of the generated finite dyadic rational subalgebras, so by homogeneity extends to $\beta' \in \operatorname{Aut}(\mathcal{A})$.

(iv) In fact we show this not for ∂ but for the equivalent metric ∂'

$$\partial'(\alpha,\beta) := \lambda(\operatorname{supp}(\alpha^{-1}\beta))$$

Take $U \subseteq \operatorname{Aut}(\mathcal{A})$ a basic open neighbourhood of id,

$$U = \{ \alpha : \bigwedge_{i=1}^{n} \alpha(B_i) = B_i \}$$

WLOG B_1, \ldots, B_n are the atoms of a finite subalgebra of \mathcal{A} .

Claim 6.2.

$$(U)_{\epsilon} = \{\beta : \sum_{i=1}^{n} \lambda(B_i \setminus \beta^{-1}(B_i)) < \epsilon\} =: U'_{\epsilon}.$$

Proof. \subseteq is clear.

For the converse, note $\lambda(B_i \setminus \beta^{-1}(B_i)) = \lambda(B_i \setminus \beta(B_i))$; indeed,

$$\lambda(B_i \setminus \beta^{-1}(B_i)) = \lambda(B_i) - \lambda(B_i \cap \beta^{-1}(B_i))$$
$$= \lambda(\beta^{-1}(B_i)) - \lambda(B_i \cap \beta^{-1}(B_i))$$
$$= \lambda(\beta^{-1}(B_i) \setminus B_i)$$
$$= \lambda(B_i \setminus \beta(B_i)).$$

Let $\beta \in U'_{\epsilon}$. Define β' setting it on $B_i \setminus \beta^{-1}(B_i)$ to be an arbitrary isomorphism with $B_i \setminus \beta(B_i)$, and otherwise to agree with β . Then $\beta' \in U$. So $\beta \in (U)_{\epsilon}$ by definition of U'_{ϵ} and of ∂' . So $(U)_{\epsilon}$ is open, as required.

Fact 6.3 (Kechris-Rosendal). Aut(\mathcal{A}) has ample generics.

Fact 6.4. Any homomorphism from $Aut([0,1], \lambda)_p$ to a separable group is continuous.

Corollary 6.5. The topometric group (Aut(MALG); τ , ∂') has ample generics, hence by Theorem 4.2, any homomorphism from Aut([0,1], λ)_u to a separable group is continuous.