The Pila-Zannier proof of Manin-Mumford
 Martin Bays

26.01.2021

Contents

1 Manin-Mumford 1
1.1 Special Locus 1
2 Ax-Schanuel 1
2.1 Restricted exponentiation 1
2.2 Ax-Schanuel 1
2.3 Algebraic part 1
3 Masser 1
4 Pila-Zannier 1
4.1 Reduction 1
4.2 Concluding by Pila-Wilkie 1

1 Manin-Mumford

- $K \leq \mathbb{C}$ number field.
- G complex abelian variety (i.e. projective connected non-trivial algebraic group) over K.
(e.g. $G=E^{g}$ for E an elliptic curve over K.)
- $g:=\operatorname{dim}(G)$.
- Let $\exp : L G \rightarrow G$ be the exponential map of $G=G(\mathbb{C})$ as a complex Lie group.
- $L G=T_{0}(G)$ is a g-dimensional \mathbb{C}-vector space.
- exp is a surjective holomorphic homomorphism.
- $\Lambda:=\operatorname{ker}(\exp) \cong \mathbb{Z}^{2 g}$ is a full lattice in $L G$, i.e. $\Lambda=\left\langle\lambda_{1}, \ldots, \lambda_{2 g}\right\rangle_{\mathbb{Z}}$ where $\left(\lambda_{i}\right)_{i}$ is an \mathbb{R}-basis of $L G$.
- So as a complex Lie group, $G \cong \mathbb{C}^{g} / \Lambda$ is a complex torus, and is diffeomorphic to $(\mathbb{R} / \mathbb{Z})^{2 g}$.
- Torsion subgroup: $G[\infty] \cong(\mathbb{Q} / \mathbb{Z})^{2 g}$.
- The non-trivial connected algebraic subgroups of G are precisely the abelian subvarieties.
- G has only countably many abelian subvarieties, and each is defined over $\mathbb{Q}^{\text {alg }}$.
- $G[\infty]$ is Zariski dense in G.
- A torsion coset is a coset $H+\xi$ of an abelian subvariety $H \leq G$ by a torsion point $\xi \in G[\infty]$.

Theorem (Manin-Mumford Conjecture; Raynaud (1983)). Let $X \subseteq G$ be an irreducible (complex) subvariety and suppose $X \cap G[\infty]$ is Zariski dense in X. Then X is a torsion coset.

Corollary. For $X \subseteq G$ Zariski closed,

$$
X \cap G[\infty]=\bigcup_{i=0}^{n} \xi_{i}+H_{i}[\infty]
$$

where $\xi_{i} \in G[\infty]$ and $H_{i} \leq G$ are abelian subvarieties.
Proof.

$$
\begin{aligned}
X \cap G[\infty] & =(X \cap G[\infty])^{\mathrm{Zar}} \cap G[\infty] \\
& =\left(\bigcup_{i=0}^{n} \xi_{i}+H_{i}\right) \cap G[\infty] \\
& =\bigcup_{i=0}^{n}\left(\left(\xi_{i}+H_{i}\right) \cap G[\infty]\right) \\
& =\bigcup_{i=0}^{n} \xi_{i}+H_{i}[\infty]
\end{aligned}
$$

1.1 Special Locus

- Let $X \subseteq_{\mathrm{cl}} G$.
- The special locus (or Ueno locus, or Kawamata locus) of X in G is

$$
\operatorname{SpL}(X):=\bigcup\{\operatorname{SpL}(X, H): H \leq G \text { abelian subvariety }\},
$$

where

$$
\operatorname{SpL}(X, H):=\bigcup\{g+H: g+H \subseteq X, g \in G\}=\bigcap_{h \in H}(X-h)
$$

We will see that $\operatorname{SpL}(X)$ corresponds to the Pila-Wilkie 'algebraic part' of $\exp ^{-1}(X)$.

- The stabiliser of X in G is

$$
\operatorname{Stab}(X)=\operatorname{Stab}_{G}(X):=\{g \in G: g+X=X\}
$$

Lemma. Suppose X is irreducible.
Then $\operatorname{SpL}(X)=X$ iff $\operatorname{Stab}(X)$ is infinite.
Proof.

