Hrushovski-Weil

Martin Bays

2021-12-20

Notes for a talk in a Münster seminar on stability theory.

1 Introduction

We aim now for the group configuration theorem. This powerful theorem shows that whenever one has a certain configuration of points in a stable theory satisfying certain independence and algebraicity conditions, it comes from a Λ -definable group (or group action).

Here we prove a version of the "Hrushovski-Weil group chunk theorem", which recognises a Λ -definable group (action) from a generically presented one. This will be the final step in the proof of the group configuration theorem.

2 Preliminaries

Let \mathbb{M} be a monster model of a stable theory $T = T^{eq}$.

- **Notation.** If $p \in S(A)$ is stationary and $B \supseteq A$, $p|_B \in S(B)$ is the unique non-forking extension.
 - If $p, q \in S(A)$ are stationary, their **product type** is $p \otimes q := \operatorname{tp}(b, c/A)$ where $c \models q$ and $b \models p|_{Ac}$, i.e. $(b, c) \models p \times q$ and $b \bigsqcup_A c$.
 - $p^{(2)} := p \otimes p, p^{(3)} := p \otimes p \otimes p$ etc.

For notational convenience, <u>assume</u> (by adding parameters) that $acl(\emptyset) = dcl(\emptyset)$. So types over \emptyset are stationary.

3 Germs

Definition. Let $\mathfrak{p}, \mathfrak{q} \in S(\mathbb{M})$.

Say a definable partial function f is **defined at** \mathfrak{p} if $\mathfrak{p}(x) \vDash x \in \text{dom}(f)$. The **germ of** f **at** \mathfrak{p} is then the equivalence class \tilde{f} under the equivalence relation $\mathfrak{p}(x) \vDash f_1(x) = f_2(x)$.

Write $\tilde{f} : \mathfrak{p} \to \mathfrak{q}$ if $\mathfrak{p}(x) \models \mathfrak{q}(f(x))$ for some (any) representative f (i.e. $f_*(\mathfrak{p}) = \mathfrak{q}$).

If $\tilde{f} : \mathfrak{p} \to \mathfrak{q}$ has a representative f defined over b and $a \models \mathfrak{p}|_b$, let $\tilde{f}(a) := f(a)$. This is well-defined (if g is another representative defined over b then g(a) = f(a) since $a \models \mathfrak{p}|_b(x) \models f(x) = g(x)$), and $\tilde{f}(a) \models \mathfrak{q}|_b$.

3 GERMS

Example. In an o-minimal theory, let $\mathfrak{p}_{+\infty}$ be the global type of a positive infinite element. Then a definable function f which is unbounded on all end-segments $(a, +\infty)$ defines a germ $\tilde{f} : \mathfrak{p}_{+\infty} \to \mathfrak{p}_{+\infty}$, and $\tilde{f} = \tilde{g}$ iff f and g are eventually equal.

Definition. Aut(\mathbb{M}) acts on germs: given $\tilde{f} : \mathfrak{p} \to \mathfrak{q}$ and $\sigma \in Aut(\mathbb{M}), \tilde{f}^{\sigma} := \widetilde{(f^{\sigma})} : \mathfrak{p}^{\sigma} \to \mathfrak{q}^{\sigma}$ does not depend on the choice of f.

A (possibly infinite) tuple \overline{b} is a **code** for \widetilde{f} if $\forall \sigma \in \operatorname{Aut}(\mathbb{M}).(\overline{b} = \overline{b}^{\sigma} \leftrightarrow \widetilde{f} = \widetilde{f}^{\sigma})$; then set $\lceil \widetilde{f} \rceil := \operatorname{dcl}(\overline{b})$. Here, $\widetilde{f} = \widetilde{f}^{\sigma}$ should be understood as implying $\mathfrak{p} = \mathfrak{p}^{\sigma}$.

Remark. Since T is stable, any germ has a code.

Indeed, given a \emptyset -definable family f_z of partial functions, equality of germs at \mathfrak{p} , $\tilde{f}_b = \tilde{f}_c$, is defined by

$$E(b,c) := d_{\mathfrak{p}} x.(f_b(x) = f_c(x)),$$

and then since $\tilde{f}_b^{\sigma} = \tilde{f}_{b^{\sigma}}$, we have

$$\widetilde{f}_b^{\ \ } = \operatorname{dcl}(b/E).$$

Remark. Composition of germs is well-defined.

