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1 Introduction

We aim now for the group configuration theorem. This powerful theorem shows
that whenever one has a certain configuration of points in a stable theory sat-
isfying certain independence and algebraicity conditions, it comes from a

∧
-

definable group (or group action).
Here we prove a version of the “Hrushovski-Weil group chunk theorem”,

which recognises a
∧

-definable group (action) from a generically presented one.
This will be the final step in the proof of the group configuration theorem.

2 Preliminaries

Let M be a monster model of a stable theory T = T eq.

Notation. • If p ∈ S(A) is stationary and B ⊇ A, p|B ∈ S(B) is the unique
non-forking extension.

• If p, q ∈ S(A) are stationary, their product type is p ⊗ q := tp(b, c/A)
where c � q and b � p|Ac, i.e. (b, c) � p× q and b |̂

A
c.

• p(2) := p⊗ p, p(3) := p⊗ p⊗ p etc.

For notational convenience, assume (by adding parameters) that acl(∅) =
dcl(∅). So types over ∅ are stationary.

3 Germs

Definition. Let p, q ∈ S(M).
Say a definable partial function f is defined at p if p(x) � x ∈ dom(f). The

germ of f at p is then the equivalence class f̃ under the equivalence relation
p(x) � f1(x) = f2(x).

Write f̃ : p → q if p(x) � q(f(x)) for some (any) representative f (i.e.
f∗(p) = q).

If f̃ : p→ q has a representative f defined over b and a � p|b, let f̃(a) := f(a).
This is well-defined (if g is another representative defined over b then g(a) = f(a)

since a � p|b(x) � f(x) = g(x)), and f̃(a) � q|b.
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Example. In an o-minimal theory, let p+∞ be the global type of a positive infinite
element. Then a definable function f which is unbounded on all end-segments
(a,+∞) defines a germ f̃ : p+∞ → p+∞, and f̃ = g̃ iff f and g are eventually
equal.

Definition. Aut(M) acts on germs: given f̃ : p → q and σ ∈ Aut(M), f̃σ :=

(̃fσ) : pσ → qσ does not depend on the choice of f .

A (possibly infinite) tuple b is a code for f̃ if ∀σ ∈ Aut(M).(b = b
σ ↔ f̃ =

f̃σ); then set pf̃ q := dcl(b). Here, f̃ = f̃σ should be understood as implying
p = pσ.

Remark. Since T is stable, any germ has a code.
Indeed, given a ∅-definable family fz of partial functions, equality of germs

at p, f̃b = f̃c, is defined by

E(b, c) := dpx.(fb(x) = fc(x)),

and then since f̃σb = f̃bσ , we have

pf̃b q = dcl(b/E).

Remark. Composition of germs is well-defined.
Say f̃ : p → q is invertible if it is invertible in the category of germs, i.e.

g̃ ◦ f̃ = ĩd = f̃ ◦ g̃ for some g̃ : q→ p. Equivalently, f̃ is injective on p.
Note that pf̃ ◦ g̃ q ⊆ dcl(pf̃ q, pg̃ q), and pf̃−1 q = pf̃ q.

Definition. If p and q are stationary types and p, q their global non-forking
extensions, a germ at p is a germ at p, and f̃ : p→ q means f̃ : p→ q.

Definition. Let p, q, s ∈ S(∅). A family f̃s of germs p → q is the family

f̃s := (f̃b)b�s of germs at p of a ∅-definable family fz of partial functions, which

is such that f̃b : p→ q whenever b � s.
The family is canonical if b is a code for f̃b, for all b � s.
The family is generically transitive if f̃b(x) |̂ x for (b, x) � s⊗ p.

Remark. f̃s is generically transitive iff for (x, y) � p⊗q, there exists b � s|x such

that f̃b(x) = y.

Remark. Suppose p, q, s ∈ S(∅), and f̃s is a family of germs p → q. Let b � s
and x � p|b, and let y = f̃b(x). Then

x |̂ b; y |̂ b; y ∈ dcl(bx). (1)

Conversely, if (b, x, y) satisfy (1), let fb(x) = y be a formula witnessing

y ∈ dcl(bx). Then f̃s := (f̃b)b�s is a family of germs p → q, where s = tp(b),
p = tp(x), q = tp(y).

