The Pila-Zannier proof of Manin-Mumford

Martin Bays

26.01.2021

Contents

1	Manin-Mumford	1
	1.1 Special Locus	1
2	Ax-Schanuel	1
	2.1 Restricted exponentiation	1
	2.2 Ax-Schanuel	1
	2.3 Algebraic part	1
3	Masser	1
4	Pila-Zannier	1
	4.1 Reduction	1
	4.2 Concluding by Pila-Wilkie	1

1 Manin-Mumford

- $K \leq \mathbb{C}$ number field.
- G complex abelian variety (i.e. projective connected non-trivial algebraic group) over K.

(e.g. $G = E^g$ for E an elliptic curve over K.)

- $g := \dim(G)$.
- Let exp : $LG \to G$ be the exponential map of $G = G(\mathbb{C})$ as a complex Lie group.
- $LG = T_0(G)$ is a g-dimensional \mathbb{C} -vector space.
- exp is a surjective holomorphic homomorphism.
- $\Lambda := \ker(\exp) \cong \mathbb{Z}^{2g}$ is a full lattice in LG, i.e. $\Lambda = \langle \lambda_1, \ldots, \lambda_{2g} \rangle_{\mathbb{Z}}$ where $(\lambda_i)_i$ is an \mathbb{R} -basis of LG.

- So as a complex Lie group, $G \cong \mathbb{C}^g / \Lambda$ is a complex torus, and is diffeomorphic to $(\mathbb{R}/\mathbb{Z})^{2g}$.
- Torsion subgroup: $G[\infty] \cong (\mathbb{Q}/\mathbb{Z})^{2g}$.
- The non-trivial connected algebraic subgroups of G are precisely the abelian subvarieties.
- G has only countably many abelian subvarieties, and each is defined over \mathbb{Q}^{alg} .
- $G[\infty]$ is Zariski dense in G.
- A torsion coset is a coset $H + \xi$ of an abelian subvariety $H \leq G$ by a torsion point $\xi \in G[\infty]$.

Theorem (Manin-Mumford Conjecture; Raynaud (1983)). Let $X \subseteq G$ be an irreducible (complex) subvariety and suppose $X \cap G[\infty]$ is Zariski dense in X. Then X is a torsion coset.

Corollary. For $X \subseteq G$ Zariski closed,

$$X \cap G[\infty] = \bigcup_{i=0}^{n} \xi_i + H_i[\infty]$$

where $\xi_i \in G[\infty]$ and $H_i \leq G$ are abelian subvarieties.

Proof.

$$X \cap G[\infty] = (X \cap G[\infty])^{\text{Zar}} \cap G[\infty]$$
$$= \left(\bigcup_{i=0}^{n} \xi_i + H_i\right) \cap G[\infty]$$
$$= \bigcup_{i=0}^{n} \left((\xi_i + H_i) \cap G[\infty]\right)$$
$$= \bigcup_{i=0}^{n} \xi_i + H_i[\infty]$$

1.1 Special Locus

- Let $X \subseteq_{\mathrm{cl}} G$.
- The special locus (or Ueno locus, or Kawamata locus) of X in G is

 $\operatorname{SpL}(X) := \bigcup \{ \operatorname{SpL}(X, H) : H \leq G \text{ abelian subvariety} \},$

where

$$\operatorname{SpL}(X,H) := \bigcup \{g + H : g + H \subseteq X, \ g \in G\} = \bigcap_{h \in H} (X - h).$$

We will see that SpL(X) corresponds to the Pila-Wilkie 'algebraic part' of $exp^{-1}(X)$.

• The **stabiliser** of X in G is

$$\operatorname{Stab}(X) = \operatorname{Stab}_G(X) := \{g \in G : g + X = X\}.$$

Lemma. Suppose X is irreducible.

Then $\operatorname{SpL}(X) = X$ iff $\operatorname{Stab}(X)$ is infinite.

Proof.

- $\operatorname{Stab}(X) = \bigcap_{x \in X} (X x)$, so $\operatorname{Stab}(X) \leq_{\operatorname{cl}} G$, so $\operatorname{Stab}(X)$ is an algebraic subgroup.
- If $\operatorname{Stab}(X)$ is infinite, then the connected component of the identity $H := \operatorname{Stab}(X)^o \leq G$ is an abelian subvariety, so $X = \bigcup \{x + H : x \in X\} = \operatorname{SpL}(X)$.
- Conversely: If X = SpL(X), then X = SpL(X, H) for some H, since each SpL(X, H) is closed and G has only countably many abelian subvarieties and X is irreducible.

So $H \leq \operatorname{Stab}(X)$.

