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Notes from a seminar in Münster on [Hrushovski-Rideau “Valued Fields,
Metastable Groups”], Nov 2019.

Work in U � ACV F sufficiently saturated, in geometric language (sorts
K,Γ, k, Sn, Tn). Definable means definable over a small subset of U. We write
dcl resp. acl for dcleq resp. acleq.

1 Pure imaginaries

Definition 1.1. e ∈ Ueq is purely imaginary over C ⊆ U if acl(Ce) ∩K =
acl(C) ∩K.

Lemma 1.2. e is purely imaginary over C iff dcl(Ce) ∩K ⊆ acl(C).

Proof. Symmetric polynomials.
STS acl(Ce) ∩K ⊆ acl(dcl(Ce) ∩K).
But if a ∈ acl(Ce) ∩K, say a = a1, . . . , an are the conjugates over Ce, then

the coefficients of
∏

i(x− ai) are in dcl(Ce) ∩K.

Definition 1.3. An ∞-definable set D is purely imaginary if there is no
definable map D → K with infinite image.

Equivalently: for any C over which D is defined, any e ∈ D is purely imagi-
nary over C.

Definition 1.4. A∞-definable setD is boundedly imaginary if any definable
map D → Γ is bounded.

Equivalently: for any C over which D is defined, any e ∈ D is boundedly
imaginary over C, where e ∈ Ueq is boundedly imaginary over C ⊆ U if for
every γ ∈ Γ(Ce) := Γ ∩ dcl(Ce), tp(γ/C) is bounded (i.e. not +∞ or −∞, i.e.
γ is in the convex hull of Γ(C)).

Lemma 1.5. Any boundedly imaginary D is purely imaginary.

Proof. If the image of D → K is infinite, it contains a ball B. But for b ∈ B,
x 7→ v(x− b) is an unbounded map B → Γ.

Define αO := {x ∈ K : v(x) ≥ α} and βm := {x ∈ K : v(x) > β}.

Lemma 1.6. Let X be the set of closed or open balls of a fixed radius α, i.e.
X = K/αO or X = K/αm.

There is no definable finite correspondence Γ → X with infinite image, i.e.
for any definable Z ⊆ Γ×X with ∀γ ∈ Γ. |π−11 (γ) ∩ Z| < ℵ0, |π2(Z)| < ℵ0.

Proof. Else, by Swiss cheese decomposition applied to the union of the balls,
π2(Z) contains all but finitely many of the balls within a closed ball B of some
radius γ ≤ α, with γ < α in the case X = K/αO.

Then Z induces a finite correspondence from Γ onto B/γm, and hence onto
an infinite subset of k. By definable Skolem functions for Γ, this yields a defin-
able partial function k → Γ with infinite image, contradicting strong minimality
of k.

Lemma 1.7. Let α ≤ 0 ≤ β ∈ Γ and n ≥ 1. Then (αO/βm)n is boundedly
imaginary, and hence purely imaginary.
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Proof. n = 1: we may assume α = 0. Suppose f : O/βm→ Γ is an unbounded
C-definable map. Say it is unbounded above. Let γ > Γ(C). Let g : O → O/βm
be the quotient map. Then g−1(f−1(γ)) is a boolean combination of balls each
of radius in [0, β] ∩ Γ(Cγ). Now Γ is a pure divisible ordered abelian group, so
any definable map from Γ to the bounded interval [0, β] is eventually constant,
so [0, β] ∩ Γ(Cγ) ⊆ Γ(C).

But the balls vary with γ since f is a function, so we contradict Lemma 1.6.
n = k + 1: Given f : (αO/βm)k+1 → Γ, inductively y 7→ supx f(x, y) defines

a map αO/βm→ Γ, so this map is bounded, and hence so is f .

Lemma 1.8. e ∈ Ueq is purely imaginary over C iff for some α ≤ 0 ≤ β with
α, β ∈ Γ(Ce), e ∈ dcl(acl(C), αO/βm).

