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1 Szemeredi-Trotter and trichotomy

Notes on various “Szemeredi-Trotter” results, and the interpretation in terms
of geometric stability theory given to them by Hrushovski in his paper “On
pseudo-finite dimensions”.

1.1 Szemeredi-Trotter

Theorem 1.1 (Szemeredi-Trotter 1983). Given n points and m lines in R2,
the number of point-line incidences is O(n2/3m2/3 + n+m).

Remark 1.2. In particular, given ≤ n points and ≤ n lines, the number of
incidences is O(n4/3).

4/3 = 3/2− 1/6.

Theorem 1.3 (Tóth 2003). Same statement, but for the complex plane C2,
where a ”line” is a coset of a 1-dimensional C-subspace.

Remark 1.4. The same statement for the projective plane P2(C) follows (since
by applying a Möbius transformation, WLOG none of our points or lines are at
infinity).

We can think of incidences as the edges E of a bipartite graph between a set
of ”points” and a set of ”lines”. Recall Elekes-Szabo define the combinatorial dimension
of a bipartite graph, with respect to a parameter b.

E omits Kb,k if the common intersection of any k distinct ”lines” has less
than b ”points”. This implies that E has combinatorial dimension ≤ k with
respect to b.

Remark 1.5. In the cases above, G omits K2,2 - distinct lines meet in at most
one point (exactly one in case of P2(C)), and dually.

Theorem 1.6 (Elekes-Szabo 2012 (symmetric version)). Suppose P , L, and
I ⊆ P × L are complex algebraic varieties, or just constructible sets in C, i.e.
definable in (C; +, ·).

Let XP ⊆ P and XL ⊆ L with |XP |, |XL| ≤ n, let E := I ∩ (XP ×XL), and
suppose E has combinatorial dimension ≤ k.

Then the number of incidences |E| is O(n
2k−1

k − (k−1)2

k(kD−1)
+ε) for any ε > 0,

where D > 0 depends only on dim(L).

(k = 2: O(n
3
2−

1
2(2D−1)

+ε); in the Tóth theorem, D = 2 and there’s no ε.)

Theorem 1.7 (Fox-Pack-Sheffer-Suk-Zahl 2014). Suppose I ⊆ Rdp × Rdl =:
P × L is semialgebraic, i.e. definable in (R; +, ·).

Let XP ⊆ P and XL ⊆ L with |XP |, |XL| ≤ n, let E := I ∩ (XP ×XL).

(i) Suppose E omits Kk,k. Then |E| is O(n
2dpdl−dl−dp

dpdl−1 +ε
) for any ε > 0.

(ii) Suppose I is algebraic and E omits Kb,k. Then |E| is O(n
2k−1

k − (k−1)2

k(kD−1)
+ε)

for any ε > 0, where D = max(dl, dp).

Theorem 1.8 (Chernikov-Galvin-Starchenko, Dec 2016). I ⊆ R2 × Rdl defin-
able in an o-minimal expansion of a field. Then (i) of the previous theorem
holds, but without the ε.

Theorem 1.9 (Basu-Raz, Nov 2016). Same, but only for dl = 2.
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1.2 Modularity, pseudoplanes, and quasidesigns

Definition 1.10. A strongly minimal theory T is locally modular if whenever
M0 ≺ M � T , the lattice of algebraically closed subsets of M containing M0

satisfies the modular identity: for A,B,C with A ≤ C,

A ∨ (B ∧ C) = (A ∨B) ∧ C.

Equivalently, for A,B ⊆M , if c ∈ acl(M0AB)\acl(M0A), then acl(M0Ac)∩
acl(M0B) 6= acl(M0).

Equivalently, dim(A ∨ B/B) = dim(A/A ∧ B) for any algebraically closed
A,B ⊇M0.

T is trivial if A ∨B = A ∪B, i.e. acl(X) =
⋃
x∈X acl(x) for any X.

Example 1.11. The lattice of vector subspaces of a vector space is modular:
c = a+ b⇒ b = c− a
Definition 1.12. A (definable) relation I ⊆ P × L is a quasidesign if all fi-

bres π−11 (p) and π−12 (l) are infinite, and it omits Kt,2 for some t ∈ N; it is a
pseudoplane if it also omits K2,s for some s ∈ N.

A (2,3,2)-pseudoplane is a pseudoplane with dim(P ) = dim(L) = 2,dim(I) =
3.

Theorem 1.13 (Zilber’s Weak Trichotomy). T strongly minimal.

(i) T is not locally modular iff T interprets a (2,3,2)-pseudoplane.

(ii) If T is locally modular but non-trivial, then x = x is in finite-to-finite
definable correspondence with a (1-based) abelian group.

Hrushovski: The above Szemeredi-Trotter statements imply that pseudofi-
nite subsets of (algebraically closed) fields of internal characteristic 0 ”have”
no pseudoplane (or even quasidesign), so ”are modular”. Making this precise
seems not to be straightforward (but even the idea seems helpful).

Let (F,X) =
∏
i(Fi, Xi)/U be an ultraproduct of fields equipped with dis-

tinguished finite subsets.
For Y ⊆ Fn, define δ(Y ) := st(log(|Y |)/ log(|X|)). For A ⊆ Fn con-

structible, A(X) := A ∩Xn. Then δ(A(X)) ≤ dim(A). If δ(A(X)) = dim(A),
say A is “X-rich”.

Corollary 1.14 (of Elekes-Szabo’s Szemeredi-Trotter, k=2). Suppose char(Fi) =
0, and P,L, I ⊆ P×L are constructible sets in F . Suppose I(X) ⊆ P (X)×L(X)
is a quasidesign. Then

δ(I(X)) ≤ (
3

2
− 1

2(2D − 1)
) max(δ(P (X)), δ(L(X)))

<
3

2
max(δ(P (X)), δ(L(X))).

In particular, if dim(P ) = 2 = dim(L) and dim(I) = 3, it can not be that
P,L, I are all X-rich.

Hrushovski goes on to define a ”probability logic” structure (F,X)prob and
a notion of modularity, such that an adaptation of the proof of the Weak Tri-
chotomy theorem yields firstly that this lack of pseudoplanes implies modularity
in internal characteristic 0, and furthermore a reproof of the following version
of a theorem of Elekes-Szabo:
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Theorem 1.15 (Elekes-Szabo 2012). Suppose R ⊆ F 3 is an irreducible subva-
riety, dim(R) = 2, and dim((πi × πj)(R)) = 2 for i 6= j. Suppose R is X-rich.
Then R is in co-ordinatewise correspondence with the graph of the group oper-
ation of a 1-dimensional algebraic group.

Furthermore, Hrushovski conjectures that the underlying explanation for
these Szemeredi-Trotter results is the truth of the Zilber Trichotomy Conjecture
in this context:

Conjecture 1.16 (Hrushovski). If (X,F )prob is not (locally) modular, it defines
a subfield k ⊆ F with δ(k) = 1.

In particular, if the ultraproduct ∗F0 of the prime fields of the Fi has δ(∗F0) =
∞, then there’s no X-rich pseudoplane. A positive characteristic version of
Elekes-Szabo (previously conjectured by Bukh-Tsimerman) follows.


