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An exposition of the group configuration theorem for stable theories,
following Chapter 5 of [Pillay-GST].

Introduction and Preliminaries

Work in monster model M of a stable theory T .

Notation:
a, b, c, d, e, w, x, y, z, α, β, γ etc will take values in Meq,
and A,B,C etc in P(Meq).

AB means A ∪B;
ab means (a, b) ∈Meq;
when appropriate, a means {a}; e.g. Ab is short for A ∪ {b}.

Group configuration, first statement:
Let G be a connected

∧
-definable group /∅.

Let a, b, x ∈ G be an independent triple of generics.
Let b′ := c′ ∗ a′, x′ := a′ ∗ y′, and z′ := b′ ∗ y′ (so z′ = c′ ∗ a′ ∗ y′ = c′ ∗ x′).
Then we have

a

/ \

b x

/ ‘z’ \

/ .’ ‘. \

/.’ ‘.\

c’ ‘y

satisfying:

(*)
• any non-collinear triple is independent

(i.e. each element is independent from the other two);
• if (d, e, f) is collinear then acleq(de) = acleq(ef) = acleq(df).

The group configuration theorem provides a converse statement:
if a tuple (a, b, c, x, y, z) satisfies (*),
then possibly after base change
(i.e. adding parameters independent from abcxyz to the language),
there is a connected

∧
-definable group G/∅,

and there are (a′, b′, c′, x′, y′, z′) defined as above from G,
such that each unprimed element is interalgebraic with the corresponding primed
element.

Remark:
e.g. if each element realises a strongly minimal type,
(*) says that the Morley rank of a non-collinear triple is 3, and that of a collinear
triple is 2.
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Stability theory preliminaries:
We have an independence notion, non-forking,
satisfying (even after adding parameters) for all A,B,C:

• Transitivity and Monotonicity:

A |̂ BC ⇔ (A |̂ B and A |̂
B

C)

• Symmetry:

A |̂ C ⇔ C |̂ A

• Reflexivity:

A |̂ A⇔ A ⊆ acleq(∅)

• ”algebraic ⇒ nonforking”:

A |̂ C ⇔ A |̂ acleq(C)

p ∈ S(A) is stationary iff for any B,

x |= p and x |̂
A

B

defines a well-defined type p|B ∈ S(AB),
the non-forking extension of p to AB.

p ∈ S(A) is stationary iff it has a unique extension to acleq(A).

So stp(a/B) := tp(a/ acleq(B)) is stationary.

Stationary types p ∈ S(A) are definable,
i.e. T eliminates Hrushovski quantifiers:
for any formula/∅ φ(x, y), there is a formula/A

ψ(y) ≡: dpx.φ(x, y)

(read ”dpx.” as ”for generic x,”),
such that |= ψ(b) iff for a |= p with a |̂

A
b,

|= φ(a, b),

i.e. iff φ(x, b) ∈ p|b.

Note that for A ⊆ B,

dp|Bx.φ(x, y) ≡ dpx.φ(x, y).

The canonical base of a stationary type p ∈ S(A), A = dcleq(A), is the least dcleq

closed set Cb(p) ⊆ A such that the restriction of p to Cb(p) is stationary and p is its
non-forking extension,
i.e. such that all dpx. φ(x, y) are defined over Cb(p).

Let aCb(a/B) := acleq(Cb(stp(a/B))).
Then a |̂

C
B ⇔ aCb(a/B) ⊆ acleq(C).

Example - ACF:
If K is a perfect subfield and p ∈ S(K),
p is the generic type of an irreducible variety V over K;
p stationary ⇔ V absolutely irreducible;
Cb(p) = (perfect closure of) field of definition of V .

A
∧

-definable group is a
∧

-definable set G together with a relatively definable group
operation
(meaning that its graph is the restriction to G3 of a definable set).

If G acts transitively on a
∧

-definable set S, with the action relatively definable, we
call (G,S) a

∧
-definable homogeneous space.
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S is connected iff there is a stationary type s extending S such that if g ∈ G and
b |= s|g, then g ∗ b |= s|g
(i.e. Stab(s) = G).
s is then called the generic type of G.

If (G,S) is definable of finite Morley rank, S is connected iff MD(S) = 1,
and a ∈ S is generic iff RM(a) = RM(S).