Proof. ⇐: Immediate from Lemma 1.7.
⇒: By the EI and the definition of purely imaginary, e is interdefinable with

a finite tuple from
⋃

n Sn ∪
⋃

n Tn ∪ (acl(C) ∩K).
Note that K 3 x 7→ min(β, v(x)) induces a map αO/βm� [α, β], so [α, β] ⊆

dcl(αO/βm). Hence if α ≤ α′ < 0 < β′ ≤ β then α′O/β′m ⊆ dcl(αO/βm).
So it suffices to consider the case e ∈ Sn or e ∈ Tn for some n.
Let Λ ≤ Kn be a rank n free O-submodule, say with O-basis (λ1, . . . , λn).
Let Λ− := {α : Λ ⊆ (αO)n} and Λ+ := {β : (βm)n ⊆ Λ}. Note sup Λ− =

mini,j v((λi)j) ∈ Λ−.
Let α = min{0, sup Λ−} ∈ Λ−, and β = max{0, inf Λ+} ∈ Λ+.
Then α ≤ 0 ≤ β and α, β ∈ Γ(Ce) and (βm)n ⊆ Λ ⊆ (αO)n. then Sn 3

pΛq ∈ dcl((λi/βm)i) ⊆ dcl(αO/βm).
Also βmn ⊆ mΛ (since m(βm) = βm), so Tn ⊇ Λ/mΛ ⊆ dcl(αO/βm).
Since Λ was arbitrary, we conclude.

Remark 1.9. It follows from the proof that each Sn and Tn is purely imaginary.

Lemma 1.10. Let D be a ∞-definable set over C. TFAE:

(1) D is boundedly imaginary.

(2) There exists a definable surjection g : (O/βm)n � D.

(3) For some α ≤ 0 ≤ β with α, β ∈ Γ(C), D ⊆ dcl(acl(C), αO/βm).

NOTE: the paper has C rather than acl(C), but I don’t see how to get that.
This statement is good enough for the application in Corollary 6.4.

Proof. (2) ⇒ (1): by Lemma 1.7.
(3)⇒ (2): by compactness, we get finitely many gi : (αiO/βim)ni → D with

D =
⋃

i imgi. We can assume αi = 0 by multiplying, and we can assume βi =
maxi βi =: β, and then combine the gi into a surjection g : (O/βm)

∑
i ni → D.

(1) ⇒ (3): By compactness, it suffices to show that if e ∈ D, then such
α, β ∈ Γ(C) exist with e ∈ dcl(C,αO/βm).

Now D is purely imaginary by Lemma 1.5, so by Lemma 1.8 we can find
such α, β ∈ Γ(Ce).

Say α = f(e), where f is over C. Since D is boundedly imaginary, α ≥
infD∩domf f =: α′ ∈ Γ(C). Similarly we find β ≤ β′ ∈ Γ(C).

Then αO/βm ⊆ dcl(α′O/β′m), so e ∈ dcl(acl(C), α′O/β′m) as required.
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Remark 1.11. Martin Hils remarks that in Lemma 1.8 we can equivalently ask
just for α, β ∈ Γ rather than require them in Γ(Ce). From this one can conclude
that ∞-definable D is purely imaginary iff there is a definable surjection f :
(Bopen)n � D where Bopen is the set of all open balls (of all radii).

Then it follows from this and Lemma 1.10, that if D is ∞-definable and
purely resp. boundedly imaginary, it is contained in a purely resp. boundedly
imaginary definable set.

2 Redundant

Alternative direct proof of Remark 1.9:

Lemma 2.1. Any product of Sn’s and Tn’s is purely imaginary.
So by the EI, e ∈ Ueq is purely imaginary over C iff it is interdefinable with

a finite tuple from
⋃

n Sn(U) ∪
⋃

n Tn(U) ∪ (acl(C) ∩K).

Proof. Let T be a completion of ACVF.
It suffices to find an uncountable model of T in which each Sn and Tn is

countable, since the image of a definable map to K with infinite image contains
a ball and so has the same cardinality as K.

Thanks to Martin Hils for providing the following example.
Let L � T be countable with Γ(L) = Q. (We can take L to be an algebraic

closure of Q(t), Fp(t), or Q with the p-adic valuation.) Consider L as a normed
field (with ‖x‖ := 2−v(x)).

Let L̄ be the completion of L. Fact: L̄ � ACVF. We have |L̄| = 2ℵ0 , but
Sn(L̄) = GLn(L̄)/GLn(O(L̄)) ← GLn(L)/GLn(O(L)) = Sn(L) is a bijection
since GLn(O(L̄)) is an open neighbourhood of the identity and GLn(O(L̄)) ∩
GLn(L) = GLn(O(L)). Similarly k(L̄) = O(L̄)/m(L̄) ← O(L)/m(L) = k(L) is
a bijection.

So |Sn(L̄)| = ℵ0 = |Tn(L̄)|.