Lemma. $\operatorname{SpL}(X) \subseteq_{\operatorname{cl}} X$.

Proof.

• We actually prove something stronger:

Claim. If $(X_a)_{a \in A}$ is a constructible family of subvarieties of G, then $(SpL(X_a))_{a \in A}$ is a constructible family of subvarieties of G.

Where

- a constructible subset of a variety is a boolean combination of Zariski closed subsets;
 - (Fact: constructible \Leftrightarrow definable in $(\mathbb{C}; +, \cdot)$.)
- $-(X_a)_{a\in A}$ is a **constructible family** of subvarieties of G if

* A is constructible,

- * $X \subseteq G \times A$ is constructible, and
- * $X_a := \{g \in G : (g, a) \in X\} \subseteq G$ is Zariski closed in G for all a.

- Since each $\operatorname{SpL}(X_a, H)$ is closed, it suffices to show that there are finitely many H_1, \ldots, H_n such that for all $a \in A$, $\operatorname{SpL}(X_a) = \bigcup_i \operatorname{SpL}(X_a, H_i)$.
- Say an abelian subvariety $H \leq G$ appears maximally in $X \subseteq G$ if X contains some coset $\gamma + H$ which is maximal among the cosets of abelian subvarieties contained in X.
- Say *H* appears maximally in $(X_a)_a$ if it appears maximally in some X_a .
- Then it suffices to show:
 - (*) Only finitely many H appear maximally in $(X_a)_a$.
- We prove (*) by induction on $d := \max_a \dim(X_a)$.
- We may assume that each X_a is irreducible, by:

Fact. There exists a constructible $(X'_{a'})_{a \in A'}$ and a constructible map $\alpha : A' \to A$ such that $(X'_{a'} : \alpha(a') = a)$ are the irreducible components of X_a .

• We may also assume that each X_a has finite stabiliser.

Indeed, there is (fact) a uniform bound N on the size of the finite stabilisers $\operatorname{Stab}(X_a)$, and $A' := \{a \in A : |\operatorname{Stab}(X_a)| \leq N\}$ is constructible. So to perform the reduction, it suffices to see that (*) holds for $(X_a)_{a \in A \setminus A'}$.

But for $a \in A \setminus A'$ we have $\operatorname{SpL}(X_a) = X_a$ by the previous Lemma, so by irreducibility $\operatorname{SpL}(X_a) = \bigcup_{H:H \text{ appears maximally in } X_a} \operatorname{SpL}(X_a, H)$ is equal to a single $\operatorname{SpL}(X_a, H_a)$ with H_a appearing maximally. Then if X_a contains $\alpha + H'$, it also contains $\alpha + H' + H_a$, so $H' \leq H_a$ by maximality. So H_a is the only subgroup appearing maximally in X_a . Finally, $\operatorname{SpL}(X_a, H_a) = X_a$ holds for a on a constructible subset, and $A \setminus A'$ is covered by finitely many such subsets (by logical compactness), so indeed finitely many such H_{a_i} suffice.

- Now suppose $H_0 \leq G$ appears maximally in $(X_a)_a$. Say H_0 appears maximally in X_a .
- Let $h \in H_0 \setminus \operatorname{Stab}(X_a)$.
- Then $X'_{a,h} := X_a \cap (h + X_a)$ is a proper subvariety of X_a and contains a coset of H_0 .
- Since $X'_{a,h} \subseteq X_a$, actually H_0 appears maximally in $X'_{a,h}$.
- Now

$$(X'_{a,g}: a \in A, g \in G, X'_{a,g} \neq X_a)$$

is a constructible family of subvarieties of G each of dimension less than d. By the inductive hypothesis, only finitely many H appear maximally in it. So H_0 is one of these finitely many, as required.

2 Ax-Schanuel

2.1 Restricted exponentiation

- Recall $\Lambda = \ker \exp$ is freely generated by an \mathbb{R} -basis $\lambda_1, \ldots, \lambda_{2g}$ of $LG \cong \mathbb{C}^g$.
- We identify *LG* with \mathbb{R}^{2g} with respect to this basis (instead of taking real and imaginary parts),

$$0 \to \mathbb{Z}^{2g} \to \mathbb{R}^{2g} \to^{\exp} G \to 0.$$

- Let $\mathcal{F} := [0, 1)^{2g} \subseteq LG$ ("fundamental domain"), so the restriction $\exp_{|} : \mathcal{F} \to G$ is a bijection.
- \exp_{\mid} is definable in \mathbb{R}_{an} .
- For $X \subseteq G$, $\exp_{|}$ yields a bijection $\exp_{|}^{-1}(X) \cap \mathbb{Q}^{2g} \to X \cap G[\infty]$.
- To apply Pila-Wilkie, we must determine $\exp_{\parallel}^{-1}(X)^{\text{alg}}$.
- The key tool for this is the Ax-Schanuel theorem (or its "Lindemann-Weierstrass case").

