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1 Manin-Mumford

• K ≤ C number field.

• G complex abelian variety (i.e. projective connected non-trivial algebraic group) over K.

(e.g. G = Eg for E an elliptic curve over K.)

• g := dim(G).

• Let exp : LG→ G be the exponential map of G = G(C) as a complex Lie group.

• LG = T0(G) is a g-dimensional C-vector space.

• exp is a surjective holomorphic homomorphism.

• Λ := ker(exp) ∼= Z2g is a full lattice in LG, i.e. Λ = 〈λ1, . . . , λ2g〉Z where (λi)i is an R-basis
of LG.

• So as a complex Lie group, G ∼= Cg/Λ is a complex torus, and is diffeomorphic to (R/Z)2g.

• Torsion subgroup: G[∞] ∼= (Q/Z)2g.

• The non-trivial connected algebraic subgroups of G are precisely the abelian subvarieties.

• G has only countably many abelian subvarieties, and each is defined over Qalg.

• G[∞] is Zariski dense in G.

• A torsion coset is a coset H + ξ of an abelian subvariety H ≤ G by a torsion point
ξ ∈ G[∞].

Theorem (Manin-Mumford Conjecture; Raynaud (1983)). Let X ⊆ G be an irreducible (com-
plex) subvariety and suppose X ∩G[∞] is Zariski dense in X. Then X is a torsion coset.

Corollary. For X ⊆ G Zariski closed,

X ∩G[∞] =

n⋃
i=0

ξi +Hi[∞]

where ξi ∈ G[∞] and Hi ≤ G are abelian subvarieties.

Proof.

X ∩G[∞] = (X ∩G[∞])Zar ∩G[∞]

=

(
n⋃
i=0

ξi +Hi

)
∩G[∞]

=

n⋃
i=0

((ξi +Hi) ∩G[∞])

=
n⋃
i=0

ξi +Hi[∞]

1.1 Special Locus

• Let X ⊆cl G.

• The special locus (or Ueno locus, or Kawamata locus) of X in G is

SpL(X) :=
⋃
{SpL(X,H) : H ≤ G abelian subvariety},

where
SpL(X,H) :=

⋃
{g +H : g +H ⊆ X, g ∈ G} =

⋂
h∈H

(X − h).

We will see that SpL(X) corresponds to the Pila-Wilkie ‘algebraic part’ of exp−1(X).

• The stabiliser of X in G is

Stab(X) = StabG(X) := {g ∈ G : g +X = X}.

Lemma. Suppose X is irreducible.
Then SpL(X) = X iff Stab(X) is infinite.

Proof.

• Stab(X) =
⋂
x∈X(X − x), so Stab(X) ≤cl G, so Stab(X) is an algebraic subgroup.

• If Stab(X) is infinite, then the connected component of the identity H := Stab(X)o ≤ G
is an abelian subvariety, so X =

⋃
{x+H : x ∈ X} = SpL(X).

• Conversely: If X = SpL(X), then X = SpL(X,H) for some H, since each SpL(X,H) is
closed and G has only countably many abelian subvarieties and X is irreducible.

So H ≤ Stab(X).

Lemma. SpL(X) ⊆cl X.

Proof.

• We actually prove something stronger:

Claim. If (Xa)a∈A is a constructible family of subvarieties of G,
then (SpL(Xa))a∈A is a constructible family of subvarieties of G.

Where

– a constructible subset of a variety is a boolean combination of Zariski closed subsets;

(Fact: constructible ⇔ definable in (C; +, ·).)
– (Xa)a∈A is a constructible family of subvarieties of G if

∗ A is constructible,

∗ X ⊆ G×A is constructible, and

∗ Xa := {g ∈ G : (g, a) ∈ X} ⊆ G is Zariski closed in G for all a.

• Since each SpL(Xa, H) is closed, it suffices to show that there are finitely many H1, . . . ,Hn

such that for all a ∈ A, SpL(Xa) =
⋃
i SpL(Xa, Hi).

• Say an abelian subvariety H ≤ G appears maximally in X ⊆ G if X contains some
coset γ +H which is maximal among the cosets of abelian subvarieties contained in X.

• Say H appears maximally in (Xa)a if it appears maximally in some Xa.

• Then it suffices to show:

(∗) Only finitely many H appear maximally in (Xa)a.

