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1 Manin-Mumford

• K ≤ C number field.

• G complex abelian variety (i.e. projective connected non-trivial algebraic
group) over K.

(e.g. G = Eg for E an elliptic curve over K.)

• g := dim(G).

• Let exp : LG→ G be the exponential map of G = G(C) as a complex Lie
group.

• LG = T0(G) is a g-dimensional C-vector space.

• exp is a surjective holomorphic homomorphism.

• Λ := ker(exp) ∼= Z2g is a full lattice in LG, i.e. Λ = 〈λ1, . . . , λ2g〉Z where
(λi)i is an R-basis of LG.
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• So as a complex Lie group, G ∼= Cg/Λ is a complex torus, and is diffeo-
morphic to (R/Z)2g.

• Torsion subgroup: G[∞] ∼= (Q/Z)2g.

• The non-trivial connected algebraic subgroups ofG are precisely the abelian
subvarieties.

• G has only countably many abelian subvarieties, and each is defined over
Qalg.

• G[∞] is Zariski dense in G.

• A torsion coset is a coset H + ξ of an abelian subvariety H ≤ G by a
torsion point ξ ∈ G[∞].

Theorem (Manin-Mumford Conjecture; Raynaud (1983)). Let X ⊆ G be an
irreducible (complex) subvariety and suppose X ∩ G[∞] is Zariski dense in X.
Then X is a torsion coset.

Corollary. For X ⊆ G Zariski closed,

X ∩G[∞] =

n⋃
i=0

ξi +Hi[∞]

where ξi ∈ G[∞] and Hi ≤ G are abelian subvarieties.

Proof.

X ∩G[∞] = (X ∩G[∞])Zar ∩G[∞]

=

(
n⋃
i=0

ξi +Hi

)
∩G[∞]

=

n⋃
i=0

((ξi +Hi) ∩G[∞])

=

n⋃
i=0

ξi +Hi[∞]

1.1 Special Locus

• Let X ⊆cl G.

• The special locus (or Ueno locus, or Kawamata locus) of X in G is

SpL(X) :=
⋃
{SpL(X,H) : H ≤ G abelian subvariety},
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where

SpL(X,H) :=
⋃
{g +H : g +H ⊆ X, g ∈ G} =

⋂
h∈H

(X − h).

We will see that SpL(X) corresponds to the Pila-Wilkie ‘algebraic part’
of exp−1(X).

• The stabiliser of X in G is

Stab(X) = StabG(X) := {g ∈ G : g +X = X}.

Lemma. Suppose X is irreducible.
Then SpL(X) = X iff Stab(X) is infinite.

Proof.

• Stab(X) =
⋂
x∈X(X − x), so Stab(X) ≤cl G, so Stab(X) is an algebraic

subgroup.

• If Stab(X) is infinite, then the connected component of the identity H :=
Stab(X)o ≤ G is an abelian subvariety, so X =

⋃
{x + H : x ∈ X} =

SpL(X).

• Conversely: If X = SpL(X), then X = SpL(X,H) for some H, since each
SpL(X,H) is closed and G has only countably many abelian subvarieties
and X is irreducible.

So H ≤ Stab(X).

Lemma. SpL(X) ⊆cl X.

Proof.

• We actually prove something stronger:

Claim. If (Xa)a∈A is a constructible family of subvarieties of G,
then (SpL(Xa))a∈A is a constructible family of subvarieties of G.

Where

– a constructible subset of a variety is a boolean combination of
Zariski closed subsets;

(Fact: constructible ⇔ definable in (C; +, ·).)
– (Xa)a∈A is a constructible family of subvarieties of G if

∗ A is constructible,

∗ X ⊆ G×A is constructible, and

∗ Xa := {g ∈ G : (g, a) ∈ X} ⊆ G is Zariski closed in G for all a.
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• Since each SpL(Xa, H) is closed, it suffices to show that there are finitely
many H1, . . . ,Hn such that for all a ∈ A, SpL(Xa) =

⋃
i SpL(Xa, Hi).

• Say an abelian subvariety H ≤ G appears maximally in X ⊆ G if X
contains some coset γ +H which is maximal among the cosets of abelian
subvarieties contained in X.

• Say H appears maximally in (Xa)a if it appears maximally in some Xa.

• Then it suffices to show:

(∗) Only finitely many H appear maximally in (Xa)a.

• We prove (∗) by induction on d := maxa dim(Xa).

• We may assume that each Xa is irreducible, by:

Fact. There exists a constructible (X ′a′)a∈A′ and a constructible map α :
A′ → A such that (X ′a′ : α(a′) = a) are the irreducible components of Xa.