Say $\widetilde{f} : \mathfrak{p} \to \mathfrak{q}$ is **invertible** if it is invertible in the category of germs, i.e. $\widetilde{g} \circ \widetilde{f} = i\widetilde{d} = \widetilde{f} \circ \widetilde{g}$ for some $\widetilde{g} : \mathfrak{q} \to \mathfrak{p}$. Equivalently, \widetilde{f} is injective on \mathfrak{p} . Note that $\lceil \widetilde{f} \circ \widetilde{g} \rceil \subseteq \operatorname{dcl}(\lceil \widetilde{f} \rceil, \lceil \widetilde{g} \rceil)$, and $\lceil \widetilde{f}^{-1} \rceil = \lceil \widetilde{f} \rceil$.

Definition. If p and q are stationary types and $\mathfrak{p}, \mathfrak{q}$ their global non-forking extensions, a germ at p is a germ at \mathfrak{p} , and $\tilde{f}: p \to q$ means $\tilde{f}: \mathfrak{p} \to \mathfrak{q}$.

Definition. Let $p, q, s \in S(\emptyset)$. A family \tilde{f}_s of germs $p \to q$ is the family $\tilde{f}_s := (\tilde{f}_b)_{b \models s}$ of germs at p of a \emptyset -definable family f_z of partial functions, which is such that $\tilde{f}_b : p \to q$ whenever $b \models s$.

The family is <u>canonical</u> if b is a code for \widetilde{f}_b , for all $b \models s$.

The family is generically transitive if $f_b(x) \perp x$ for $(b, x) \vDash s \otimes p$.

Remark. f_s is generically transitive iff for $(x, y) \models p \otimes q$, there exists $b \models s|_x$ such that $\tilde{f}_b(x) = y$.

Remark. Suppose $p, q, s \in S(\emptyset)$, and \widetilde{f}_s is a family of germs $p \to q$. Let $b \models s$ and $x \models p|_b$, and let $y = \widetilde{f}_b(x)$. Then

$$x \downarrow b; y \downarrow b; y \in \operatorname{dcl}(bx).$$

$$(1)$$

Conversely, if (b, x, y) satisfy (1), let $f_b(x) = y$ be a formula witnessing $y \in dcl(bx)$. Then $\tilde{f}_s := (\tilde{f}_b)_{b \models s}$ is a family of germs $p \to q$, where s = tp(b), p = tp(x), q = tp(y).

Lemma 3.1. In the correspondence of the previous remark,

- (i) \widetilde{f}_b can be chosen to be invertible iff also $x \in dcl(by)$;
- (ii) the family \tilde{f}_s is generically transitive iff $x \bigcup y$;

(iii)
$$\lceil \tilde{f}_b \rceil = \operatorname{Cb}(xy/b)$$
 (so \tilde{f}_s is canonical iff $\operatorname{Cb}(xy/b) = b$).

Proof.

- (i) $x \in dcl(by)$ iff f_b can be taken to be injective at x.
- (ii) Immediate.
- (iii) Let $\sigma \in \operatorname{Aut}(\mathbb{M})$. Let \mathfrak{p} be the global nonforking extension of p, so $\mathfrak{p}^{\sigma} = \mathfrak{p}$. Let \mathfrak{r} be the global nonforking extension of $\operatorname{stp}(xy/b)$. Then \mathfrak{r} is equivalent to $\mathfrak{p}(x) \cup \{y = f_b(x)\}$.

$$\begin{split} \operatorname{Cb}(xy/b)^{\sigma} &= \operatorname{Cb}(xy/b) \Leftrightarrow \operatorname{Cb}(\mathfrak{r})^{\sigma} = \operatorname{Cb}(\mathfrak{r}) \\ &\Leftrightarrow \mathfrak{r}^{\sigma} = \mathfrak{r} \\ &\Leftrightarrow \mathfrak{p}(x) \cup \{y = f_{b^{\sigma}}(x)\} \equiv \mathfrak{p}(x) \cup \{y = f_{b}(x)\} \\ &\Leftrightarrow \mathfrak{p}(x) \vDash f_{b^{\sigma}}(x) = f_{b}(x) \\ &\Leftrightarrow \widetilde{f}_{b}^{\sigma} = \widetilde{f}_{b}. \end{split}$$

4 Homogeneous spaces

Let (G, X) be a \wedge -definable homogeneous space over \emptyset , i.e. G is a \wedge -definable group and X is a \wedge -definable set, and $*: G \times X \to X$ is a relatively definable transitive group action, all over \emptyset .