Lemma 3.1. In the correspondence of the previous remark,

(i) f̃b can be chosen to be invertible iff also x ∈ dcl(by);

(ii) the family f̃s is generically transitive iff x |̂ y;



4 HOMOGENEOUS SPACES 3

(iii) pf̃b q = Cb(xy/b) (so f̃s is canonical iff Cb(xy/b) = b).

Proof.

(i) x ∈ dcl(by) iff fb can be taken to be injective at x.

(ii) Immediate.

(iii) Let σ ∈ Aut(M). Let p be the global nonforking extension of p, so pσ = p.
Let r be the global nonforking extension of stp(xy/b). Then r is equivalent
to p(x) ∪ {y = fb(x)}.

Cb(xy/b)σ = Cb(xy/b)⇔ Cb(r)σ = Cb(r)

⇔ rσ = r

⇔ p(x) ∪ {y = fbσ (x)} ≡ p(x) ∪ {y = fb(x)}
⇔ p(x) � fbσ (x) = fb(x)

⇔ f̃σb = f̃b.

4 Homogeneous spaces

Let (G,X) be a
∧

-definable homogeneous space over ∅, i.e. G is a
∧

-definable
group and X is a

∧
-definable set, and ∗ : G×X → X is a relatively definable

transitive group action, all over ∅.
Say (G,X) is connected if G is connected, i.e. G has no relatively definable

proper subgroup of finite index.
Say (G,X) is faithful if the action is faithful, i.e. only the identity element

of G acts trivially on X.
Recall that a complete type extending G is generic if it is generic for the left,

equiv right, multiplication action of G on itself.

Fact 4.1. (i) G is connected iff it has for any A a unique generic type over
A, iff it has a unique generic type over ∅.

(ii) For b ∈ X, tp(b/A) is generic iff ∀g ∈ G.(b |̂
A
g ⇒ g ∗ b |̂

A
g).

(iii) G acts transitively on the set of global generic types of X.

Lemma 4.2. Suppose p ∈ S(∅) extends X and ∀g ∈ G.(b � p|g ⇒ g ∗ b � p|g).
Then p is the unique generic of X over ∅.

In particular, if this holds for the left/right multiplication action of G on
itself, then G is connected.

Proof. p is generic by Fact 4.1(ii).
If p′ ∈ S(∅) is generic, by Fact 4.1(iii) there is g such that g ∗ p = p′, where

p and p′ are the global non-forking extensions. So if b � p|g then g ∗ b � p′, but
also g ∗ b � p, so p′ = p.
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5 Hrushovski-Weil

Definition. Let p, s ∈ S(∅). A family f̃s of germs p→ p is

• closed under inverse if for b � s there exists b′ � s such that f̃−1b = f̃b′ ;

• closed under generic composition if for b1b2 � s(2), there exists b3
such that

f̃b1 ◦ f̃b2 = f̃b3

and bib3 � s(2) for i = 1, 2.

Theorem 5.1 (Hrushovski-Weil for actions). Let p, s ∈ S(∅), and suppose f̃s
is a generically transitive canonical family of invertible germs p → p which is
closed under inverse and generic composition.

Then there exists a connected faithful
∧

-definable/∅ homogeneous space (G,X),
a definable embedding (i.e. relatively definable injection) of s into G as its unique
generic type, and a definable embedding of p into X as its unique generic type,
such that the generic action of s on p agrees with that of G on X, i.e. f̃b(a) = b∗a
for (a, b) � p⊗ s.

This is related to the following more intuitive result:

Theorem (Hrushovski-Weil group chunk theorem). Let p ∈ S(∅), and suppose
∗ is a definable partial binary function such that:

• If (a, b) � p(2) then a∗ b is defined, and (a, a∗ b) � p(2) and (b, a∗ b) � p(2);

• If (a, b, c) � p(3) then (a ∗ b) ∗ c = a ∗ (b ∗ c).

Then one obtains a
∧

-definable connected group G and a definable embedding
of p into G such that if (a, b) � p(2) then a ∗ b agrees with the product in G.