• We prove (∗) by induction on d := maxa dim(Xa).

• We may assume that each Xa is irreducible, by:

Fact. There exists a constructible (X ′a′)a∈A′ and a constructible map α : A′ → A such
that (X ′a′ : α(a′) = a) are the irreducible components of Xa.

• We may also assume that each Xa has finite stabiliser.

Indeed, there is (fact) a uniform bound N on the size of the finite stabilisers Stab(Xa),
and A′ := {a ∈ A : |Stab(Xa)| ≤ N} is constructible. So to perform the reduction, it
suffices to see that (∗) holds for (Xa)a∈A\A′ .

UPDATE: the argument previously written here for that was nonsense. Thanks to Zoé
Chatzidakis for pointing this out. One should proceed by induction by quotienting by the
connected component of the stabiliser.

• Now suppose H0 ≤ G appears maximally in (Xa)a. Say H0 appears maximally in Xa.

• Let h ∈ H0 \ Stab(Xa).

• Then X ′a,h := Xa ∩ (h+Xa) is a proper subvariety of Xa and contains a coset of H0.

• Since X ′a,h ⊆ Xa, actually H0 appears maximally in X ′a,h.

• Now
(X ′a,g : a ∈ A, g ∈ G, X ′a,g 6= Xa)

is a constructible family of subvarieties ofG each of dimension less than d. By the inductive
hypothesis, only finitely many H appear maximally in it. So H0 is one of these finitely
many, as required.

2 Ax-Schanuel

2.1 Restricted exponentiation

• Recall Λ = ker exp is freely generated by an R-basis λ1, . . . , λ2g of LG ∼= Cg.

• We identify LG with R2g with respect to this basis (instead of taking real and imaginary
parts),

0→ Z2g → R2g →exp G→ 0.

• Let F := [0, 1)2g ⊆ LG (“fundamental domain”), so the restriction exp| : F → G is a
bijection.

• exp| is definable in Ran.

• For X ⊆ G, exp| yields a bijection exp−1| (X) ∩Q2g → X ∩G[∞].

• To apply Pila-Wilkie, we must determine exp−1| (X)alg.

• The key tool for this is the Ax-Schanuel theorem (or its “Lindemann-Weierstrass case”).

2.2 Ax-Schanuel

The original Ax-Schanuel theorem concerns usual complex exponentiation (i.e. the exponential
map of the multiplicative group):

Fact (Ax ’71). Suppose fi : ∆→ C are holomorphic functions on the unit disc, and f ′1(0), . . . , f ′n(0)
are Q-linearly independent. Then

trd(f1(t), . . . , fn(t), ef1(t), . . . , efn(t)/C) ≥ n+ 1.

• Proved using differential algebra.

• Generalisations:

– Brownawell-Kubota: for elliptic curves;

– Kirby: for arbitrary (semi-)abelian varieties.

– Ax ’72: general analytic version for arbitrary complex algebraic groups. We will use
this.

Fact (Ax ’72). Let

• H be a complex algebraic group,

• Γ ≤ H a connected analytic subgroup, and

• e ∈ K ⊆ Γ an irreducible analytic subvariety.

Then there is an analytic subgroup H′ ≤ H containing KZar and Γ such that:

dimK ≤ dimKZar − (dimH′ − dim Γ) .

Idea: If K is a component of KZar ∩ Γ, the “expected” dimension is

dimK = dimKZar − (dimH− dim Γ);

Ax’s theorem says this can be exceeded only if the intersection is really happening in a smaller
group.

2.3 Algebraic part

Lemma. exp−1| (X)alg = exp−1| (SpL(X)).

Proof.

• We show exp−1(X)alg = exp−1(SpL(X)).

• Let x ∈ exp−1(X)alg, and suppose x /∈ exp−1(SpL(X)).

• Replacing X with X − exp(x), we may assume x = 0.

• So 0 ∈ C ′ ⊆ exp−1(X) for a semialgebraic curve C ′.

• So 0 ∈ C ⊆ exp−1(X) for an irreducible algebraic curve C.

• Replace G with the smallest abelian subvariety G′ containing exp(C), and X with X∩G′.
We still have 0 /∈ SpL(X).

• Consider Γexp ≤ LG×G =: H.

• Let K 3 (0, 0) be an analytic irreducible component of (C ×X) ∩ Γexp = Γexp|C .