Generics and connectedness are defined for G by considering the left (equivalently:
right) action of G on itself.

Germs and Hrushovski-Weil

Definition:
Let p and q be stationary types /∅.

A generic map p→ q is the germ f̃b of a definable partial function fb
(i.e. fb(x) = y is given by a formula/∅ φf (x, y, b)),
such that if a |= p|b then fb(a) |= q|b,
where equality of germs is defined by f̃b = g̃c iff for a |= p|bc, fb(a) = gc(a);
i.e. |= dpx.fb(x) = gc(x) .

Example:
In ACF, the generic maps p→ q are precisely the dominant rational maps locus(p)→
locus(q).

Lemma:

(i) ”Equality of germs” is indeed an equivalence relation.

(ii) For any B, if a |= p|Bb then fb(a) |= q|Bb.

(iii) Composition of germs is well-defined,
yielding a category structure with objects the stationary types.

(iv) A germ f̃b is invertible (i.e. an isomorphism) iff fb is injective on p|b.

Proof:

(i) Symmetry and reflexivity are clear.
Suppose fb = gc on p|bc and gc = hd on p|cd.
Then clearly fb = hd on p|bcd.
But φ(x) :≡ fb(x) = hd(x) is defined over bd,
so already φ(x) ∈ p|bd(x).
So fb = hd on p|bd.

(ii) WLOG, p, q ∈ S(∅).
a |̂ Bb⇒ a |̂

b
B ⇒ fb(a) |̂

b
B;

but fb(a) |̂ b,
so fb(a) |̂ Bb.

(iii) Suppose f̃b : p→ q and g̃c : q → r.
By (ii), if a |= p|bc then gc(fb(a)) |= r|bc,
so ˜(gc ◦ fb) is a germ : p→ r.

(iv) Clear.

�

Notation:

• Hom(p, q) := set of germs p→ q;

• Iso(p, q) := set of invertible germs p→ q;

• Aut(p) := group of invertible germs p→ p.
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Definition:
A family of generic maps p→ q based on s is a family of germs {f̃b | b |= s} of a
definable family of partial functions fz.
The family is canonical if for b,b′ |= s,

f̃b = f̃b′ ⇔ b = b′.

Note that by definability of types, any family can be made canonical by quotienting
s by the definable equivalence relation of equality of germs.

Remark:
In ACF, algebraic families of dominant rational maps V →W can be made canonical
by parametrising them using the Hilbert scheme of V ×W .

Remark:
If f̃z is a family of generic maps p→ q based on s,
let b |= s and x |= p|b, and let y = f̃b(x);
then

x |̂ b; y |̂ b; y ∈ dcleq(bx). (+)

Conversely, if (b, x, y) satisfy (+),
let fb(x) = y be a formula witnessing y ∈ dcleq(bx);

then f̃z is a canonical family of generic maps stp(x)→ stp(y) based on stp(b).

Lemma:
In the correspondence of the previous remark,

(i) f̃z is invertible iff x ∈ dcleq(by) i.e. iff x and y are interdefinable over b;

(ii) f̃z is canonical iff Cb(stp(xy/b)) = dcleq(b)

Proof:

(i) Clear

(ii) Suppose that f̃z is canonical, and obtain (b, x, y) as above.
tp(xy/b) is stationary since tp(x/b) is,
so C := Cb(stp(xy/b)) ⊆ dcleq(b).

If C 6= dcleq(b),
say b′ 6= b with b′ ≡C b and b′ |̂

C
bx;

then xy |̂
C
b′, so xyb ≡ xyb′,

so since fb(x) = y, also fb′(x) = y,

but x |= p|bb′ so this contradicts canonicity of the family f̃z.

For the converse, let fb(x) = y be a formula witnessing y ∈ dcleq(bx).

Suppose f̃b is not canonical. By definability of types,
some g̃c is canonical with c ∈ dcleq(b) but b /∈ dcleq(c).
Then Cb(stp(xy/b) ⊆ dcleq(c) since

x |̂ b⇒ x |̂
c

b⇒ xy |̂
c

b,

and tp(xy/c) is stationary since tp(x/c) is and y ∈ dcleq(xc).
This contradicts dcleq(b) = Cb(stp(xy/b)).

