Notes from a seminar in Münster on [Hrushovski-Rideau"Valued Fields, Metastable Groups"], Nov 2019.

Work in $\mathbb{U} \vDash A C V F$ sufficiently saturated, in geometric language (sorts $\left.K, \Gamma, k, S_{n}, T_{n}\right)$. Definable means definable over a small subset of \mathbb{U}. We write dcl resp. acl for dcl ${ }^{\text {eq }}$ resp. acl $^{\text {eq }}$.

1 Pure imaginaries

Definition 1.1. $e \in \mathbb{U}^{\mathrm{eq}}$ is purely imaginary over $C \subseteq \mathbb{U}$ if $\operatorname{acl}(C e) \cap K=$ $\operatorname{acl}(C) \cap K$.

Lemma 1.2. e is purely imaginary over C iff $\operatorname{dcl}(C e) \cap K \subseteq \operatorname{acl}(C)$.
Proof. Symmetric polynomials.
$\mathrm{STS} \operatorname{acl}(C e) \cap K \subseteq \operatorname{acl}(\operatorname{dcl}(C e) \cap K)$.
But if $a \in \operatorname{acl}(C e) \cap K$, say $a=a_{1}, \ldots, a_{n}$ are the conjugates over $C e$, then the coefficients of $\prod_{i}\left(x-a_{i}\right)$ are in $\operatorname{dcl}(C e) \cap K$.

Definition 1.3. An ∞-definable set D is purely imaginary if there is no definable map $D \rightarrow K$ with infinite image.

Equivalently: for any C over which D is defined, any $e \in D$ is purely imaginary over C.

Definition 1.4. A ∞-definable set D is boundedly imaginary if any definable map $D \rightarrow \Gamma$ is bounded.

Equivalently: for any C over which D is defined, any $e \in D$ is boundedly imaginary over C, where $e \in \mathbb{U}^{\text {eq }}$ is boundedly imaginary over $C \subseteq \mathbb{U}$ if for every $\gamma \in \Gamma(C e):=\Gamma \cap \operatorname{dcl}(C e), \operatorname{tp}(\gamma / C)$ is bounded (i.e. not $+\infty$ or $-\infty$, i.e. γ is in the convex hull of $\Gamma(C))$.

Lemma 1.5. Any boundedly imaginary D is purely imaginary.
Proof. If the image of $D \rightarrow K$ is infinite, it contains a ball B. But for $b \in B$, $x \mapsto v(x-b)$ is an unbounded map $B \rightarrow \Gamma$.

Define $\alpha \mathcal{O}:=\{x \in K: v(x) \geq \alpha\}$ and $\beta \mathfrak{m}:=\{x \in K: v(x)>\beta\}$.
Lemma 1.6. Let X be the set of closed or open balls of a fixed radius α, i.e. $X=K / \alpha \mathcal{O}$ or $X=K / \alpha \mathfrak{m}$.

There is no definable finite correspondence $\Gamma \rightarrow X$ with infinite image, i.e. for any definable $Z \subseteq \Gamma \times X$ with $\forall \gamma \in \Gamma .\left|\pi_{1}^{-1}(\gamma) \cap Z\right|<\aleph_{0},\left|\pi_{2}(Z)\right|<\aleph_{0}$.

Proof. Else, by Swiss cheese decomposition applied to the union of the balls, $\pi_{2}(Z)$ contains all but finitely many of the balls within a closed ball B of some radius $\gamma \leq \alpha$, with $\gamma<\alpha$ in the case $X=K / \alpha \mathcal{O}$.

Then Z induces a finite correspondence from Γ onto $B / \gamma \mathfrak{m}$, and hence onto an infinite subset of k. By definable Skolem functions for Γ, this yields a definable partial function $k \rightarrow \Gamma$ with infinite image, contradicting strong minimality of k.

Lemma 1.7. Let $\alpha \leq 0 \leq \beta \in \Gamma$ and $n \geq 1$. Then $(\alpha \mathcal{O} / \beta \mathfrak{m})^{n}$ is boundedly imaginary, and hence purely imaginary.

Proof. $\underline{n=1}$: we may assume $\alpha=0$. Suppose $f: \mathcal{O} / \beta \mathfrak{m} \rightarrow \Gamma$ is an unbounded C-definable map. Say it is unbounded above. Let $\gamma>\Gamma(C)$. Let $g: \mathcal{O} \rightarrow \mathcal{O} / \beta \mathfrak{m}$ be the quotient map. Then $g^{-1}\left(f^{-1}(\gamma)\right)$ is a boolean combination of balls each of radius in $[0, \beta] \cap \Gamma(C \gamma)$. Now Γ is a pure divisible ordered abelian group, so any definable map from Γ to the bounded interval $[0, \beta]$ is eventually constant, so $[0, \beta] \cap \Gamma(C \gamma) \subseteq \Gamma(C)$.