Say (G, X) is **connected** if G is connected, i.e. G has no relatively definable proper subgroup of finite index.

Say (G, X) is **faithful** if the action is faithful, i.e. only the identity element of G acts trivially on X.

Recall that a complete type extending G is generic if it is generic for the left, equiv right, multiplication action of G on itself.

Fact 4.1. (i) G is connected iff it has for any A a unique generic type over A, iff it has a unique generic type over \emptyset .

- (ii) For $b \in X$, $\operatorname{tp}(b/A)$ is generic iff $\forall g \in G.(b \bigcup_A g \Rightarrow g * b \bigcup_A g)$.
- (iii) G acts transitively on the set of global generic types of X.

Lemma 4.2. Suppose $p \in S(\emptyset)$ extends X and $\forall g \in G.(b \vDash p|_g \Rightarrow g \ast b \vDash p|_g)$. Then p is the unique generic of X over \emptyset .

In particular, if this holds for the left/right multiplication action of G on itself, then G is connected.

Proof. p is generic by Fact 4.1(ii).

If $p' \in S(\emptyset)$ is generic, by Fact 4.1(iii) there is g such that $g * \mathfrak{p} = \mathfrak{p}'$, where \mathfrak{p} and \mathfrak{p}' are the global non-forking extensions. So if $b \models p|_g$ then $g * b \models p'$, but also $g * b \models p$, so p' = p.

5 Hrushovski-Weil

Definition. Let $p, s \in S(\emptyset)$. A family \widetilde{f}_s of germs $p \to p$ is

- closed under inverse if for $b \vDash s$ there exists $b' \vDash s$ such that $\widetilde{f}_b^{-1} = \widetilde{f}_{b'}$;
- closed under generic composition if for $b_1b_2 \vDash s^{(2)}$, there exists b_3 such that

$$f_{b_1} \circ f_{b_2} = f_{b_3}$$

and $b_i b_3 \models s^{(2)}$ for i = 1, 2.

Theorem 5.1 (Hrushovski-Weil for actions). Let $p, s \in S(\emptyset)$, and suppose \tilde{f}_s is a generically transitive canonical family of invertible germs $p \to p$ which is closed under inverse and generic composition.

Then there exists a connected faithful \wedge -definable/ \emptyset homogeneous space (G, X), a definable embedding (i.e. relatively definable injection) of s into G as its unique generic type, and a definable embedding of p into X as its unique generic type, such that the generic action of s on p agrees with that of G on X, i.e. $\tilde{f}_b(a) = b*a$ for $(a,b) \models p \otimes s$.

This is related to the following more intuitive result:

Theorem (Hrushovski-Weil group chunk theorem). Let $p \in S(\emptyset)$, and suppose * is a definable partial binary function such that:

- If $(a, b) \models p^{(2)}$ then $a \ast b$ is defined, and $(a, a \ast b) \models p^{(2)}$ and $(b, a \ast b) \models p^{(2)}$;
- If $(a, b, c) \models p^{(3)}$ then (a * b) * c = a * (b * c).

Then one obtains a \bigwedge -definable connected group G and a definable embedding of p into G such that if $(a,b) \models p^{(2)}$ then $a \ast b$ agrees with the product in G.

(In the case T = ACF (where \wedge -definable groups are actually algebraic groups (up to definable isomorphism)), this is essentially a theorem of Weil.)

Note that this is not quite just a matter of applying Theorem 5.1 with $f_b(a) := b * a - we$ didn't assume closedness under inverse nor canonicity, so some extra argument is involved.

Proof of Theorem 5.1. Let G be the group of germs generated by \widetilde{f}_s .

Claim 5.2. Any element of G is a composition of two generators.

Proof. Since the family is closed under inverses, the identity is the composition of two generators.

By generic composability and completeness of s, any generator f_b is the composition of two generators.

So it suffices to see that any composition of three generators

$$f_{b_1} \circ f_{b_2} \circ f_{b_3}$$

is the composition of two.