- $\operatorname{Stab}(X)=\bigcap_{x \in X}(X-x)$, so $\operatorname{Stab}(X) \leq_{\text {cl }} G$, so $\operatorname{Stab}(X)$ is an algebraic subgroup.
- If $\operatorname{Stab}(X)$ is infinite, then the connected component of the identity $H:=$ $\operatorname{Stab}(X)^{o} \leq G$ is an abelian subvariety, so $X=\bigcup\{x+H: x \in X\}=$ $\operatorname{SpL}(X)$.
- Conversely: If $X=\operatorname{SpL}(X)$, then $X=\operatorname{SpL}(X, H)$ for some H, since each $\operatorname{SpL}(X, H)$ is closed and G has only countably many abelian subvarieties and X is irreducible.
So $H \leq \operatorname{Stab}(X)$.

Lemma. $\operatorname{SpL}(X) \subseteq_{\mathrm{cl}} X$.
Proof.

- We actually prove something stronger:

Claim. If $\left(X_{a}\right)_{a \in A}$ is a constructible family of subvarieties of G, then $\left(\operatorname{SpL}\left(X_{a}\right)\right)_{a \in A}$ is a constructible family of subvarieties of G.

Where

- a constructible subset of a variety is a boolean combination of Zariski closed subsets;
(Fact: constructible \Leftrightarrow definable in $(\mathbb{C} ;+, \cdot)$.
- $\left(X_{a}\right)_{a \in A}$ is a constructible family of subvarieties of G if
* A is constructible,
* $X \subseteq G \times A$ is constructible, and
* $X_{a}:=\{g \in G:(g, a) \in X\} \subseteq G$ is Zariski closed in G for all a.
- Since each $\operatorname{SpL}\left(X_{a}, H\right)$ is closed, it suffices to show that there are finitely many H_{1}, \ldots, H_{n} such that for all $a \in A, \operatorname{SpL}\left(X_{a}\right)=\bigcup_{i} \operatorname{SpL}\left(X_{a}, H_{i}\right)$.
- Say an abelian subvariety $H \leq G$ appears maximally in $X \subseteq G$ if X contains some coset $\gamma+H$ which is maximal among the cosets of abelian subvarieties contained in X.
- Say H appears maximally in $\left(X_{a}\right)_{a}$ if it appears maximally in some X_{a}.
- Then it suffices to show:
(*) Only finitely many H appear maximally in $\left(X_{a}\right)_{a}$.
- We prove $(*)$ by induction on $d:=\max _{a} \operatorname{dim}\left(X_{a}\right)$.
- We may assume that each X_{a} is irreducible, by:

Fact. There exists a constructible $\left(X_{a^{\prime}}^{\prime}\right)_{a \in A^{\prime}}$ and a constructible map α : $A^{\prime} \rightarrow A$ such that $\left(X_{a^{\prime}}^{\prime}: \alpha\left(a^{\prime}\right)=a\right)$ are the irreducible components of X_{a}.

- We may also assume that each X_{a} has finite stabiliser.

Indeed, there is (fact) a uniform bound N on the size of the finite stabilisers $\operatorname{Stab}\left(X_{a}\right)$, and $A^{\prime}:=\left\{a \in A:\left|\operatorname{Stab}\left(X_{a}\right)\right| \leq N\right\}$ is constructible. So to perform the reduction, it suffices to see that $(*)$ holds for $\left(X_{a}\right)_{a \in A \backslash A^{\prime}}$.

But for $a \in A \backslash A^{\prime}$ we have $\operatorname{SpL}\left(X_{a}\right)=X_{a}$ by the previous Lemma, so by irreducibility $\operatorname{SpL}\left(X_{a}\right)=\bigcup_{H: H \text { appears maximally in } X_{a}} \operatorname{SpL}\left(X_{a}, H\right)$ is equal to a single $\operatorname{SpL}\left(X_{a}, H_{a}\right)$ with H_{a} appearing maximally. Then if X_{a} contains $\alpha+H^{\prime}$, it also contains $\alpha+H^{\prime}+H_{a}$, so $H^{\prime} \leq H_{a}$ by maximality. So H_{a} is the only subgroup appearing maximally in X_{a}. Finally, $\operatorname{SpL}\left(X_{a}, H_{a}\right)=X_{a}$ holds for a on a constructible subset, and $A \backslash A^{\prime}$ is covered by finitely many such subsets (by logical compactness), so indeed finitely many such $H_{a_{i}}$ suffice.

- Now suppose $H_{0} \leq G$ appears maximally in $\left(X_{a}\right)_{a}$. Say H_{0} appears maximally in X_{a}.
- Let $h \in H_{0} \backslash \operatorname{Stab}\left(X_{a}\right)$.
- Then $X_{a, h}^{\prime}:=X_{a} \cap\left(h+X_{a}\right)$ is a proper subvariety of X_{a} and contains a coset of H_{0}.
- Since $X_{a, h}^{\prime} \subseteq X_{a}$, actually H_{0} appears maximally in $X_{a, h}^{\prime}$.
- Now

$$
\left(X_{a, g}^{\prime}: a \in A, g \in G, X_{a, g}^{\prime} \neq X_{a}\right)
$$

is a constructible family of subvarieties of G each of dimension less than d. By the inductive hypothesis, only finitely many H appear maximally in it. So H_{0} is one of these finitely many, as required.

2 Ax-Schanuel

2.1 Restricted exponentiation

- Recall $\Lambda=$ ker exp is freely generated by an \mathbb{R}-basis $\lambda_{1}, \ldots, \lambda_{2 g}$ of $L G \cong$ \mathbb{C}^{g}.
- We identify $L G$ with $\mathbb{R}^{2 g}$ with respect to this basis (instead of taking real and imaginary parts),

$$
0 \rightarrow \mathbb{Z}^{2 g} \rightarrow \mathbb{R}^{2 g} \rightarrow^{\exp } G \rightarrow 0
$$

- Let $\mathcal{F}:=[0,1)^{2 g} \subseteq L G$ ("fundamental domain"), so the restriction $\exp _{\mid}$: $\mathcal{F} \rightarrow G$ is a bijection.
- $\exp _{\mid}$is definable in \mathbb{R}_{an}.
- For $X \subseteq G, \exp _{\mid}$yields a bijection $\exp _{\mid}^{-1}(X) \cap \mathbb{Q}^{2 g} \rightarrow X \cap G[\infty]$.
- To apply Pila-Wilkie, we must determine $\exp _{\mid}^{-1}(X)^{\text {alg }}$.
- The key tool for this is the Ax-Schanuel theorem (or its "LindemannWeierstrass case").

2.2 Ax-Schanuel

The original Ax-Schanuel theorem concerns usual complex exponentiation (i.e. the exponential map of the multiplicative group):

Fact (Ax '71). Suppose $f_{i}: \Delta \rightarrow \mathbb{C}$ are holomorphic functions on the unit disc, and $f_{1}^{\prime}(0), \ldots, f_{n}^{\prime}(0)$ are \mathbb{Q}-linearly independent. Then

$$
\operatorname{trd}\left(f_{1}(t), \ldots, f_{n}(t), e^{f_{1}(t)}, \ldots, e^{f_{n}(t)} / \mathbb{C}\right) \geq n+1
$$

- Proved using differential algebra.
- Generalisations:
- Brownawell-Kubota: for elliptic curves;
- Kirby: for arbitrary (semi-)abelian varieties.
- Ax '72: general analytic version for arbitrary complex algebraic groups. We will use this.

Fact (Ax '72). Let

- \mathbb{H} be a complex algebraic group,
- $\Gamma \leq \mathbb{H}$ a connected analytic subgroup, and
- $e \in K \subseteq \Gamma$ an irreducible analytic subvariety.

Then there is an analytic subgroup $\mathbb{H}^{\prime} \leq \mathbb{H}$ containing $K^{\text {Zar }}$ and Γ such that:

$$
\operatorname{dim} K \leq \operatorname{dim} K^{\mathrm{Zar}}-\left(\operatorname{dim} \mathbb{H}^{\prime}-\operatorname{dim} \Gamma\right)
$$

Idea: If K is a component of $K^{\mathrm{Zar}} \cap \Gamma$, the "expected" dimension is

$$
\operatorname{dim} K=\operatorname{dim} K^{\mathrm{Zar}}-(\operatorname{dim} \mathbb{H}-\operatorname{dim} \Gamma) ;
$$

Ax's theorem says this can be exceeded only if the intersection is really happening in a smaller group.

2.3 Algebraic part

Lemma. $\exp _{\mid}^{-1}(X)^{\text {alg }}=\exp _{\mid}^{-1}(\operatorname{SpL}(X))$.
Proof.

- We show $\exp ^{-1}(X)^{\text {alg }}=\exp ^{-1}(\operatorname{SpL}(X))$.
- Let $x \in \exp ^{-1}(X)^{\text {alg }}$, and suppose $x \notin \exp ^{-1}(\operatorname{SpL}(X))$.
- Replacing X with $X-\exp (x)$, we may assume $x=0$.
- So $0 \in C^{\prime} \subseteq \exp ^{-1}(X)$ for a semialgebraic curve C^{\prime}.
- So $0 \in C \subseteq \exp ^{-1}(X)$ for an irreducible algebraic curve C.
- Replace G with the smallest abelian subvariety G^{\prime} containing $\exp (C)$, and X with $X \cap G^{\prime}$.
We still have $0 \notin \operatorname{SpL}(X)$.
- Consider $\Gamma_{\exp } \leq L G \times G=: \mathbb{H}$.
- Let $K \ni(0,0)$ be an analytic irreducible component of $(C \times X) \cap \Gamma_{\exp }=$ $\Gamma_{\exp \mid C}$.
- Now $\left\langle\exp (C)^{\mathrm{Zar}}\right\rangle=G$ by assumption, so $\pi_{2}\left(\left\langle K^{\mathrm{Zar}}\right\rangle\right)=G$, so $\left\langle K^{\mathrm{Zar}}\right\rangle \supseteq$ $\{0\} \times G$ (by consideration of the algebraic subgroups of $L G \times G$). So $\left\langle K^{\mathrm{Zar}}\right\rangle+\Gamma=\mathbb{H}$.
- Meanwhile $X \neq G$ since $0 \notin \operatorname{SpL}(X)$.
- By $\mathrm{Ax}, \operatorname{dim} K \leq \operatorname{dim} K^{\mathrm{Zar}}-(\operatorname{dim} \mathbb{H}-\operatorname{dim} \Gamma)$, so:

$$
\begin{aligned}
\operatorname{dim}(G) & =\operatorname{dim}(\mathbb{H})-\operatorname{dim}(\Gamma) \\
& \leq \operatorname{dim} K^{\mathrm{Zar}}-\operatorname{dim} K \\
& \leq \operatorname{dim}(C \times X)-1 \\
& \leq \operatorname{dim}(X) \\
& <\operatorname{dim}(G)
\end{aligned}
$$

Contradiction.

Remark. Kawamata On Bloch's Conjecture (1980, Inventiones) gives an alternative proof of this (and also of the closedness of $\operatorname{SpL}(X)$).

3 Masser

- Let $\gamma \in G\left(\mathbb{Q}^{\text {alg }}\right)$.
- In co-ordinates according to our projective embedding (possibly permuting the co-ordinates),

$$
\gamma=\left[1: \gamma_{1}: \ldots: \gamma_{n}\right] \in G \subseteq \mathbb{P}^{n}(\mathbb{C})
$$

with $\gamma_{i} \in \mathbb{Q}^{\text {alg }}$.

- Then $K(\gamma):=K\left(\gamma_{1}, \ldots, \gamma_{n}\right)$.
- For $\sigma \in \operatorname{Gal}\left(\mathbb{Q}^{\text {alg }} / K\right)$,

$$
\sigma(\gamma):=\left[1: \sigma\left(\gamma_{1}\right): \ldots: \sigma\left(\gamma_{n}\right)\right] \in G
$$

- $\operatorname{deg}(K(\gamma) / K)$ is the size of the orbit of γ under $\operatorname{Gal}\left(\mathbb{Q}^{\text {alg }} / K\right)$.

Theorem (Masser '84). Exist $\lambda=\lambda(g)>0$ and $C>0$ such that for $\xi \in G[\infty]$ of order k,

$$
\operatorname{deg}(K(\xi) / K) \geq C k^{\lambda}
$$

4 Pila-Zannier

4.1 Reduction

Theorem (Manin-Mumford Conjecture). If $X \subseteq_{c l} G$ is irreducible and ($X \cap$ $G[\infty])^{\mathrm{Zar}}=X$ then X is a torsion coset.

Suffices to show:
Lemma. Suppose $X \subseteq_{\mathrm{cl}} G$ is irreducible and defined over $\mathbb{Q}^{\text {alg }}$ and suppose $\operatorname{Stab}_{G}(X)$ is finite.

Then $(X \backslash \operatorname{SpL}(X)) \cap G[\infty]$ is finite.
Proof of Theorem from Lemma.

- Let H be the connected component of the stabiliser $H:=\operatorname{Stab}_{G}(X)^{o}$.

So $H \leq G$ is an abelian subvariety or the trivial subgroup.

- Then (fact) G / H is an abelian variety, and $X / H \subseteq G / H$ is an irreducible subvariety, and $\operatorname{Stab}_{G / H}(X / H)$ is finite.
(Indeed, if $\operatorname{Stab}_{G / H}(X / H)$ contains an infinite algebraic subgroup S, then $S^{\prime}=\pi_{H}^{-1}(S)$ stabilises $X=\pi_{H}^{-1}(X / H)$, but $\operatorname{dim}\left(S^{\prime}\right)=\operatorname{dim}(S)+\operatorname{dim}(H)>$ $\operatorname{dim}(H)$, contradicting the choice of H).
- X is over $\mathbb{Q}^{\text {alg }}$, because $G[\infty] \subseteq G\left(\mathbb{Q}^{\text {alg }}\right)$ and so X is $\operatorname{Aut}\left(\mathbb{C} / \mathbb{Q}^{\text {alg }}\right)$ invariant.
Also H is over $\mathbb{Q}^{\text {alg }}$.
So X / H is over $\mathbb{Q}^{\text {alg }}$.
- So by the Lemma, $(X / H \backslash \operatorname{SpL}(X / H)) \cap(G / H)[\infty]$ is finite.
- But:

$$
\pi_{H}^{-1}(X / H \cap(G / H)[\infty]) \supseteq X \cap G[\infty]
$$

so

$$
\pi_{H}^{-1}\left((X / H \cap(G / H)[\infty])^{\mathrm{Zar}}\right) \supseteq(X \cap G[\infty])^{\mathrm{Zar}}=X,
$$

so

$$
(X / H \cap(G / H)[\infty])^{\mathrm{Zar}}=X / H .
$$

- Now $\operatorname{Stab}_{G / H}(X / H)$ is finite, $\operatorname{so} \operatorname{SpL}(X / H)$ is a proper closed subvariety of X / H.
- So the finite set $(X / H \backslash \operatorname{SpL}(X / H)) \cap(G / H)[\infty]$ is Zariski dense in X / H.
- So $X / H=\{\xi\}$ for some $\xi \in(G / H)[\infty]$.
- So $X=\pi^{-1}(\xi)$ is a coset of H, and it contains a torsion point since $X \cap G[\infty]$ is dense in X, so X is a torsion coset.

4.2 Concluding by Pila-Wilkie

Proof of Lemma.

- Let $X \subseteq_{\mathrm{cl}} G$ be irreducible and over $\mathbb{Q}^{\text {alg }}$ with $\operatorname{Stab}_{G}(X)$ finite.
- WTS: $(X \backslash \operatorname{SpL}(X)) \cap G[\infty]$ is finite. Suppose not.
- Increasing K, we may assume X is over K.

Then $\operatorname{SpL}(X)$ is also over K.

- So by Masser: For arbitrarily large k, there are $C k^{\lambda}$ points of order k in $X \backslash \operatorname{SpL}(X)$.
- If ξ has order k, then the height of

$$
\exp _{\mid}^{-1}(\xi) \in \exp _{\mid}^{-1}(X \backslash \operatorname{SpL}(X)) \cap \mathbb{Q}^{2 g}=\exp _{\mid}^{-1}(X)^{\operatorname{tr}} \cap \mathbb{Q}^{2 g}
$$

is at most k.

- But by Pila-Wilkie, exists $C^{\prime}>0$ such that

$$
N\left(\exp _{\mid}^{-1}(X)^{\operatorname{tr}}, k\right) \leq C^{\prime} k^{\frac{\lambda}{2}}
$$

- For large enough k, these bounds contradict each other, i.e.

$$
C k^{\lambda}>C^{\prime} k^{\frac{\lambda}{2}}
$$

