The Group Configuration Theorem

Martin Bays

October 26, 2015

An exposition of the group configuration theorem for stable theories, following Chapter 5 of [Pillay-GST].

Introduction and Preliminaries

Work in monster model \mathbb{M} of a stable theory T.

Notation:

$a, b, c, d, e, w, x, y, z, \alpha, \beta, \gamma$ etc will take values in $\mathbb{M}^{e q}$, and A, B, C etc in $\mathbb{P}\left(\mathbb{M}^{\mathrm{eq}}\right)$.
$A B$ means $A \cup B$
$a b$ means $(a, b) \in \mathbb{M}^{\text {eq }}$;
when appropriate, a means $\{a\}$; e.g. $A b$ is short for $A \cup\{b\}$.

Group configuration, first statement:

Let G be a connected \bigwedge-definable group $/ \emptyset$.
Let $a, b, x \in G$ be an independent triple of generics.
Let $b^{\prime}:=c^{\prime} * a^{\prime}, x^{\prime}:=a^{\prime} * y^{\prime}$, and $z^{\prime}:=b^{\prime} * y^{\prime}\left(\right.$ so $\left.z^{\prime}=c^{\prime} * a^{\prime} * y^{\prime}=c^{\prime} * x^{\prime}\right)$.
Then we have

satisfying: - any non-collinear triple is independent (i.e. each element is independent from the other two);

- if (d, e, f) is collinear then $\operatorname{acl}^{\mathrm{eq}}(d e)=\operatorname{acl}^{\mathrm{eq}}(e f)=\operatorname{acl}^{\mathrm{eq}}(d f)$.

The group configuration theorem provides a converse statement:
if a tuple (a, b, c, x, y, z) satisfies $\left(^{*}\right)$,
then possibly after base change
(i.e. adding parameters independent from abcxyz to the language),
there is a connected \bigwedge-definable group G / \emptyset,
and there are $\left(a^{\prime}, b^{\prime}, c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$ defined as above from G,
such that each unprimed element is interalgebraic with the corresponding primed element.

Remark:

e.g. if each element realises a strongly minimal type,
(*) says that the Morley rank of a non-collinear triple is 3, and that of a collinear triple is 2 .

Stability theory preliminaries:

We have an independence notion, non-forking,
satisfying (even after adding parameters) for all A, B, C :

- Transitivity and Monotonicity:

$$
A \downarrow B C \Leftrightarrow(A \downarrow B \text { and } A \underset{B}{\downarrow} C)
$$

- Symmetry:

$$
A \downarrow C \Leftrightarrow C \downarrow A
$$

- Reflexivity:

$$
A \downarrow A \Leftrightarrow A \subseteq \operatorname{acl}^{\mathrm{eq}}(\emptyset)
$$

- "algebraic \Rightarrow nonforking":

$$
A \downarrow C \Leftrightarrow A \downarrow \operatorname{acl}^{\mathrm{eq}}(C)
$$

$p \in S(A)$ is stationary iff for any B,

$$
x \models p \text { and } x \underset{A}{\downarrow} B
$$

defines a well-defined type $\left.p\right|_{B} \in S(A B)$,
the non-forking extension of p to $A B$.
$p \in S(A)$ is stationary iff it has a unique extension to $\operatorname{acl}^{\mathrm{eq}}(A)$.
So $\operatorname{stp}(a / B):=\operatorname{tp}\left(a / \operatorname{acl}^{\mathrm{eq}}(B)\right)$ is stationary.
Stationary types $p \in S(A)$ are definable,
i.e. T eliminates Hrushovski quantifiers:
for any formula $/ \emptyset \phi(x, y)$, there is a formula $/ A$

$$
\psi(y) \equiv: d_{p} x \cdot \phi(x, y)
$$

(read " $d_{p} x$." as "for generic x, "),
such that $\models \psi(b)$ iff for a $\models p$ with $a \downarrow_{A} b$,

$$
\vDash \phi(a, b)
$$

i.e. iff $\left.\phi(x, b) \in p\right|_{b}$.