Let $b' \models s|_{b_1b_2b_3}$. Then

$$\widetilde{f}_{b_1} \circ \widetilde{f}_{b_2} \circ \widetilde{f}_{b_3} = \widetilde{f}_{b_1} \circ \widetilde{f}_{b'} \circ \widetilde{f}_{b'}^{-1} \circ \widetilde{f}_{b_2} \circ \widetilde{f}_{b_3}$$

Now $b' \perp b_2$, so say $\tilde{f}_{b'}^{-1} \circ \tilde{f}_{b_2} = \tilde{f}_{b''}$ with $b'' \vDash s$ independent from b' and from b_2 .

Now $b' extstyle _{b_2} b_3$, so $b'' extstyle _{b_2} b_3$, since $b'' \in \operatorname{dcl}(b'b_2)$, so since $b'' extstyle b_2$, we have $b'' extstyle b_3$.

Also $b' \perp b_1$.

So the germs $\tilde{f}_{b_1} \circ \tilde{f}_{b'}$ and $\tilde{f}_{b'}^{-1} \circ \tilde{f}_{b_2} \circ \tilde{f}_{b_3}$ appear in the family \tilde{f}_s .

So G is Λ -definable as pairs of realisations of s modulo equality of the corresponding composition of germs, and the group operation is relatively definable as composition of germs. We identify s with its image in G under the definable embedding $b \mapsto \tilde{f}_b$.

We show that G is connected with generic type s via Lemma 4.2. We show that if $g \in G$ and $b \models s|_g$, then $g \cdot b \models s|_g$. This holds for $g \models s$, by closedness under generic composition. Let $g \in G$, say $g = g_1 \cdot g_2$ with $g_1, g_2 \models s$. Let $b \models s|_{g_1,g_2}$. Then $g_2 \cdot b \models s|_{g_1,g_2}$, and so $g_1 \cdot g_2 \cdot b \models s|_{g_1,g_2}$. Now $g = g_1 \cdot g_2 \in \operatorname{dcl}(g_1, g_2)$, so $b \models s|_g$ and $g \cdot b \models s|_g$, as required.

G acts generically on *p* by application of germs; set g * a := g(a) if $a \models p|_g$. Now define $X := (G \times p)/E$ where (g, a)E(g', a') iff $(h \cdot g) * a = (h \cdot g') * a'$ for $h \models s|_{aa'gg'}$, which is definable by definability of *s*.

Define the action of G on X by $h * ((g, a)/E) := (h \cdot g, a)/E$. This is welldefined, since if (g, a)E(g', a') and $h \in G$, then if $h' \models s|_{g,g',a,a',h}$, then also $h' \cdot h \models s|_{g,g',a,a',h}$ by genericity, and we have $(h' \cdot h \cdot g) * a = (h' \cdot h \cdot g') * a'$, so $(h \cdot g, a)E(h \cdot g', a')$. p definably embeds into X via $a \mapsto (1, a)/E$.

We show transitivity. Let $a, a' \models p$, and we show $(1, a')/E \in G*(1, a)/E$; this suffices for transitivity, since clearly $(G, a')/E \subseteq G*(1, a')/E$. Let $c \models p|_{aa'}$. Then by generic transitivity of \tilde{f}_s , there exist $g \models s|_a$ and $g' \models s|_c$ such that g * a = c and g' * c = a'. Then $(h \cdot g) * a = h * c$ for $h \models s|_{acg}$, so (g, a)E(1, c). Similarly (g', c)E(1, a'). So $(g' \cdot g) * (1, a)/E = g' * (g, a)/E = g' * (1, c)/E = (g', c)/E = (1, a')/E$.

For faithfulness of the action: suppose g acts trivially, and let $a \models p|_g$. Then (g, a)E(1, a), so let $h \models s|_{ag}$; then $(h \cdot g) * a = h * a$. But $h \bigsqcup_g a$, hence also $h \cdot g \bigsqcup_a a$, so $h, h \cdot g \bigsqcup_a a$ since $g \bigsqcup_a a$. So $h \cdot g = h$ as germs, so g = 1.

Finally, we conclude from Lemma 4.2 that p is the unique generic type, since if $g \in G$ and $a \models p|_g$, then $g * a \models p|_g$ as this is the action of a germ.