But the balls vary with γ since f is a function, so we contradict Lemma 1.6. $\underline{n=k+1}$: Given $f:(\alpha \mathcal{O} / \beta \mathfrak{m})^{k+1} \rightarrow \Gamma$, inductively $y \mapsto \sup _{\bar{x}} f(\bar{x}, y)$ defines a map $\alpha \mathcal{O} / \beta \mathfrak{m} \rightarrow \Gamma$, so this map is bounded, and hence so is f.

Lemma 1.8. $e \in \mathbb{U}^{\mathrm{eq}}$ is purely imaginary over C iff for some $\alpha \leq 0 \leq \beta$ with $\alpha, \beta \in \Gamma(C e), e \in \operatorname{dcl}(\operatorname{acl}(C), \alpha \mathcal{O} / \beta \mathfrak{m})$.
Proof. \Leftarrow : Immediate from Lemma 1.7.
\Rightarrow : By the EI and the definition of purely imaginary, e is interdefinable with a finite tuple from $\bigcup_{n} S_{n} \cup \bigcup_{n} T_{n} \cup(\operatorname{acl}(C) \cap K)$.

Note that $K \ni x \mapsto \min (\beta, v(x))$ induces a map $\alpha \mathcal{O} / \beta \mathfrak{m} \rightarrow[\alpha, \beta]$, so $[\alpha, \beta] \subseteq$ $\operatorname{dcl}(\alpha \mathcal{O} / \beta \mathfrak{m})$. Hence if $\alpha \leq \alpha^{\prime}<0<\beta^{\prime} \leq \beta$ then $\alpha^{\prime} \mathcal{O} / \beta^{\prime} \mathfrak{m} \subseteq \operatorname{dcl}(\alpha \mathcal{O} / \beta \mathfrak{m})$.

So it suffices to consider the case $e \in S_{n}$ or $e \in T_{n}$ for some n.
Let $\Lambda \leq K^{n}$ be a rank n free \mathcal{O}-submodule, say with \mathcal{O}-basis $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
Let $\Lambda^{-}:=\left\{\alpha: \Lambda \subseteq(\alpha \mathcal{O})^{n}\right\}$ and $\Lambda^{+}:=\left\{\beta:(\beta \mathfrak{m})^{n} \subseteq \Lambda\right\}$. Note sup $\Lambda^{-}=$ $\min _{i, j} v\left(\left(\lambda_{i}\right)_{j}\right) \in \Lambda^{-}$.

Let $\alpha=\min \left\{0, \sup \Lambda^{-}\right\} \in \Lambda^{-}$, and $\beta=\max \left\{0, \inf \Lambda^{+}\right\} \in \Lambda^{+}$.
Then $\alpha \leq 0 \leq \beta$ and $\alpha, \beta \in \Gamma(C e)$ and $(\beta \mathfrak{m})^{n} \subseteq \Lambda \subseteq(\alpha \mathcal{O})^{n}$. then $S_{n} \ni$ $\ulcorner\Lambda\urcorner \in \operatorname{dcl}\left(\left(\lambda_{i} / \beta \mathfrak{m}\right)_{i}\right) \subseteq \operatorname{dcl}(\alpha \mathcal{O} / \beta \mathfrak{m})$.

Also $\beta \mathfrak{m}^{n} \subseteq \mathfrak{m} \Lambda$ (since $\left.\mathfrak{m}(\beta \mathfrak{m})=\beta \mathfrak{m}\right)$, so $T_{n} \supseteq \Lambda / \mathfrak{m} \Lambda \subseteq \operatorname{dcl}(\alpha \mathcal{O} / \beta \mathfrak{m})$.
Since Λ was arbitrary, we conclude.
Remark 1.9. It follows from the proof that each S_{n} and T_{n} is purely imaginary.
Lemma 1.10. Let D be a ∞-definable set over C. TFAE:
(1) D is boundedly imaginary.
(2) There exists a definable surjection $g:(\mathcal{O} / \beta \mathfrak{m})^{n} \rightarrow D$.
(3) For some $\alpha \leq 0 \leq \beta$ with $\alpha, \beta \in \Gamma(C), D \subseteq \operatorname{dcl}(\operatorname{acl}(C), \alpha \mathcal{O} / \beta \mathfrak{m})$.

NOTE: the paper has C rather than $\operatorname{acl}(C)$, but I don't see how to get that. This statement is good enough for the application in Corollary 6.4.