Note that for $A \subseteq B$,

$$
d_{\left.p\right|_{B}} x \cdot \phi(x, y) \equiv d_{p} x \cdot \phi(x, y)
$$

The canonical base of a stationary type $p \in S(A), A=\operatorname{dcl}^{\mathrm{eq}}(A)$, is the least $\mathrm{dcl}^{\mathrm{eq}}$ closed set $\mathrm{Cb}(p) \subseteq A$ such that the restriction of p to $\mathrm{Cb}(p)$ is stationary and p is its non-forking extension,
i.e. such that all $d_{p} x . \phi(x, y)$ are defined over $\mathrm{Cb}(p)$.

Let $\operatorname{aCb}(a / B):=\operatorname{acl}^{\mathrm{eq}}(\operatorname{Cb}(\operatorname{stp}(a / B)))$.
Then $a \downarrow_{C} B \Leftrightarrow \operatorname{aCb}(a / B) \subseteq \operatorname{acl}^{\mathrm{eq}}(C)$.
Example - ACF:
If K is a perfect subfield and $p \in S(K)$,
p is the generic type of an irreducible variety V over K;
p stationary $\Leftrightarrow V$ absolutely irreducible;
$\mathrm{Cb}(p)=$ (perfect closure of) field of definition of V.
$A \bigwedge$-definable group is a Λ-definable set G together with a relatively definable group operation
(meaning that its graph is the restriction to G^{3} of a definable set).
If G acts transitively on a Λ-definable set S, with the action relatively definable, we call (G, S) a Λ-definable homogeneous space.
S is connected iff there is a stationary type s extending S such that if $g \in G$ and $\left.b \models s\right|_{g}$, then $\left.g * b \models s\right|_{g}$
(i.e. $\operatorname{Stab}(s)=G$).
s is then called the generic type of G.
If (G, S) is definable of finite Morley rank, S is connected iff $\operatorname{MD}(S)=1$,
and $a \in S$ is generic iff $\operatorname{RM}(a)=\operatorname{RM}(S)$.
Generics and connectedness are defined for G by considering the left (equivalently: right) action of G on itself.

Germs and Hrushovski-Weil

Definition:

Let p and q be stationary types $/ \emptyset$.
A generic map $p \rightarrow q$ is the germ \widetilde{f}_{b} of a definable partial function f_{b}
(i.e. $f_{b}(x)=y$ is given by a formula/ $\emptyset \phi_{f}(x, y, b)$),
such that if $\left.a \models p\right|_{b}$ then $\left.f_{b}(a) \models q\right|_{b}$,
where equality of germs is defined by $\widetilde{f}_{b}=\widetilde{g}_{c}$ iff for $\left.a \models p\right|_{b c}, f_{b}(a)=g_{c}(a)$;
i.e. $=d_{p} x . f_{b}(x)=g_{c}(x)$.

Example:

In ACF, the generic maps $p \rightarrow q$ are precisely the dominant rational maps $\operatorname{locus}(p) \rightarrow$ locus (q).

Lemma:

(i) "Equality of germs" is indeed an equivalence relation.
(ii) For any B, if $\left.a \models p\right|_{B b}$ then $\left.f_{b}(a) \models q\right|_{B b}$.
(iii) Composition of germs is well-defined, yielding a category structure with objects the stationary types.
(iv) A germ \widetilde{f}_{b} is invertible (i.e. an isomorphism) iff f_{b} is injective on $\left.p\right|_{b}$.

Proof:

(i) Symmetry and reflexivity are clear.

Suppose $f_{b}=g_{c}$ on $\left.p\right|_{b c}$ and $g_{c}=h_{d}$ on $\left.p\right|_{c d}$.
Then clearly $f_{b}=h_{d}$ on $\left.p\right|_{b c d}$.
But $\phi(x): \equiv f_{b}(x)=h_{d}(x)$ is defined over $b d$, so already $\left.\phi(x) \in p\right|_{b d}(x)$.
So $f_{b}=h_{d}$ on $\left.p\right|_{b d}$.
(ii) WLOG, $p, q \in S(\emptyset)$.
$a \downarrow B b \Rightarrow a \downarrow_{b} B \Rightarrow f_{b}(a) \downarrow_{b} B ;$
but $f_{b}(a) \downarrow b$,
so $f_{b}(a) \downarrow B b$.
(iii) Suppose $\widetilde{f}_{b}: p \rightarrow q$ and $\widetilde{g}_{c}: q \rightarrow r$.