�

Remark:
Suppose (b, x, y) ”lie on a line” in the sense of the group configuation statement above,
i.e. acleq(bx) = acleq(xy) = acleq(yb).
So x is interalgebraic with y over b.
Since b ∈ acleq(ac), b is interalgebraic with Cb(stp(ac/b)); indeed:
let D = aCb(ac/b); then ac |̂

D
acleq(b),
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so acleq(b) |̂
D

acleq(b),
so acleq(b) = D.

So (b, x, y) is ”nearly” a triple corresponding to a canonical family of invertible germs.

Lemma HW:
Suppose f̃z is a canonical family of generic bijections p→ p based on s.
Let G0 := {f̃b | b |= s} ⊆ Aut(p).
Suppose that G0 is closed under inverse,
and suppose that for b1 and b2 independent realisations of s,

f̃b1 ◦ f̃b2 = f̃b3

with b3 |= s|bi for i = 1, 2.

Then, identifying f̃b with b,
the group G ≤ Aut(p) generated by G0 is connected

∧
-definable, with s its generic

type.

Remark:
This is essentially the Hrushovski-Weil ”group chunk” theorem.
There, one starts with a generically associative binary operation ∗, and then applies
the above statement to the germs of x 7→ a ∗ x to obtain a group structure extending
∗.

Proof:
First, we show that any element of G is a composition of two generators.

It suffices to see that any composition of three generators

f̃b1 ◦ f̃b2 ◦ f̃b3

is the composition of two. But indeed, let b′ |= s|b1,b2,b3 .
Then

f̃b1 ◦ f̃b2 ◦ f̃b3 = f̃b1 ◦ f̃b′ ◦ f̃−1b′ ◦ f̃b2 ◦ f̃b3
Now b′ |̂ b2, so say f̃−1b′ ◦ f̃b2 = f̃b′′ with b′′ |= s independent from b′ and from b2;
then b′′ |̂ b3 since:
b′ |̂

b2
b3,

so b′′ |̂
b2
b3 (since b′′ ∈ dcleq(b′′, b2)),

so since b′′ |̂ b2,
b′′ |̂ b2b3, and in particular b′′ |̂ b3.
Also b′ |̂ b1.

So f̃b1 ◦ f̃b′ and f̃−1b′ ◦ f̃b2 ◦ f̃b3 each ”realise s”.

Now G is defined as pairs of realisations of s, modulo generic equality of their com-
positions, and the group operation is defined by composition.

Finally, to see that G is connected with generic type s:
if g |= s and b |= s|g, then g ∗ b |= s|g,
and then by induction the same holds for any g ∈ G. �

In the context of the group configuration, we work with definable families of bijections
between two types, rather than from a type to itself. The following key lemma gives
conditions for this to give rise to a group.

Lemma A:
Suppose f̃z is a canonical family of generic bijections p→ q based on r.
Let b1 and b2 be independent realisations of r and say

f̃−1b1
◦ f̃b2 = g̃c

with g̃w a canonical family of generic bijections p→ p based on s = stp(c),
and suppose

c |̂ bi for i = 1, 2. (+)

Then g̃w satisfies the assumptions of Lemma HW.
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Remark:
In the finite Morley rank setting (e.g. ACF),

⊕ ⇔ RM(c) = RM(s).

Proof:
Let c′ |= s|c.
Let b |= r|c,c′ .
Then by (+), bc ≡ b2c, so say b′1bc ≡ b1b2c;
similarly, bc′ ≡ b1c, so say bb′2c

′ ≡ b1b2c.
Then

g̃c ◦ g̃c′ = f̃−1b′1
◦ f̃b ◦ f̃−1b ◦ f̃b′2 = f̃−1b′1

◦ f̃b′2 .

* * * q

/ \ .’|‘. / \

/ c’\.’ | ‘./ c \

/ .’\ |b /‘. \

/ .’ \ | / ‘. \

/ .’ \ | / ‘. \

/.’ b_2’ \|/ b_1’ ‘.\

*’ * ‘* p

Now (b, b′1, b
′
2) is an independent triple,

since b′i |̂ b by choice of b′i, since b1 |̂ b2,
and b′1 |̂ b

b′2, since c |̂
b
c′, since c |̂ c′ and b |̂ cc′.