2.2 Ax-Schanuel

The original Ax-Schanuel theorem concerns usual complex exponentiation (i.e. the exponential map of the multiplicative group):

Fact (Ax '71). Suppose $f_i : \Delta \to \mathbb{C}$ are holomorphic functions on the unit disc, and $f'_1(0), \ldots, f'_n(0)$ are \mathbb{Q} -linearly independent. Then

$$\operatorname{trd}(f_1(t), \dots, f_n(t), e^{f_1(t)}, \dots, e^{f_n(t)}/\mathbb{C}) \ge n+1.$$

- Proved using differential algebra.
- Generalisations:
 - Brownawell-Kubota: for elliptic curves;
 - Kirby: for arbitrary (semi-)abelian varieties.
 - Ax '72: general analytic version for arbitrary complex algebraic groups. We will use this.

Fact (Ax '72). Let

- \mathbb{H} be a complex algebraic group,
- $\Gamma \leq \mathbb{H}$ a connected analytic subgroup, and
- $e \in K \subseteq \Gamma$ an irreducible analytic subvariety.

Then there is an analytic subgroup $\mathbb{H}' \leq \mathbb{H}$ containing K^{Zar} and Γ such that:

$$\dim K \le \dim K^{\operatorname{Zar}} - (\dim \mathbb{H}' - \dim \Gamma).$$

Idea: If K is a component of $K^{\text{Zar}} \cap \Gamma$, the "expected" dimension is

 $\dim K = \dim K^{\operatorname{Zar}} - (\dim \mathbb{H} - \dim \Gamma);$

Ax's theorem says this can be exceeded only if the intersection is really happening in a smaller group.

2.3 Algebraic part

Lemma. $\exp_{|}^{-1}(X)^{\text{alg}} = \exp_{|}^{-1}(\text{SpL}(X)).$

Proof.

- We show $\exp^{-1}(X)^{\operatorname{alg}} = \exp^{-1}(\operatorname{SpL}(X)).$
- Let $x \in \exp^{-1}(X)^{\text{alg}}$, and suppose $x \notin \exp^{-1}(\text{SpL}(X))$.
- Replacing X with $X \exp(x)$, we may assume x = 0.
- So $0 \in C' \subseteq \exp^{-1}(X)$ for a semialgebraic curve C'.
- So $0 \in C \subseteq \exp^{-1}(X)$ for an irreducible algebraic curve C.
- Replace G with the smallest abelian subvariety G' containing $\exp(C)$, and X with $X \cap G'$.

We still have $0 \notin \operatorname{SpL}(X)$.

- Consider $\Gamma_{\exp} \leq LG \times G =: \mathbb{H}$.
- Let $K \ni (0,0)$ be an analytic irreducible component of $(C \times X) \cap \Gamma_{\exp} = \Gamma_{\exp|_C}$.
- Now $\langle \exp(C)^{\text{Zar}} \rangle = G$ by assumption, so $\pi_2(\langle K^{\text{Zar}} \rangle) = G$, so $\langle K^{\text{Zar}} \rangle \supseteq \{0\} \times G$ (by consideration of the algebraic subgroups of $LG \times G$). So $\langle K^{\text{Zar}} \rangle + \Gamma = \mathbb{H}$.
- Meanwhile $X \neq G$ since $0 \notin \text{SpL}(X)$.
- By Ax, dim $K \leq \dim K^{\operatorname{Zar}} (\dim \mathbb{H} \dim \Gamma)$, so:

$$\dim(G) = \dim(\mathbb{H}) - \dim(\Gamma)$$

$$\leq \dim K^{\operatorname{Zar}} - \dim K$$

$$\leq \dim(C \times X) - 1$$

$$\leq \dim(X)$$

$$< \dim(G).$$

Contradiction.

Remark. Kawamata On Bloch's Conjecture (1980, Inventiones) gives an alternative proof of this (and also of the closedness of SpL(X)).

3 Masser

- Let $\gamma \in G(\mathbb{Q}^{\mathrm{alg}})$.
- In co-ordinates according to our projective embedding (possibly permuting the co-ordinates),

$$\gamma = [1: \gamma_1: \ldots: \gamma_n] \in G \subseteq \mathbb{P}^n(\mathbb{C})$$

with $\gamma_i \in \mathbb{Q}^{\text{alg}}$.