By (ii), if $\left.a \models p\right|_{b c}$ then $\left.g_{c}\left(f_{b}(a)\right) \models r\right|_{b c}$, so $\left(\widetilde{g_{c} \circ f_{b}}\right)$ is a germ : $p \rightarrow r$.
(iv) Clear.

Notation:

- $\operatorname{Hom}(p, q):=$ set of germs $p \rightarrow q$;
- Iso $(p, q):=$ set of invertible germs $p \rightarrow q$;
- $\operatorname{Aut}(p):=$ group of invertible germs $p \rightarrow p$.

Definition:

A family of generic maps $p \rightarrow q$ based on s is a family of germs $\left\{\widetilde{f}_{b} \mid b \models s\right\}$ of a definable family of partial functions f_{z}.
The family is canonical if for $b, b^{\prime} \models s$,

$$
\widetilde{f}_{b}=\widetilde{f}_{b^{\prime}} \Leftrightarrow b=b^{\prime}
$$

Note that by definability of types, any family can be made canonical by quotienting s by the definable equivalence relation of equality of germs.

Remark:

In ACF, algebraic families of dominant rational maps $V \rightarrow W$ can be made canonical by parametrising them using the Hilbert scheme of $V \times W$.

Remark:

If \widetilde{f}_{z} is a family of generic maps $p \rightarrow q$ based on s, let $b \models s$ and $\left.x \models p\right|_{b}$, and let $y=\widetilde{f}_{b}(x)$;
then

$$
\begin{equation*}
x \downarrow b ; y \downarrow b ; y \in \operatorname{dcl}^{\mathrm{eq}}(b x) \tag{+}
\end{equation*}
$$

Conversely, if (b, x, y) satisfy $(+)$,
let $f_{b}(x)=y$ be a formula witnessing $y \in \operatorname{dcl}^{\mathrm{eq}}(b x)$;
then \widetilde{f}_{z} is a canonical family of generic maps $\operatorname{stp}(x) \rightarrow \operatorname{stp}(y)$ based on $\operatorname{stp}(b)$.

Lemma:

In the correspondence of the previous remark,
(i) \widetilde{f}_{z} is invertible iff $x \in \operatorname{dcl}^{\mathrm{eq}}(b y)$ i.e. iff x and y are interdefinable over b ;
(ii) \tilde{f}_{z} is canonical iff $\mathrm{Cb}(\operatorname{stp}(x y / b))=\operatorname{dcl}^{\mathrm{eq}}(b)$

Proof:

(i) Clear
(ii) Suppose that \tilde{f}_{z} is canonical, and obtain (b, x, y) as above.
$\operatorname{tp}(x y / b)$ is stationary since $\operatorname{tp}(x / b)$ is,
so $C:=\mathrm{Cb}(\operatorname{stp}(x y / b)) \subseteq \operatorname{dcl}^{\mathrm{eq}}(b)$.
If $C \neq \mathrm{dcl}^{\mathrm{eq}}(b)$,
say $b^{\prime} \neq b$ with $b^{\prime} \equiv_{C} b$ and $b^{\prime} \downarrow_{C} b x$;
then $x y \downarrow_{C} b^{\prime}$, so $x y b \equiv x y b^{\prime}$,
so since $f_{b}(x)=y$, also $f_{b^{\prime}}(x)=y$,
but $\left.x \models p\right|_{b b^{\prime}}$ so this contradicts canonicity of the family \widetilde{f}_{z}.
For the converse, let $f_{b}(x)=y$ be a formula witnessing $y \in \operatorname{dcl}^{\mathrm{eq}}(b x)$.
Suppose \tilde{f}_{b} is not canonical. By definability of types, some \widetilde{g}_{c} is canonical with $c \in \operatorname{dcl}^{\mathrm{eq}}(b)$ but $b \notin \mathrm{dcl}^{\mathrm{eq}}(c)$.
Then $\mathrm{Cb}\left(\operatorname{stp}(x y / b) \subseteq \operatorname{dcl}^{\mathrm{eq}}(c)\right.$ since

$$
x \downarrow b \Rightarrow x \underset{c}{\downarrow} b \Rightarrow x y \underset{c}{\downarrow} b,
$$

and $\operatorname{tp}(x y / c)$ is stationary since $\operatorname{tp}(x / c)$ is and $y \in \operatorname{dcl}^{\mathrm{eq}}(x c)$.
This contradicts $\operatorname{dcl}^{\mathrm{eq}}(b)=\mathrm{Cb}(\operatorname{stp}(x y / b))$.