Proof. (2) \Rightarrow (1): by Lemma 1.7.
$(3) \Rightarrow(2)$: by compactness, we get finitely many $g_{i}:\left(\alpha_{i} \mathcal{O} / \beta_{i} \mathfrak{m}\right)^{n_{i}} \rightarrow D$ with $D=\bigcup_{i} \operatorname{im} g_{i}$. We can assume $\alpha_{i}=0$ by multiplying, and we can assume $\beta_{i}=$ $\max _{i} \beta_{i}=: \beta$, and then combine the g_{i} into a surjection $g:(\mathcal{O} / \beta \mathfrak{m})^{\sum_{i} n_{i}} \rightarrow D$.
$(1) \Rightarrow(3)$: By compactness, it suffices to show that if $e \in D$, then such $\alpha, \beta \in \Gamma(C)$ exist with $e \in \operatorname{dcl}(C, \alpha \mathcal{O} / \beta \mathfrak{m})$.

Now D is purely imaginary by Lemma 1.5 , so by Lemma 1.8 we can find such $\alpha, \beta \in \Gamma(C e)$.

Say $\alpha=f(e)$, where f is over C. Since D is boundedly imaginary, $\alpha \geq$ $\inf _{D \cap \operatorname{domf} f} f=: \alpha^{\prime} \in \Gamma(C)$. Similarly we find $\beta \leq \beta^{\prime} \in \Gamma(C)$.

Then $\alpha \mathcal{O} / \beta \mathfrak{m} \subseteq \operatorname{dcl}\left(\alpha^{\prime} \mathcal{O} / \beta^{\prime} \mathfrak{m}\right)$, so $e \in \operatorname{dcl}\left(\operatorname{acl}(C), \alpha^{\prime} \mathcal{O} / \beta^{\prime} \mathfrak{m}\right)$ as required.

Remark 1.11. Martin Hils remarks that in Lemma 1.8 we can equivalently ask just for $\alpha, \beta \in \Gamma$ rather than require them in $\Gamma(C e)$. From this one can conclude that ∞-definable D is purely imaginary iff there is a definable surjection f : $\left(B^{\text {open }}\right)^{n} \rightarrow D$ where $B^{\text {open }}$ is the set of all open balls (of all radii).

Then it follows from this and Lemma 1.10, that if D is ∞-definable and purely resp. boundedly imaginary, it is contained in a purely resp. boundedly imaginary definable set.

2 Redundant

Alternative direct proof of Remark 1.9:
Lemma 2.1. Any product of S_{n} 's and T_{n} 's is purely imaginary.
So by the $E I, e \in \mathbb{U}^{\text {eq }}$ is purely imaginary over C iff it is interdefinable with a finite tuple from $\bigcup_{n} S_{n}(\mathbb{U}) \cup \bigcup_{n} T_{n}(\mathbb{U}) \cup(\operatorname{acl}(C) \cap K)$.

Proof. Let T be a completion of ACVF.
It suffices to find an uncountable model of T in which each S_{n} and T_{n} is countable, since the image of a definable map to K with infinite image contains a ball and so has the same cardinality as K.

Thanks to Martin Hils for providing the following example.
Let $L \vDash T$ be countable with $\Gamma(L)=\mathbb{Q}$. (We can take L to be an algebraic closure of $\mathbb{Q}(t), \mathbb{F}_{p}(t)$, or \mathbb{Q} with the p-adic valuation.) Consider L as a normed field (with $\|x\|:=2^{-v(x)}$).

Let \bar{L} be the completion of L. Fact: $\bar{L} \vDash$ ACVF. We have $|\bar{L}|=2^{\aleph_{0}}$, but $S_{n}(\bar{L})=\mathrm{GL}_{n}(\bar{L}) / \mathrm{GL}_{n}(\mathcal{O}(\bar{L})) \leftarrow \mathrm{GL}_{n}(L) / \mathrm{GL}_{n}(\mathcal{O}(L))=S_{n}(L)$ is a bijection since $\mathrm{GL}_{n}(\mathcal{O}(\bar{L}))$ is an open neighbourhood of the identity and $\mathrm{GL}_{n}(\mathcal{O}(\bar{L})) \cap$ $\mathrm{GL}_{n}(L)=\mathrm{GL}_{n}(\mathcal{O}(L))$. Similarly $k(\bar{L})=\mathcal{O}(\bar{L}) / \mathfrak{m}(\bar{L}) \leftarrow \mathcal{O}(L) / \mathfrak{m}(L)=k(L)$ is a bijection.

$$
\text { So }\left|S_{n}(\bar{L})\right|=\aleph_{0}=\left|T_{n}(\bar{L})\right| \text {. }
$$