• Now
〈
exp(C)Zar

〉
= G by assumption, so π2(

〈
KZar

〉
) = G, so

〈
KZar

〉
⊇ {0} × G (by

consideration of the algebraic subgroups of LG×G).

So
〈
KZar

〉
+ Γ = H.

• Meanwhile X 6= G since 0 /∈ SpL(X).

• By Ax, dimK ≤ dimKZar − (dimH− dim Γ), so:

dim(G) = dim(H)− dim(Γ)

≤ dimKZar − dimK

≤ dim(C ×X)− 1

≤ dim(X)

< dim(G).

Contradiction.

Remark. Kawamata On Bloch’s Conjecture (1980, Inventiones) gives an alternative proof of
this (and also of the closedness of SpL(X)).

3 Masser

• Let γ ∈ G(Qalg).

• In co-ordinates according to our projective embedding (possibly permuting the co-ordinates),

γ = [1 : γ1 : . . . . : γn] ∈ G ⊆ Pn(C)

with γi ∈ Qalg.

• Then K(γ) := K(γ1, . . . , γn).

• For σ ∈ Gal(Qalg/K),
σ(γ) := [1 : σ(γ1) : . . . : σ(γn)] ∈ G.

• deg(K(γ)/K) is the size of the orbit of γ under Gal(Qalg/K).

Theorem (Masser ’84). Exist λ = λ(g) > 0 and C > 0 such that for ξ ∈ G[∞] of order k,

deg(K(ξ)/K) ≥ Ckλ.

4 Pila-Zannier

4.1 Reduction

Theorem (Manin-Mumford Conjecture). If X ⊆cl G is irreducible and (X ∩ G[∞])Zar = X
then X is a torsion coset.

Suffices to show:

Lemma. Suppose X ⊆cl G is irreducible and defined over Qalg and suppose StabG(X) is finite.
Then (X \ SpL(X)) ∩G[∞] is finite.

Proof of Theorem from Lemma.

• Let H be the connected component of the stabiliser H := StabG(X)o.

So H ≤ G is an abelian subvariety or the trivial subgroup.

• Then (fact) G/H is an abelian variety, and X/H ⊆ G/H is an irreducible subvariety, and
StabG/H(X/H) is finite.

(Indeed, if StabG/H(X/H) contains an infinite algebraic subgroup S, then S′ = π−1H (S)

stabilises X = π−1H (X/H), but dim(S′) = dim(S) + dim(H) > dim(H), contradicting the
choice of H).

• X is over Qalg, because G[∞] ⊆ G(Qalg) and so X is Aut(C/Qalg)-invariant.

Also H is over Qalg.

So X/H is over Qalg.

• So by the Lemma, (X/H \ SpL(X/H)) ∩ (G/H)[∞] is finite.

• But:
π−1H (X/H ∩ (G/H)[∞]) ⊇ X ∩G[∞],

so
π−1H ((X/H ∩ (G/H)[∞])Zar) ⊇ (X ∩G[∞])Zar = X,

so
(X/H ∩ (G/H)[∞])Zar = X/H.

• Now StabG/H(X/H) is finite, so SpL(X/H) is a proper closed subvariety of X/H.

• So the finite set (X/H \ SpL(X/H)) ∩ (G/H)[∞] is Zariski dense in X/H.

• So X/H = {ξ} for some ξ ∈ (G/H)[∞].

• So X = π−1(ξ) is a coset of H, and it contains a torsion point since X ∩G[∞] is dense in
X, so X is a torsion coset.

4.2 Concluding by Pila-Wilkie

Proof of Lemma.

• Let X ⊆cl G be irreducible and over Qalg with StabG(X) finite.

• WTS: (X \ SpL(X)) ∩G[∞] is finite. Suppose not.

• Increasing K, we may assume X is over K.

Then SpL(X) is also over K.

• So by Masser: For arbitrarily large k, there are Ckλ points of order k in X \ SpL(X).

• If ξ has order k, then the height of

exp−1| (ξ) ∈ exp−1| (X \ SpL(X)) ∩Q2g = exp−1| (X)tr ∩Q2g

is at most k.

• But by Pila-Wilkie, exists C ′ > 0 such that

N(exp−1| (X)tr, k) ≤ C ′k λ2 .

• For large enough k, these bounds contradict each other, i.e.

Ckλ > C ′k
λ
2 .
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