Remark:

Suppose (b, x, y) "lie on a line" in the sense of the group configuation statement above, i.e. $\operatorname{acl}^{\mathrm{eq}}(b x)=\operatorname{acl}^{\mathrm{eq}}(x y)=\operatorname{acl}^{\mathrm{eq}}(y b)$.

So x is interalgebraic with y over b.
Since $b \in \operatorname{acl}^{\text {eq }}(a c), b$ is interalgebraic with $\operatorname{Cb}(\operatorname{stp}(a c / b))$; indeed:
let $D=\mathrm{aCb}(a c / b)$; then $a c \downarrow_{D} \operatorname{acl}^{\mathrm{eq}}(b)$,
so $\operatorname{acl}^{\mathrm{eq}}(b) \downarrow_{D} \operatorname{acl}^{\mathrm{eq}}(b)$,
so $\operatorname{acl}^{\mathrm{eq}}(b)=D$.
So (b, x, y) is "nearly" a triple corresponding to a canonical family of invertible germs.

Lemma HW:

Suppose \widetilde{f}_{z} is a canonical family of generic bijections $p \rightarrow p$ based on s.
Let $G_{0}:=\left\{\tilde{f}_{b} \mid b \models s\right\} \subseteq \operatorname{Aut}(p)$.
Suppose that G_{0} is closed under inverse,
and suppose that for b_{1} and b_{2} independent realisations of s,

$$
\tilde{f}_{b_{1}} \circ \widetilde{f}_{b_{2}}=\widetilde{f}_{b_{3}}
$$

with $\left.b_{3} \models s\right|_{b_{i}}$ for $i=1,2$.
Then, identifying \widetilde{f}_{b} with b,
the group $G \leq \operatorname{Aut}(p)$ generated by G_{0} is connected \bigwedge-definable, with s its generic type.

Remark:

This is essentially the Hrushovski-Weil "group chunk" theorem.
There, one starts with a generically associative binary operation $*$, and then applies the above statement to the germs of $x \mapsto a * x$ to obtain a group structure extending *.

Proof:

First, we show that any element of G is a composition of two generators.
It suffices to see that any composition of three generators

$$
\tilde{f}_{b_{1}} \circ \widetilde{f}_{b_{2}} \circ \tilde{f}_{b_{3}}
$$

is the composition of two. But indeed, let $\left.b^{\prime} \models s\right|_{b_{1}, b_{2}, b_{3}}$.
Then

$$
\widetilde{f}_{b_{1}} \circ \widetilde{f}_{b_{2}} \circ \widetilde{f}_{b_{3}}=\widetilde{f}_{b_{1}} \circ \widetilde{f}_{b^{\prime}} \circ \widetilde{f}_{b^{\prime}}^{-1} \circ \widetilde{f}_{b_{2}} \circ \widetilde{f}_{b_{3}}
$$

Now $b^{\prime} \downarrow b_{2}$, so say $\widetilde{f}_{b^{\prime}}^{-1} \circ \widetilde{f}_{b_{2}}=\widetilde{f}_{b^{\prime \prime}}$ with $b^{\prime \prime} \models s$ independent from b^{\prime} and from b_{2};
then $b^{\prime \prime} \downarrow b_{3}$ since:
$b^{\prime} \downarrow_{b_{2}} b_{3}$,
so $b^{\prime \prime} \downarrow_{b_{2}} b_{3}\left(\right.$ since $\left.b^{\prime \prime} \in \operatorname{dcl}^{\mathrm{eq}}\left(b^{\prime \prime}, b_{2}\right)\right)$,
so since $b^{\prime \prime} \downarrow b_{2}$,
$b^{\prime \prime} \downarrow b_{2} b_{3}$, and in particular $b^{\prime \prime} \downarrow b_{3}$.
Also $b^{\prime} \downarrow b_{1}$.
So $\widetilde{f}_{b_{1}} \circ \widetilde{f}_{b^{\prime}}$ and $\widetilde{f}_{b^{\prime}}^{-1} \circ \widetilde{f}_{b_{2}} \circ \widetilde{f}_{b_{3}}$ each "realise s ".
Now G is defined as pairs of realisations of s, modulo generic equality of their compositions, and the group operation is defined by composition.