So b′1 and b′2 are independent realisations of r,

so say f̃−1b′1
◦ f̃b′2 = g̃c′′ .

Then by (+), c′′ |̂ b′1, and hence c′′ |̂ b′1b
(since b |̂ b′1b′2, so b |̂ c′′b′1),
so c′′ |̂ c.
Similarly c′′ |̂ c′.
�

The Group Configuration Theorem

Now we turn to applying this lemma to prove the group configuration theorem.
In fact, the proof we will give naturally proves a more general, less symmetric, state-
ment than that above.

Group Configuration Theorem:

a

/ \ x

b x / \

/ ‘z’ \ a / \ c

/ .’ ‘. \ / \

/.’ ‘.\ y-------z

c’ ‘y b

Suppose (a, b, c, x, y, z) satisfy:

(*)

• any non-collinear triple is independent,
• acleq(ab) = acleq(bc) = acleq(ac),
• x is interalgebraic with y over a, and a is interalgebraic with

Cb(stp(xy/a)); similarly for bzy and czx.

Then, possibly after base change,
there is a

∧
-definable homogeneous space (G,S),

and an independent triple (a′, b′, x′) with a′, b′ generics of G and x′ generic in S,
such that with b′ := c′ ∗ a′, x′ := a′ ∗ y′, z′ := b′ ∗ y′ (so z′ = c′ ∗ a′ ∗ y′ = c′ ∗ x′),
each unprimed element is interalgebraic with the corresponding primed element.



7

Example:
In ACF, we can restate as follows:
(b, z, y) fits into a group configuration (i.e. extends to (a, b, c, x, y, z) satisfying (*))
iff it is a generic point of a ”pseudo-action”,
i.e. iff there is an algebraic group G acting birationally on a variety S,
and there are generically finite-to-finite algebraic correspondences f : G′ ↔ G, g1 :
S′1 ↔ S and g2 : S′2 ↔ S,
such that (b, z, y) is a generic point of the image under (f, g1, g2) of the graph Γ∗ ⊆
G× S × S of the action.
(c.f. 6.2 in [HrushovskiZilber-ZariskiGeometries].)

Example:
if RM(a) = RM(b) = RM(c) = 2, and RM(x) = RM(y) = RM(z) = 1,
and RM(abc) = RM(ab) = RM(bc) = RM(ac) = 4, RM(axy) = RM(bzy) = RM(czx) =
3,
and there are no further dependencies,
then the conditions of the group configuration theorem are satisfied,
and we obtain a rank two group acting on a rank one set,
and with some further work one obtains a definable field,
such that the action is essentially (a, b)x 7→ ax+ b.

This is sometimes called the ”field configuration”, and appears in many proofs,
e.g. Hrushovski’s proof that unimodularity implies local modularity,
and hence that ω-categorical stable theories are 1-based;
the proof of the Zilber dichotomy for Zariski structures;
and also e.g. Hasson-Kowalski’s work on trichotomy for strongly minimal reducts of
RCF.

Very rough sketch of proof:

(I) ”reduce acleq to dcleq” to show we may assume (b, z, y) to define a canonical
family of germs of canonical bijections as in Lemma A;

(II) prove the independence assumption of Lemma A;

(III) connect resulting group action to original group configuration.

Proof of Group Configuration Theorem:
In the proof, we may at any time

• add independent parameters to the language, or

• replace any point of the configuration with an interalgebraic point of Meq.

Performing these operations preserves (*), and the conclusion allows them.

By adding further algebraic parameters whenever necessary, we will assume through-
out that acleq(∅) = dcleq(∅), so types over ∅ are stationary.

(I) First, we see that it follows from (*) that if we let z̃ ∈ Meq be the set z̃ =
{z1, ..., zd} of conjugates zi of z over ybxc, then z̃ is interalgebraic with z.
(Here, {z1, ..., zd} is the image of (z1, ..., zd) under quotienting by the action by
permutations of the symmetric group Sd.)

For this, we require that the conjugates are interalgebraic, acleq(zi) = acleq(zj).
Indeed, then acleq(z̃) ⊆ acleq(z1, ..., zn) = acleq(z);
and z ∈ acleq(z̃), since it satisfies the algebraic formula z ∈ z̃.