(In the case T = ACF (where
∧

-definable groups are actually algebraic
groups (up to definable isomorphism)), this is essentially a theorem of Weil.)

Note that this is not quite just a matter of applying Theorem 5.1 with fb(a) :=
b ∗ a – we didn’t assume closedness under inverse nor canonicity, so some extra
argument is involved.

Proof of Theorem 5.1. Let G be the group of germs generated by f̃s.

Claim 5.2. Any element of G is a composition of two generators.

Proof. Since the family is closed under inverses, the identity is the composition
of two generators.

By generic composability and completeness of s, any generator f̃b is the
composition of two generators.

So it suffices to see that any composition of three generators

f̃b1 ◦ f̃b2 ◦ f̃b3

is the composition of two.
Let b′ � s|b1b2b3 . Then

f̃b1 ◦ f̃b2 ◦ f̃b3 = f̃b1 ◦ f̃b′ ◦ f̃−1b′ ◦ f̃b2 ◦ f̃b3
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Now b′ |̂ b2, so say f̃−1b′ ◦ f̃b2 = f̃b′′ with b′′ � s independent from b′ and from
b2.

Now b′ |̂
b2
b3, so b′′ |̂

b2
b3, since b′′ ∈ dcl(b′b2), so since b′′ |̂ b2, we have

b′′ |̂ b3.
Also b′ |̂ b1.

So the germs f̃b1 ◦ f̃b′ and f̃−1b′ ◦ f̃b2 ◦ f̃b3 appear in the family f̃s.

So G is
∧

-definable as pairs of realisations of s modulo equality of the corre-
sponding composition of germs, and the group operation is relatively definable
as composition of germs. We identify s with its image in G under the definable
embedding b 7→ f̃b.

We show that G is connected with generic type s via Lemma 4.2. We show
that if g ∈ G and b � s|g, then g·b � s|g. This holds for g � s, by closedness under
generic composition. Let g ∈ G, say g = g1 · g2 with g1, g2 � s. Let b � s|g1,g2 .
Then g2 · b � s|g1,g2 , and so g1 · g2 · b � s|g1,g2 . Now g = g1 · g2 ∈ dcl(g1, g2), so
b � s|g and g · b � s|g, as required.

G acts generically on p by application of germs; set g ∗ a := g(a) if a � p|g.
Now define X := (G× p)/E where (g, a)E(g′, a′) iff (h · g) ∗ a = (h · g′) ∗ a′

for h � s|aa′gg′ , which is definable by definability of s.
Define the action of G on X by h ∗ ((g, a)/E) := (h · g, a)/E. This is well-

defined, since if (g, a)E(g′, a′) and h ∈ G, then if h′ � s|g,g′,a,a′,h, then also
h′ · h � s|g,g′,a,a′,h by genericity, and we have (h′ · h · g) ∗ a = (h′ · h · g′) ∗ a′, so
(h · g, a)E(h · g′, a′). p definably embeds into X via a 7→ (1, a)/E.

We show transitivity. Let a, a′ � p, and we show (1, a′)/E ∈ G∗(1, a)/E; this
suffices for transitivity, since clearly (G, a′)/E ⊆ G ∗ (1, a′)/E. Let c � p|aa′ .
Then by generic transitivity of f̃s, there exist g � s|a and g′ � s|c such that
g ∗ a = c and g′ ∗ c = a′. Then (h · g) ∗ a = h ∗ c for h � s|acg, so (g, a)E(1, c).
Similarly (g′, c)E(1, a′). So (g′ · g) ∗ (1, a)/E = g′ ∗ (g, a)/E = g′ ∗ (1, c)/E =
(g′, c)/E = (1, a′)/E.

For faithfulness of the action: suppose g acts trivially, and let a � p|g. Then
(g, a)E(1, a), so let h � s|ag; then (h · g) ∗ a = h ∗ a. But h |̂

g
a, hence also

h · g |̂
g
a, so h, h · g |̂ a since g |̂ a. So h · g = h as germs, so g = 1.

Finally, we conclude from Lemma 4.2 that p is the unique generic type, since
if g ∈ G and a � p|g, then g ∗ a � p|g as this is the action of a germ.
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