Finally, to see that G is connected with generic type s : if $g \models s$ and $\left.b \models s\right|_{g}$, then $\left.g * b \models s\right|_{g}$, and then by induction the same holds for any $g \in G$.

In the context of the group configuration, we work with definable families of bijections between two types, rather than from a type to itself. The following key lemma gives conditions for this to give rise to a group.

Lemma A:

Suppose f_{z} is a canonical family of generic bijections $p \rightarrow q$ based on r.
Let b_{1} and b_{2} be independent realisations of r and say

$$
\tilde{f}_{b_{1}}^{-1} \circ \tilde{f}_{b_{2}}=\widetilde{g}_{c}
$$

with \widetilde{g}_{w} a canonical family of generic bijections $p \rightarrow p$ based on $s=\operatorname{stp}(c)$, and suppose

$$
\begin{equation*}
c \downarrow b_{i} \text { for } i=1,2 . \tag{+}
\end{equation*}
$$

Then \widetilde{g}_{w} satisfies the assumptions of Lemma HW.

Remark:

In the finite Morley rank setting (e.g. ACF),

$$
\oplus \Leftrightarrow \operatorname{RM}(c)=\operatorname{RM}(s) .
$$

Proof:

Let $c^{\prime}|=s|_{c}$.
Let $\left.b \models r\right|_{c, c^{\prime}}$.
Then by $(+), b c \equiv b_{2} c$, so say $b_{1}^{\prime} b c \equiv b_{1} b_{2} c$;
similarly, $b c^{\prime} \equiv b_{1} c$, so say $b b_{2}^{\prime} c^{\prime} \equiv b_{1} b_{2} c$.
Then

$$
\widetilde{g}_{c} \circ \widetilde{g}_{c^{\prime}}=\widetilde{f}_{b_{1}^{\prime}}^{-1} \circ \widetilde{f}_{b} \circ \widetilde{f}_{b}^{-1} \circ \widetilde{f}_{b_{2}^{\prime}}=\widetilde{f}_{b_{1}^{\prime}}^{-1} \circ \widetilde{f}_{b_{2}^{\prime}} .
$$

Now $\left(b, b_{1}^{\prime}, b_{2}^{\prime}\right)$ is an independent triple, since $b_{i}^{\prime} \downarrow b$ by choice of b_{i}^{\prime}, since $b_{1} \downarrow b_{2}$, and $b_{1}^{\prime} \downarrow_{b} b_{2}^{\prime}$, since $c \downarrow_{b} c^{\prime}$, since $c \downarrow c^{\prime}$ and $b \downarrow c c^{\prime}$.
So b_{1}^{\prime} and b_{2}^{\prime} are independent realisations of r,
so say $\widetilde{f}_{b_{1}^{\prime}}^{-1} \circ \widetilde{f}_{b_{2}^{\prime}}=\widetilde{g}_{c^{\prime \prime}}$.
Then by $(+), c^{\prime \prime} \downarrow b_{1}^{\prime}$, and hence $c^{\prime \prime} \downarrow b_{1}^{\prime} b$
(since $b \downarrow b_{1}^{\prime} b_{2}^{\prime}$, so $b \downarrow c^{\prime \prime} b_{1}^{\prime}$),
so $c^{\prime \prime} \downarrow c$.
Similarly $c^{\prime \prime} \downarrow c^{\prime}$.

The Group Configuration Theorem

Now we turn to applying this lemma to prove the group configuration theorem. In fact, the proof we will give naturally proves a more general, less symmetric, statement than that above.

Group Configuration Theorem:

b

Suppose (a, b, c, x, y, z) satisfy:

- any non-collinear triple is independent,
(*)
- $\operatorname{acl}^{\mathrm{eq}}(a b)=\operatorname{acl}^{\mathrm{eq}}(b c)=\operatorname{acl}^{\mathrm{eq}}(a c)$,
- x is interalgebraic with y over a, and a is interalgebraic with $\mathrm{Cb}(\operatorname{stp}(x y / a))$; similarly for $b z y$ and $c z x$.
Then, possibly after base change, there is a Λ-definable homogeneous space (G, S),
and an independent triple ($a^{\prime}, b^{\prime}, x^{\prime}$) with a^{\prime}, b^{\prime} generics of G and x^{\prime} generic in S, such that with $b^{\prime}:=c^{\prime} * a^{\prime}, x^{\prime}:=a^{\prime} * y^{\prime}, z^{\prime}:=b^{\prime} * y^{\prime}\left(\right.$ so $\left.z^{\prime}=c^{\prime} * a^{\prime} * y^{\prime}=c^{\prime} * x^{\prime}\right)$, each unprimed element is interalgebraic with the corresponding primed element.

Example:

In ACF, we can restate as follows:
(b, z, y) fits into a group configuration (i.e. extends to (a, b, c, x, y, z) satisfying $\left(^{*}\right)$) iff it is a generic point of a "pseudo-action",
i.e. iff there is an algebraic group G acting birationally on a variety S,
and there are generically finite-to-finite algebraic correspondences $f: G^{\prime} \leftrightarrow G, g_{1}$: $S_{1}^{\prime} \leftrightarrow S$ and $g_{2}: S_{2}^{\prime} \leftrightarrow S$,
such that (b, z, y) is a generic point of the image under $\left(f, g_{1}, g_{2}\right)$ of the graph $\Gamma_{*} \subseteq$ $G \times S \times S$ of the action.
(c.f. 6.2 in [HrushovskiZilber-ZariskiGeometries].)

Example:

if $\operatorname{RM}(a)=\operatorname{RM}(b)=\operatorname{RM}(c)=2$, and $\operatorname{RM}(x)=\operatorname{RM}(y)=\operatorname{RM}(z)=1$,
and $\mathrm{RM}(a b c)=\mathrm{RM}(a b)=\mathrm{RM}(b c)=\operatorname{RM}(a c)=4, \operatorname{RM}(a x y)=\operatorname{RM}(b z y)=\operatorname{RM}(c z x)=$ 3 ,
and there are no further dependencies,
then the conditions of the group configuration theorem are satisfied,
and we obtain a rank two group acting on a rank one set, and with some further work one obtains a definable field, such that the action is essentially $(a, b) x \mapsto a x+b$.

This is sometimes called the "field configuration", and appears in many proofs, e.g. Hrushovski's proof that unimodularity implies local modularity, and hence that ω-categorical stable theories are 1-based; the proof of the Zilber dichotomy for Zariski structures; and also e.g. Hasson-Kowalski's work on trichotomy for strongly minimal reducts of RCF.

Very rough sketch of proof:

(I) "reduce acl $^{\text {eq }}$ to $\mathrm{dcl}^{\mathrm{eq}}$ " to show we may assume (b, z, y) to define a canonical family of germs of canonical bijections as in Lemma A;
(II) prove the independence assumption of Lemma A;
(III) connect resulting group action to original group configuration.

Proof of Group Configuration Theorem:

In the proof, we may at any time

- add independent parameters to the language, or
- replace any point of the configuration with an interalgebraic point of $\mathbb{M}^{e q}$.

Performing these operations preserves $\left(^{*}\right)$, and the conclusion allows them.
By adding further algebraic parameters whenever necessary, we will assume throughout that $\operatorname{acl}^{\mathrm{eq}}(\emptyset)=\operatorname{dcl}^{\mathrm{eq}}(\emptyset)$, so types over \emptyset are stationary.
(I) First, we see that it follows from $\left(^{*}\right)$ that if we let $\widetilde{z} \in \mathbb{M}^{e q}$ be the set $\widetilde{z}=$ $\left\{z_{1}, \ldots, z_{d}\right\}$ of conjugates z_{i} of z over $y b x c$, then \widetilde{z} is interalgebraic with z.
(Here, $\left\{z_{1}, \ldots, z_{d}\right\}$ is the image of $\left(z_{1}, \ldots, z_{d}\right)$ under quotienting by the action by permutations of the symmetric group S_{d}.)
For this, we require that the conjugates are interalgebraic, $\operatorname{acl}^{\mathrm{eq}}\left(z_{i}\right)=\operatorname{acl}^{\mathrm{eq}}\left(z_{j}\right)$. Indeed, then $\operatorname{acl}^{\mathrm{eq}}(\widetilde{z}) \subseteq \operatorname{acl}^{\mathrm{eq}}\left(z_{1}, \ldots, z_{n}\right)=\operatorname{acl}^{\mathrm{eq}}(z)$;
and $z \in \operatorname{acl}^{\text {eq }}(\widetilde{z})$, since it satisfies the algebraic formula $z \in \widetilde{z}$.
But indeed:
$z \in \operatorname{acl}^{\mathrm{eq}}(x c) \cap \operatorname{acl}^{\mathrm{eq}}(y b)=: B$ by $\left(^{*}\right)$, but meanwhile $x c \downarrow_{z} y b$ so $B \downarrow_{z} B$ so $B \subseteq \operatorname{acl}^{\mathrm{eq}}(z)$.
So $\operatorname{acl}^{\text {eq }}(z)=B$,
and by the same argument $\operatorname{acl}^{\mathrm{eq}}\left(z_{i}\right)=B$ for each z_{i}.
Now let $\left.a^{\prime} \models \operatorname{tp}(a)\right|_{a b c x y z}$.
Say $a^{\prime} x^{\prime} c^{\prime} \equiv_{y b z} a x c$. So $a^{\prime} b c^{\prime} x^{\prime} y z$ is also a group configuration.
So as above, the set \widetilde{z} of conjugates of z over $y b x^{\prime} c^{\prime}$ is interalgebraic with z.
Note that $\widetilde{z} \in \operatorname{dcl}^{\mathrm{eq}}\left(y b x^{\prime} c^{\prime}\right)$.

So add a^{\prime} as a parameter,
and replace y with $y x^{\prime}, b$ with $b c^{\prime}$, and z with \widetilde{z}.
Then since $x^{\prime} \in \operatorname{acl}^{\mathrm{eq}}\left(y a^{\prime}\right)$ and $c^{\prime} \in \operatorname{acl}^{\mathrm{eq}}\left(b a^{\prime}\right)$,
the resulting group configuration is interalgebraic with the original, and now satisfies

$$
z \in \operatorname{dcl}^{\mathrm{eq}}(b y)
$$

Repeating this procedure by adding an independent copy of b and enlarging a and y and replacing x with an \widetilde{x},
we can also ensure that

$$
x \in \operatorname{dcl}^{\mathrm{eq}}(a y)
$$

Finally, we repeat once more: add an independent copy c^{\prime} of c,
let $a^{\prime} x^{\prime} c^{\prime} \equiv_{y b z} a x c$,
let \widetilde{y} be the set of conjugates of y over $b a^{\prime} z x^{\prime}$.
Now since $x^{\prime} \in \operatorname{dcl}^{\mathrm{eq}}\left(a^{\prime} y\right)$ and $z \in \operatorname{dcl}^{\mathrm{eq}}(b y)$,
we have $z x^{\prime} \in \mathrm{dcl}^{\mathrm{eq}}\left(b a^{\prime} y\right)$ and so $z x^{\prime} \in \operatorname{dcl}^{\mathrm{eq}}\left(b a^{\prime} \widetilde{y}\right)$.
So after replacing b with $b a^{\prime}, z$ with $z x^{\prime}$, and y with \widetilde{y},
so in the previous two cases $y \in \operatorname{dcl}^{\mathrm{eq}}(b z)$,
and now also $z \in \operatorname{dcl}^{\mathrm{eq}}(b y)$.
Finally, replace b with $\mathrm{Cb}(y z / b)$, with which it is interalgebraic by $\left(^{*}\right)$.
(II) (b, y, z) now corresponds to a canonical family \tilde{f}_{w} of germs of bijections $\operatorname{tp}(y) \rightarrow$ $\operatorname{tp}(z)$ over $r:=\operatorname{tp}(b)$.