But indeed:
z ∈ acleq(xc) ∩ acleq(yb) =: B by (*), but meanwhile xc |̂

z
yb so B |̂

z
B so

B ⊆ acleq(z).
So acleq(z) = B,
and by the same argument acleq(zi) = B for each zi.

Now let a′ |= tp(a)|abcxyz.
Say a′x′c′ ≡ybz axc. So a′bc′x′yz is also a group configuration.
So as above, the set z̃ of conjugates of z over ybx′c′ is interalgebraic with z.
Note that z̃ ∈ dcleq(ybx′c′).
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So add a′ as a parameter,
and replace y with yx′, b with bc′, and z with z̃.
Then since x′ ∈ acleq(ya′) and c′ ∈ acleq(ba′),
the resulting group configuration is interalgebraic with the original,
and now satisfies

z ∈ dcleq(by).

Repeating this procedure by adding an independent copy of b and enlarging a
and y and replacing x with an x̃,
we can also ensure that

x ∈ dcleq(ay).

Finally, we repeat once more: add an independent copy c′ of c,
let a′x′c′ ≡ybz axc,
let ỹ be the set of conjugates of y over ba′zx′.

Now since x′ ∈ dcleq(a′y) and z ∈ dcleq(by),
we have zx′ ∈ dcleq(ba′y) and so zx′ ∈ dcleq(ba′ỹ).
So after replacing b with ba′, z with zx′, and y with ỹ,
so in the previous two cases y ∈ dcleq(bz),
and now also z ∈ dcleq(by).

Finally, replace b with Cb(yz/b), with which it is interalgebraic by (*).

(II) (b, y, z) now corresponds to a canonical family f̃w of germs of bijections tp(y)→
tp(z) over r := tp(b).

To apply lemma A to obtain a group,
we must show that if b′ |= r|b and

f̃−1b′ ◦ f̃b = g̃d

with g̃u canonical,
then d |̂ b and d |̂ b′.

We may assume b′ |̂ abcxyz.
Say b′y′a′ ≡xcz bya.

So by canonicity, dcleq(d) = Cb(stp(yy′/bb′)).

Now y |̂ abc, and b′ |̂ yabc, so y |̂ abcb′, and since a′ ∈ acleq(cb′), we have
y |̂ aa′bb′.
Since also y′ ∈ acleq(yaa′), we have

yy′ |̂
aa′

bb′.

Similarly,
yy′ |̂

bb′
aa′.

So aCb(yy′/bb′) = aCb(yy′/aa′bb′) = aCb(yy′/aa′),
so d ∈ acleq(aa′).

Claim: b |̂ aa′.
Proof: abc |̂ b′, so ab |̂

c
b′, so ab |̂

c
a′ since a′ ∈ acleq(cb′).

But a′ |̂ c, so ab |̂ a′, so b |̂
a
a′.

Now a |̂ b, so b |̂ aa′.

So b |̂ d, and similarly b′ |̂ d, as required.

(III) By (II) and Lemma A,
we obtain a connected

∧
-definable group G, with a generic action of its generic

type s on p := tp(y),
i.e. g ∗ a is defined for g |= s and a |= p with g |̂ s.
To get a

∧
-definable homogeneous space,

define S to be (G× p)/E where (g, a)E(g′, a′) iff dsh.(h ∗ g) ∗ a = (h ∗ g′) ∗ a′,
with the action of G:
h ∗ (g, a)/E := (h ∗ g, a)/E.

Finally, we must show that the original group configuration is interalgebraic
with that of (G,S). This will involve adding further parameters.
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First, let b′ |= tp(b)|abcxyz.
Say y′b′ ≡xzac yb.
Say g |= s codes f̃−1b′ ◦ f̃b, so y′ = g ∗ y.
Then g is interdefinable with b over b′.
So add b′ to the language,
and replace b with g |= s and z with g ∗ y |= p.

Now let c′ |= tp(c)|abcxyz,
and say b′z′c′ ≡axy bzc.
Add c′ to the language,
and replace a by b′ |= s and x by z′ = b′ ∗ y |= p.

Let h := b ∗ a−1.
x = a ∗ y and z = b ∗ y, so z = h ∗ x.
So aCb(xz/ab) = acleq(h); but also x and z are interalgebraic over c,
so aCb(xz/ab) = aCb(xz/c) = acleq(c).
So replace c with h, and we are done.

�


