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1 Larsen-Pink

An account of the Hrushovski-Wagner proof of Larsen-Pink.
Attention potential reader: soon after writing this note, I discovered

that there’s a nice streamlined account of the proof in Hrushovski’s “Stable
group theory and approximate subgroups”, where it appears as Proposition 5.6.
Most likely, you are better off reading that than this.

1.1 Statement

Let G be a simple group of finite Morley rank ∅-definable in a stable theory T .
Suppose M = ΠUMi |= T , a countable non-principal ultraproduct. Suppose

Γi ⊆ Mi are finite subsets such that Γ := ΠUΓi ≤ G(M) is a definably dense
subgroup, meaning that Γ is contained in no proper definable subgroup of G.

Theorem 1.1 (Hrushovski-Wagner (“Larsen-Pink”)). For any M -definable sub-

set X ⊆ Gn, there exists c ∈ R such that for all i, |X ∩ Γni | ≤ c|Γi|
RM(X)
RM(G) .

Larsen-Pink proved this in the case of G a simple algebraic group and
X a subvariety, and suggested that there might be a model-theoretic proof.
Hrushovski-Wagner provided such a proof, in the model-theoretically natural
generality of groups of finite Morley rank.

1.2 Example / sketch proof

Suppose X is a curve in a simple algebraic group G, n := dim(G). Then (as we
see below) there are γ1, . . . , γn ∈ Γ such that, setting f(x1, . . . , xn) := Πix

γi
i ,

f : Xn → G is dominant with generically finite fibres. Suppose all fibres are
finite, say with fibre size bounded by k. Then since f(Γn) ⊆ Γ, |X ∩ Γn|n =
|Xn ∩ Γ| ≤ k|Γ|, so |X ∩ Γ| ≤ k|Γ|1/n.

In reality, some fibres might be infinite, and Γ could concentrate there. . . we
handle this by working with complete types. When X is of higher dimension,
we don’t have such a clean map f , and so we work inductively, obtaining a
sequence of maps with generic fibres of dimension less than dim(X).

1.3 Stable group theory

Work in a monster model M |= T .
Systematically confuse formulae with the sets they define.
Recall

• If A � M, or more generally if A ⊆ M with dcleq(A) = acleq(A), any p ∈
S(A) is stationary, meaning it has a unique global non-forking extension
p ∈ S(M). Non-forking can here be taken to mean RM(p) = RM(p).
Define p|Ag := p|Ag, so a |= p|Ag ⇔ (a |= p and a |̂

A
g).

• If dcleq(A) = acleq(A) and p, q ∈ S(A), their unique product type p⊗ q ∈
S(A) is tp(a, b/A) where a |= p and b |= q|Aa.

• If f is a partial function definable over A ⊆ M and defined at p ∈ S(A),
f∗(p) ∈ S(A) is the type tp(f(b)/A) where b |= p.
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• For A ⊆ M, SG(A) := {p ∈ S(A) | p(x) |= x ∈ G}. G ∩ dcleq(A) acts on
SG(A), by g ∗ p := (g∗)∗(p).

• G has DCC: there is no infinite decreasing chain of definable subgroups.

• For p ∈ SG(M), Stab(p) = {g ∈ G | g ∗ p = p} is a definable subgroup.
For p ∈ SG(A) stationary, Stab(p) = Stab(p) where p is the unique global
nonforking extension; equivalently, Stab(p) = {g ∈ G | g ∗ p|Ag = p|Ag}.

• G is connected so has a unique generic type pG ∈ SG(M). For p ∈ SG(A),
Stab(p) = G⇔ RM(p) = RM(G)⇔ p = pG|A.

• In G, RM is additive, meaning RM(ab/C) = RM(a/bC) + RM(b/C), and
definable, meaning that if r ∈ SGn(A) and f is a partial function definable
over A and defined at r, then there exists X ∈ r such that for all b ∈ f(X),
RM(f |−1

X (b)) = RM(r)− RM(f∗(r)).

For γ ∈ Γ, define mγ(g, h) := gγ ∗ h.

Lemma 1.2 (Essentially ZIT). Suppose Γ ≤ G(M) is definably dense, Γ ⊆ A =
acleq(A), and p ∈ SG(A) is non-algebraic. Then there exist p1, . . . , pn ∈ SG(A)
and γ1, . . . , γn−1 ∈ γ, with p1 = p, pn = pG|A, pi+1 = mγi

∗ (p ⊗ pi), and such
that RM(pi+1) > RM(pi).

Proof. WMA A = acleq(∅).
It suffices to show that if q ∈ SG(A) satisfies RM(mγ

∗(p ⊗ q)) ≤ RM(q) for
all γ ∈ Γ, then q = pG|A.

So let q be such, and let S := Stab(q). We will show that S = G.
Let S′ :=

⋂
γ∈Γ S

γ . Then S′ is (by the DCC) a definable subgroup, and its
normaliser N(S′) contains Γ, so, by denseness of Γ, N(S′) = G, so S′ CG.

So by simplicity of G, it suffices to show that S′ 6= 1.
Let a, b |= p. We conclude by showing that a−1b ∈ S′.
Let e |= q|ab. So aγe, bγe |= mγ

∗(p⊗ q) =: rγ .
Then RM(p)+RM(q) = RM(a, e) = RM(a, e, aγe) = RM(a, aγe) = RM(a/aγe)+

RM(aγe).
But RM(p) ≥ RM(a/aγe) and RM(q) ≥ RM(rγ) = RM(aγe), so RM(p) =

RM(a/aγe) (and RM(q) = RM(aγe)). So aγe |= rγ |a. So since e |̂
a
b, aγe |=

rγ |ab, i.e. aγ ∗ q|ab = rγ |ab. Similarly, bγ ∗ q|ab = rγ |ab.
So (a−1b)γ ∗ q|ab = q|ab, so (a−1b)γ ∈ S′ for all γ, so a−1b ∈ S. �

1.4 Pseudofinite dimensions

Recall we have M := ΠUMi � M a countable non-principal ultraproduct, Γ :=
ΠUΓi ≤ G(M) definably dense subgroup.