• We may also assume that each Xa has finite stabiliser.

Indeed, there is (fact) a uniform boundN on the size of the finite stabilisers
Stab(Xa), and A′ := {a ∈ A : |Stab(Xa)| ≤ N} is constructible. So to
perform the reduction, it suffices to see that (∗) holds for (Xa)a∈A\A′ .

But for a ∈ A \ A′ we have SpL(Xa) = Xa by the previous Lemma,
so by irreducibility SpL(Xa) =

⋃
H:H appears maximally in Xa

SpL(Xa, H) is
equal to a single SpL(Xa, Ha) with Ha appearing maximally. Then if Xa

contains α + H ′, it also contains α + H ′ + Ha, so H ′ ≤ Ha by maxi-
mality. So Ha is the only subgroup appearing maximally in Xa. Finally,
SpL(Xa, Ha) = Xa holds for a on a constructible subset, and A \ A′ is
covered by finitely many such subsets (by logical compactness), so indeed
finitely many such Hai suffice.

• Now suppose H0 ≤ G appears maximally in (Xa)a. Say H0 appears
maximally in Xa.

• Let h ∈ H0 \ Stab(Xa).

• Then X ′a,h := Xa ∩ (h+Xa) is a proper subvariety of Xa and contains a
coset of H0.

• Since X ′a,h ⊆ Xa, actually H0 appears maximally in X ′a,h.

• Now
(X ′a,g : a ∈ A, g ∈ G, X ′a,g 6= Xa)

is a constructible family of subvarieties of G each of dimension less than
d. By the inductive hypothesis, only finitely many H appear maximally
in it. So H0 is one of these finitely many, as required.
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2 Ax-Schanuel

2.1 Restricted exponentiation

• Recall Λ = ker exp is freely generated by an R-basis λ1, . . . , λ2g of LG ∼=
Cg.

• We identify LG with R2g with respect to this basis (instead of taking real
and imaginary parts),

0→ Z2g → R2g →exp G→ 0.

• Let F := [0, 1)2g ⊆ LG (“fundamental domain”), so the restriction exp| :
F → G is a bijection.

• exp| is definable in Ran.

• For X ⊆ G, exp| yields a bijection exp−1| (X) ∩Q2g → X ∩G[∞].

• To apply Pila-Wilkie, we must determine exp−1| (X)alg.

• The key tool for this is the Ax-Schanuel theorem (or its “Lindemann-
Weierstrass case”).

2.2 Ax-Schanuel

The original Ax-Schanuel theorem concerns usual complex exponentiation (i.e.
the exponential map of the multiplicative group):

Fact (Ax ’71). Suppose fi : ∆→ C are holomorphic functions on the unit disc,
and f ′1(0), . . . , f ′n(0) are Q-linearly independent. Then

trd(f1(t), . . . , fn(t), ef1(t), . . . , efn(t)/C) ≥ n+ 1.

• Proved using differential algebra.

• Generalisations:

– Brownawell-Kubota: for elliptic curves;

– Kirby: for arbitrary (semi-)abelian varieties.

– Ax ’72: general analytic version for arbitrary complex algebraic groups.
We will use this.

Fact (Ax ’72). Let

• H be a complex algebraic group,

• Γ ≤ H a connected analytic subgroup, and

• e ∈ K ⊆ Γ an irreducible analytic subvariety.
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Then there is an analytic subgroup H′ ≤ H containing KZar and Γ such that:

dimK ≤ dimKZar − (dimH′ − dim Γ) .

Idea: If K is a component of KZar ∩ Γ, the “expected” dimension is

dimK = dimKZar − (dimH− dim Γ);

Ax’s theorem says this can be exceeded only if the intersection is really happen-
ing in a smaller group.

2.3 Algebraic part

Lemma. exp−1| (X)alg = exp−1| (SpL(X)).

Proof.

• We show exp−1(X)alg = exp−1(SpL(X)).

• Let x ∈ exp−1(X)alg, and suppose x /∈ exp−1(SpL(X)).

• Replacing X with X − exp(x), we may assume x = 0.

• So 0 ∈ C ′ ⊆ exp−1(X) for a semialgebraic curve C ′.

• So 0 ∈ C ⊆ exp−1(X) for an irreducible algebraic curve C.

• Replace G with the smallest abelian subvariety G′ containing exp(C), and
X with X ∩G′.
We still have 0 /∈ SpL(X).

• Consider Γexp ≤ LG×G =: H.

• Let K 3 (0, 0) be an analytic irreducible component of (C ×X) ∩ Γexp =
Γexp|C .

• Now
〈
exp(C)Zar

〉
= G by assumption, so π2(

〈
KZar

〉
) = G, so

〈
KZar

〉
⊇

{0} ×G (by consideration of the algebraic subgroups of LG×G).

So
〈
KZar

〉
+ Γ = H.

• Meanwhile X 6= G since 0 /∈ SpL(X).

• By Ax, dimK ≤ dimKZar − (dimH− dim Γ), so:

dim(G) = dim(H)− dim(Γ)

≤ dimKZar − dimK

≤ dim(C ×X)− 1

≤ dim(X)

< dim(G).

Contradiction.
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Remark. Kawamata On Bloch’s Conjecture (1980, Inventiones) gives an alter-
native proof of this (and also of the closedness of SpL(X)).

3 Masser

• Let γ ∈ G(Qalg).

• In co-ordinates according to our projective embedding (possibly permuting
the co-ordinates),

γ = [1 : γ1 : . . . . : γn] ∈ G ⊆ Pn(C)

with γi ∈ Qalg.

• Then K(γ) := K(γ1, . . . , γn).

• For σ ∈ Gal(Qalg/K),

σ(γ) := [1 : σ(γ1) : . . . : σ(γn)] ∈ G.

• deg(K(γ)/K) is the size of the orbit of γ under Gal(Qalg/K).

Theorem (Masser ’84). Exist λ = λ(g) > 0 and C > 0 such that for ξ ∈ G[∞]
of order k,

deg(K(ξ)/K) ≥ Ckλ.

4 Pila-Zannier

4.1 Reduction

Theorem (Manin-Mumford Conjecture). If X ⊆cl G is irreducible and (X ∩
G[∞])Zar = X then X is a torsion coset.

Suffices to show:

Lemma. Suppose X ⊆cl G is irreducible and defined over Qalg and suppose
StabG(X) is finite.

Then (X \ SpL(X)) ∩G[∞] is finite.

Proof of Theorem from Lemma.

• Let H be the connected component of the stabiliser H := StabG(X)o.

So H ≤ G is an abelian subvariety or the trivial subgroup.
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• Then (fact) G/H is an abelian variety, and X/H ⊆ G/H is an irreducible
subvariety, and StabG/H(X/H) is finite.

(Indeed, if StabG/H(X/H) contains an infinite algebraic subgroup S, then

S′ = π−1H (S) stabilisesX = π−1H (X/H), but dim(S′) = dim(S)+dim(H) >
dim(H), contradicting the choice of H).

• X is over Qalg, because G[∞] ⊆ G(Qalg) and so X is Aut(C/Qalg)-
invariant.

Also H is over Qalg.

So X/H is over Qalg.

• So by the Lemma, (X/H \ SpL(X/H)) ∩ (G/H)[∞] is finite.

• But:
π−1H (X/H ∩ (G/H)[∞]) ⊇ X ∩G[∞],

so
π−1H ((X/H ∩ (G/H)[∞])Zar) ⊇ (X ∩G[∞])Zar = X,

so
(X/H ∩ (G/H)[∞])Zar = X/H.

• Now StabG/H(X/H) is finite, so SpL(X/H) is a proper closed subvariety
of X/H.

• So the finite set (X/H \SpL(X/H))∩ (G/H)[∞] is Zariski dense in X/H.

• So X/H = {ξ} for some ξ ∈ (G/H)[∞].

• So X = π−1(ξ) is a coset of H, and it contains a torsion point since
X ∩G[∞] is dense in X, so X is a torsion coset.

4.2 Concluding by Pila-Wilkie

Proof of Lemma.

• Let X ⊆cl G be irreducible and over Qalg with StabG(X) finite.

• WTS: (X \ SpL(X)) ∩G[∞] is finite. Suppose not.

• Increasing K, we may assume X is over K.

Then SpL(X) is also over K.

• So by Masser: For arbitrarily large k, there are Ckλ points of order k in
X \ SpL(X).
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• If ξ has order k, then the height of

exp−1| (ξ) ∈ exp−1| (X \ SpL(X)) ∩Q2g = exp−1| (X)tr ∩Q2g

is at most k.

• But by Pila-Wilkie, exists C ′ > 0 such that

N(exp−1| (X)tr, k) ≤ C ′k λ2 .

• For large enough k, these bounds contradict each other, i.e.

Ckλ > C ′k
λ
2 .
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