- Then $K(\gamma) := K(\gamma_1, \ldots, \gamma_n).$
- For $\sigma \in \operatorname{Gal}(\mathbb{Q}^{\operatorname{alg}}/K)$,

$$\sigma(\gamma) := [1 : \sigma(\gamma_1) : \ldots : \sigma(\gamma_n)] \in G.$$

• $\deg(K(\gamma)/K)$ is the size of the orbit of γ under $\operatorname{Gal}(\mathbb{Q}^{\operatorname{alg}}/K)$.

Theorem (Masser '84). Exist $\lambda = \lambda(g) > 0$ and C > 0 such that for $\xi \in G[\infty]$ of order k,

$$\deg(K(\xi)/K) \ge Ck^{\lambda}.$$

4 Pila-Zannier

4.1 Reduction

Theorem (Manin-Mumford Conjecture). If $X \subseteq_{cl} G$ is irreducible and $(X \cap G[\infty])^{Zar} = X$ then X is a torsion coset.

Suffices to show:

Lemma. Suppose $X \subseteq_{cl} G$ is irreducible and defined over \mathbb{Q}^{alg} and suppose $\operatorname{Stab}_G(X)$ is finite.

Then $(X \setminus \operatorname{SpL}(X)) \cap G[\infty]$ is finite.

Proof of Theorem from Lemma.

Let H be the connected component of the stabiliser H := Stab_G(X)^o.
 So H ≤ G is an abelian subvariety or the trivial subgroup.

• Then (fact) G/H is an abelian variety, and $X/H \subseteq G/H$ is an irreducible subvariety, and $\operatorname{Stab}_{G/H}(X/H)$ is finite.

(Indeed, if $\operatorname{Stab}_{G/H}(X/H)$ contains an infinite algebraic subgroup S, then $S' = \pi_H^{-1}(S)$ stabilises $X = \pi_H^{-1}(X/H)$, but $\dim(S') = \dim(S) + \dim(H) > \dim(H)$, contradicting the choice of H).

• X is over \mathbb{Q}^{alg} , because $G[\infty] \subseteq G(\mathbb{Q}^{\text{alg}})$ and so X is $\text{Aut}(\mathbb{C}/\mathbb{Q}^{\text{alg}})$ -invariant.

Also H is over \mathbb{Q}^{alg} .

So X/H is over \mathbb{Q}^{alg} .

- So by the Lemma, $(X/H \setminus \text{SpL}(X/H)) \cap (G/H)[\infty]$ is finite.
- But:

$$\pi_H^{-1}(X/H \cap (G/H)[\infty]) \supseteq X \cap G[\infty],$$

 \mathbf{SO}

$$\pi_H^{-1}((X/H \cap (G/H)[\infty])^{\operatorname{Zar}}) \supseteq (X \cap G[\infty])^{\operatorname{Zar}} = X,$$

 \mathbf{SO}

$$(X/H \cap (G/H)[\infty])^{\operatorname{Zar}} = X/H.$$

- Now $\operatorname{Stab}_{G/H}(X/H)$ is finite, so $\operatorname{SpL}(X/H)$ is a proper closed subvariety of X/H.
- So the finite set $(X/H \setminus \text{SpL}(X/H)) \cap (G/H)[\infty]$ is Zariski dense in X/H.
- So $X/H = \{\xi\}$ for some $\xi \in (G/H)[\infty]$.
- So $X = \pi^{-1}(\xi)$ is a coset of H, and it contains a torsion point since $X \cap G[\infty]$ is dense in X, so X is a torsion coset.

4.2 Concluding by Pila-Wilkie

Proof of Lemma.

- Let $X \subseteq_{cl} G$ be irreducible and over \mathbb{Q}^{alg} with $\operatorname{Stab}_G(X)$ finite.
- WTS: $(X \setminus \text{SpL}(X)) \cap G[\infty]$ is finite. Suppose not.
- Increasing K, we may assume X is over K. Then SpL(X) is also over K.
- So by Masser: For arbitrarily large k, there are Ck^{λ} points of order k in $X \setminus \text{SpL}(X)$.

• If ξ has order k, then the height of

$$\exp_{\mid}^{-1}(\xi) \in \exp_{\mid}^{-1}(X \setminus \operatorname{SpL}(X)) \cap \mathbb{Q}^{2g} = \exp_{\mid}^{-1}(X)^{\operatorname{tr}} \cap \mathbb{Q}^{2g}$$

is at most k.

• But by Pila-Wilkie, exists C' > 0 such that

$$N(\exp_{\mid}^{-1}(X)^{\mathrm{tr}},k) \le C'k^{\frac{\lambda}{2}}.$$

• For large enough k, these bounds contradict each other, i.e.

$$Ck^{\lambda} > C'k^{\frac{\lambda}{2}}.$$