Definition 1.1.

• For X definable over M , δ(X) := (log |X(Γ)|)/Fin (“fine pseudofinite
dimension restricted to Γ”), where |X(Γ)| := ΠU |XMi ∩ Γni | ∈ ΠUR if
X ⊆ Gn, and |X(Γ)| := 0 if X is on some other sort. Here Fin is the
convex hull of the standard reals R ⊆ ΠUR.

• For π a partial type overM , δ(π) := infφ∈π δ(φ), taking values in Ξ∪{−∞}
where Ξ is the formal completion of ΠUR/Fin as an ordered abelian group.
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• For comparison with values of RM, embed Z into Ξ such that δ(G) =
RM(G).

Lemma 1.3.

(i) δ(X ∪ Y ) = max(δ(X), δ(Y )).

(ii) Any partial type π over M admits a completion p ∈ S(M) with δ(p) = δ(π).

(iii) δ(X × Y ) = δ(X) + δ(Y ).

(iv) If f : Gn → Gm is a function definable over M such that f(Γn) ⊆ Γm, if
r ∈ SGn(M), and if X ∈ r with δ(f−1(b)) ≤ α for all b ∈ f(X)M , then
δ(r) ≤ δ(f∗(r)) + α.

Proof.

(i) max(|XΓ|, |Y Γ|) ≤ |(X ∪ Y )Γ| ≤ 2 max(|XΓ|, |Y Γ|).

(ii) Follows from (i).

(iii) Immediate from definitions.

(iv) Let Y ∈ f∗(r), and let X ′ := X ∩ f−1(Y ). Then δ(p) ≤ δ(X ′) ≤ δ(Y ) +α.

�

Stated in this language and generalised to partial types, Theorem 1.1 be-
comes:

Theorem 1.4. For any partial type π over M , δ(π) ≤ RM(p).

Proof. Let k := RM(π), and suppose inductively that for any π′ with RM(π′) <
k we have δ(π′) ≤ RM(π′).

Let p ∈ SG(M) complete π with δ(p) = δ(π). It suffices to show that
δ(p) ≤ RM(p), since then δ(π) = δ(p) ≤ RM(p) ≤ RM(π).

For p algebraic, clearly δ(p) = 0 = RM(p).
So suppose k > 0, and suppose for a contradiction that δ(p) > k.

Claim 1.4.1. Suppose f : Gn → Gm is a function definable over M such that
f(Γn) ⊆ Γm, and let r ∈ SGn(M). Suppose f and r are as in Lemma 1.3(iii),
and suppose α := RM(r)− RM(f∗(r)) < k. Then δ(r) ≤ δ(f∗(r)) + α.

Proof. By definability of RM, existsX ∈ r such that for all b ∈ f(X), RM(f |−1
X (b)) =

α.
Then since α < k = RM(p), for all b ∈ f(X)M , δ(f |−1

X (b)) ≤ RM(f |−1
X (b)) =

α.
So by Lemma 1.3(iii), δ(r) ≤ δ(f∗(r)) + α. �

Claim 1.4.2. For q ∈ S(M), δ(p⊗ q) = δ(p) + δ(q).

Proof. Let (p× q)(x, y) := p(x)∪ q(y). Let r(x, y) ∈ S(M) complete p× q with
δ(r) = δ(p× q) = δ(p) + δ(q).

Suppose for a contradiction that r 6= p ⊗ q. So RM(r) < RM(p) + RM(q),
so RM(r)− RM(q) < RM(p) = k.

So by Claim 1.4.1, δ(r) < δ(q) + k < δ(q) + δ(p), contradicting the choice of
r. �
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Suppose that p ∈ SG(M).
Let p = p1, . . . , pn = pG|M and γ1, . . . , γn−1 be as in Lemma 1.2.
So for 1 ≤ i < n, mγi

∗ (p ⊗ pi) = pi+1 and αi := RM(p ⊗ pi) − RM(pi+1) =
RM(p) + RM(pi)− RM(pi+1) < RM(p) = k.

So by Claims 1.4.2 and 1.4.1, δ(p) + δ(pi) = δ(p ⊗ pi) ≤ δ(pi+1) + αi, so
δ(pi) ≤ δ(pi+1) + αi − δ(p).

So δ(p) = δ(p1) ≤ δ(pn) +
∑
αi − (n− 1)δ(p), so nδ(p) ≤ δ(pG) +

∑
αi.

Meanwhile, RM(pi) = RM(pi+1) + αi − RM(p), so nRM(p) = RM(pG) +∑
αi.
By the normalisation, δ(pG) ≤ δ(G) = RM(G) = RM(pG). So nδ(p) ≤

nRM(p), so δ(p) ≤ RM(p), contradicting the contrary assumption.
So if p ∈ SG(M), δ(p) ≤ RM(p).
Then by induction on n, this holds for p ∈ SGn(M), by considering co-

ordinate projections and definability of RM, as in Claim 1.4.1.
For p on other sorts, by definition δ(p) = 0 ≤ RM(p), so we are done. �
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