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1 Manin-Mumford

e K < C number field.

G complex abelian variety (i.e. projective connected non-trivial algebraic
group) over K.

(e.g. G = EY for E an elliptic curve over K.)

g = dim(G).

Let exp : LG — G be the exponential map of G = G(C) as a complex Lie
group.

o LG =Ty(G) is a g-dimensional C-vector space.

e exp is a surjective holomorphic homomorphism.

A :=ker(exp) = Z%9 is a full lattice in LG, i.e. A = (A1, ..., \ag), where
(A\i)i is an R-basis of LG.



e So as a complex Lie group, G = C9/A is a complex torus, and is diffeo-
morphic to (R/Z)29.

e Torsion subgroup: Gloo] & (Q/Z)%9.

e The non-trivial connected algebraic subgroups of G are precisely the abelian
subvarieties.

e G has only countably many abelian subvarieties, and each is defined over

Qalg.
e (G[oo] is Zariski dense in G.

e A torsion coset is a coset H + £ of an abelian subvariety H < G by a
torsion point ¢ € G[oo].

Theorem (Manin-Mumford Conjecture; Raynaud (1983)). Let X C G be an
irreducible (complex) subvariety and suppose X N Goo] is Zariski dense in X.
Then X is a torsion coset.

Corollary. For X C G Zariski closed,
n
X NGloo] = | & + Hiloo]
i=0
where & € G[oo] and H; < G are abelian subvarieties.

Proof.

X N Glod] = (X N GJoo))? N Gloo)]

= <CJ &+ Hz) N Gloo]

=0

= _U ((& + H;) N Gloc])

1.1 Special Locus
e Let X Cu G.

e The special locus (or Ueno locus, or Kawamata locus) of X in G is

SpL(X) := U{SpL(X, H) : H < G abelian subvariety},



where

SpL(X,H) == J{g+ H: g+ HC X, ge G} = [ | (X - h).
heH

We will see that SpL(X) corresponds to the Pila-Wilkie ‘algebraic part’
of exp™1(X).
e The stabiliser of X in G is

Stab(X) = Stabg(X) :={g € G: g+ X = X}.

Lemma. Suppose X is irreducible.
Then SpL(X) = X iff Stab(X) is infinite.

Proof.

e Stab(X) = (,cx (X — ), so Stab(X) <. G, so Stab(X) is an algebraic
subgroup.

e If Stab(X) is infinite, then the connected component of the identity H :=
Stab(X)° < G is an abelian subvariety, so X = | J{z + H : z € X} =
SpL(X).

e Conversely: If X = SpL(X), then X = SpL(X, H) for some H, since each
SpL(X, H) is closed and G has only countably many abelian subvarieties
and X is irreducible.

So H < Stab(X).

Lemma. SpL(X) Cq X.
Proof.
e We actually prove something stronger:

Claim. If (X,)aca is a constructible family of subvarieties of G,
then (SpL(Xa))aca is a constructible family of subvarieties of G.

Where

— a constructible subset of a variety is a boolean combination of
Zariski closed subsets;

(Fact: constructible < definable in (C;+,-).)
— (Xa)aca is a constructible family of subvarieties of G if
* A is constructible,
x+ X C G x A is constructible, and
* X, ={9€G:(g9,a) € X} CG is Zariski closed in G for all a.



Since each SpL(X,, H) is closed, it suffices to show that there are finitely
many Hi, ..., H, such that for all « € A, SpL(X,) = |, SpL(X,, H;).

Say an abelian subvariety H < G appears maximally in X C G if X
contains some coset v + H which is maximal among the cosets of abelian
subvarieties contained in X.

Say H appears maximally in (X,), if it appears maximally in some X,,.

Then it suffices to show:

(*) Only finitely many H appear maximally in (X, ),.
We prove (%) by induction on d := max, dim(X,).
We may assume that each X, is irreducible, by:

Fact. There exists a constructible (X!, )qaca’ and a constructible map « :
A" — A such that (X!, : a(a’) = a) are the irreducible components of X,.

We may also assume that each X, has finite stabiliser.

Indeed, there is (fact) a uniform bound N on the size of the finite stabilisers
Stab(X,), and A’ := {a € A : |Stab(X,)| < N} is constructible. So to
perform the reduction, it suffices to see that (x) holds for (Xq)sca\a’-

But for a € A\ A’ we have SpL(X,) = X, by the previous Lemma,
so by irreducibility SpL(X.) = Upg.5 appears maximally in X, SpL(X,, H) is
equal to a single SpL(X,, H,) with H, appearing maximally. Then if X,
contains a + H’, it also contains o + H' + H,, so H < H, by maxi-
mality. So H, is the only subgroup appearing maximally in X,. Finally,
SpL(X,, H,) = X, holds for a on a constructible subset, and A\ A’ is
covered by finitely many such subsets (by logical compactness), so indeed
finitely many such H,, suffice.

Now suppose Hy < G appears maximally in (X,),. Say Hy appears
maximally in X,.

Let h € Hp \ Stab(X,).

Then Xl’l’h = X, N (h+ X,) is a proper subvariety of X, and contains a
coset of Hy.

Since X, ;, € X, actually Hy appears maximally in X ;.

Now
ro. /
(Xa,g ra€A, geCG, X, # Xa)

is a constructible family of subvarieties of G each of dimension less than
d. By the inductive hypothesis, only finitely many H appear maximally
in it. So Hy is one of these finitely many, as required.

O



2 Ax-Schanuel

2.1 Restricted exponentiation

e Recall A = kerexp is freely generated by an R-basis A1,..., Aoy of LG =
C9.

e We identify LG with R?9 with respect to this basis (instead of taking real
and imaginary parts),

0— Z%9 — R% P G 0.

e Let F:=[0,1)%9 C LG (“fundamental domain”), so the restriction exp; :
F — @ is a bijection.

e exp is definable in R,,.
e For X C G, exp yields a bijection expfl(X) NQ?%» — X NGJoo].
e To apply Pila-Wilkie, we must determine exp‘_l(X )ale,

e The key tool for this is the Ax-Schanuel theorem (or its “Lindemann-
Weierstrass case”).

2.2 Ax-Schanuel

The original Ax-Schanuel theorem concerns usual complex exponentiation (i.e.
the exponential map of the multiplicative group):

Fact (Ax ’71). Suppose f; : A — C are holomorphic functions on the unit disc,
and f1(0),..., f](0) are Q-linearly independent. Then

trd(fr(t), ..., fu(t), e @ M /C) > n41.
e Proved using differential algebra.
e Generalisations:

— Brownawell-Kubota: for elliptic curves;
— Kirby: for arbitrary (semi-)abelian varieties.

— Ax’72: general analytic version for arbitrary complex algebraic groups.
We will use this.

Fact (Ax '72). Let
e H be a complex algebraic group,
e I' < H a connected analytic subgroup, and

e c € K CT an wrreducible analytic subvariety.



Then there is an analytic subgroup H' < H containing K% and T such that:
dim K < dim K% — (dimH' — dimT).

Idea: If K is a component of K% N T, the “expected” dimension is
dim K = dim K% — (dimH — dimT);
Ax’s theorem says this can be exceeded only if the intersection is really happen-
ing in a smaller group.
2.3 Algebraic part
Lemma. expl_l(X)alg = exp‘_l(SpL(X)).
Proof.
e We show exp~!(X)*8 = exp~1(SpL(X)).
o Let 2 € exp }(X)28, and suppose = ¢ exp~ ! (SpL(X)).
e Replacing X with X — exp(z), we may assume x = 0.
e So0 € ' Cexp1(X) for a semialgebraic curve C”.
e So 0 € C Cexp !(X) for an irreducible algebraic curve C.

e Replace G with the smallest abelian subvariety G’ containing exp(C'), and
X with X NG

We still have 0 ¢ SpL(X).
e Consider I'eyp < LG x G =: H.

e Let K 3 (0,0) be an analytic irreducible component of (C' x X) N Texp =
Fexp\c’

e Now (exp(C)%*) = G by assumption, so m((K%*)) = G, so (K%T) D
{0} x G (by consideration of the algebraic subgroups of LG x G).

So (K#r) 4+ T = H.
e Meanwhile X # G since 0 ¢ SpL(X).
e By Ax, dim K < dim K% — (dimH — dimT), so:
dim(G) = dim(H) — dim(T")

< dim K" — dim K
<dim(Cx X) -1
< dim(X)
< dim(G).

Contradiction.



O

Remark. Kawamata On Bloch’s Conjecture (1980, Inventiones) gives an alter-
native proof of this (and also of the closedness of SpL(X)).

3 Masser

Let v € G(Q%s).

In co-ordinates according to our projective embedding (possibly permuting
the co-ordinates),

y=[1:m:....:7] € GCP*C)

with ~; € Qalg.

Then K(V) = K(,yly s a’}/n)
For o € Gal(Q¥#/K),

o(y):=[1:0(n):...:0(mwm)] €G.
e deg(K(v)/K) is the size of the orbit of v under Gal(Q*#/K).

Theorem (Masser '84). Exist A = A(g) > 0 and C > 0 such that for £ € G[0]
of order k,
deg(K(€)/K) > Ck™.

4 Pila-Zannier

4.1 Reduction

Theorem (Manin-Mumford Conjecture). If X C. G is irreducible and (X N
G[x])%" = X then X is a torsion coset.

Suffices to show:

Lemma. Suppose X Cgq G is irreducible and defined over Q™8 and suppose
Stabg(X) is finite.
Then (X \ SpL(X)) N G[oo] is finite.

Proof of Theorem from Lemma.

e Let H be the connected component of the stabiliser H := Stabg(X)°.

So H < G is an abelian subvariety or the trivial subgroup.



4.2

Then (fact) G/H is an abelian variety, and X/H C G/H is an irreducible
subvariety, and Stabg, (X/H) is finite.

(Indeed, if Stabg /5 (X/H) contains an infinite algebraic subgroup S, then
S’ = 7' (S) stabilises X = 75" (X/H), but dim(S") = dim(S)+dim(H) >
dim(H), contradicting the choice of H).

X is over Q8 because G[oo] C G(Q*8) and so X is Aut(C/Q?)-

invariant.
Also H is over Q®,
So X/H is over Q8.

So by the Lemma, (X/H \ SpL(X/H)) N (G/H)[c] is finite.

But:
Ty (X/H N (G/H)[oc]) 2 X NG00,
7 (X/H 0 (G/H)[o0])*) 2 (X N Gloa])™ = X,

(X/H N (G/H)[o0])*™ = X/H.

Now Stabg, g (X/H) is finite, so SpL(X/H) is a proper closed subvariety
of X/H.

So the finite set (X/H \ SpL(X/H))N(G/H)[oo] is Zariski dense in X/H.
So X/H = {¢} for some £ € (G/H)[x].

So X = 771(€) is a coset of H, and it contains a torsion point since
X NG[ox<] is dense in X, so X is a torsion coset.

O

Concluding by Pila-Wilkie

Proof of Lemma.

Let X C G be irreducible and over Q8 with Stabg(X) finite.
WTS: (X \ SpL(X)) N G[o0] is finite. Suppose not.

Increasing K, we may assume X is over K.
Then SpL(X) is also over K.

So by Masser: For arbitrarily large k, there are Ck* points of order k in
X\ SpL(X).



e If £ has order k, then the height of
exp () € exp[ (X \ SpL(X)) N Q% = exp[ ' (X)" N Q%
is at most k.

e But by Pila-Wilkie, exists C’ > 0 such that

o>

N(expl_l(X)tr,k;) < C'k>.
e For large enough k, these bounds contradict each other, i.e.

Ok > C'k?.
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