To apply lemma A to obtain a group,
we must show that if $\left.b^{\prime} \models r\right|_{b}$ and

$$
\tilde{f}_{b^{\prime}}^{-1} \circ \widetilde{f}_{b}=\widetilde{g}_{d}
$$

with \widetilde{g}_{u} canonical,
then $d \downarrow b$ and $d \downarrow b^{\prime}$.
We may assume $b^{\prime} \downarrow a b c x y z$.
Say $b^{\prime} y^{\prime} a^{\prime} \equiv_{x c z}$ bya.
So by canonicity, $\operatorname{dcl}^{\mathrm{eq}}(d)=\mathrm{Cb}\left(\operatorname{stp}\left(y y^{\prime} / b b^{\prime}\right)\right)$.
Now $y \downarrow a b c$, and $b^{\prime} \downarrow y a b c$, so $y \downarrow a b c b^{\prime}$, and since $a^{\prime} \in \operatorname{acl}^{\mathrm{eq}}\left(c b^{\prime}\right)$, we have $y \downarrow a a^{\prime} b b^{\prime}$.
Since also $y^{\prime} \in \operatorname{acl}^{\mathrm{eq}}\left(y a a^{\prime}\right)$, we have

$$
y y^{\prime} \underset{a a^{\prime}}{\downarrow} b b^{\prime}
$$

Similarly,

$$
y y^{\prime} \underset{b b^{\prime}}{\perp} a a^{\prime} .
$$

So $\mathrm{aCb}\left(y y^{\prime} / b b^{\prime}\right)=\mathrm{aCb}\left(y y^{\prime} / a a^{\prime} b b^{\prime}\right)=\mathrm{aCb}\left(y y^{\prime} / a a^{\prime}\right)$, so $d \in \operatorname{acl}^{\mathrm{eq}}\left(a a^{\prime}\right)$.

Claim: $b \downarrow a a^{\prime}$.
Proof: $a b c \downarrow b^{\prime}$, so $a b \downarrow_{c} b^{\prime}$, so $a b \downarrow_{c} a^{\prime}$ since $a^{\prime} \in \operatorname{acl}^{\mathrm{eq}}\left(c b^{\prime}\right)$.
But $a^{\prime} \downarrow c$, so $a b \downarrow a^{\prime}$, so $b \downarrow_{a} a^{\prime}$.
Now $a \downarrow b$, so $b \downarrow a a^{\prime}$.
So $b \downarrow d$, and similarly $b^{\prime} \downarrow d$, as required.
(III) By (II) and Lemma A,
we obtain a connected \bigwedge-definable group G, with a generic action of its generic type s on $p:=\operatorname{tp}(y)$,
i.e. $g * a$ is defined for $g \models s$ and $a \models p$ with $g \downarrow s$.

To get a Λ-definable homogeneous space,
define S to be $(G \times p) / E$ where $(g, a) E\left(g^{\prime}, a^{\prime}\right)$ iff $d_{s} h .(h * g) * a=\left(h * g^{\prime}\right) * a^{\prime}$, with the action of G :
$h *(g, a) / E:=(h * g, a) / E$.
Finally, we must show that the original group configuration is interalgebraic with that of (G, S). This will involve adding further parameters.

First, let $\left.b^{\prime} \models \operatorname{tp}(b)\right|_{a b c x y z}$.
Say $y^{\prime} b^{\prime} \equiv_{x z a c} y b$.
Say $g \models s$ codes $\widetilde{f}_{b^{\prime}}^{-1} \circ \widetilde{f}_{b}$, so $y^{\prime}=g * y$.
Then g is interdefinable with b over b^{\prime}.
So add b^{\prime} to the language,
and replace b with $g \models s$ and z with $g * y \models p$.
Now let $\left.c^{\prime} \models \operatorname{tp}(c)\right|_{a b c x y z}$,
and say $b^{\prime} z^{\prime} c^{\prime} \equiv_{a x y} b z c$.
Add c^{\prime} to the language,
and replace a by $b^{\prime} \models s$ and x by $z^{\prime}=b^{\prime} * y \models p$.
Let $h:=b * a^{-1}$.
$x=a * y$ and $z=b * y$, so $z=h * x$.
So $\mathrm{aCb}(x z / a b)=\operatorname{acl}^{\mathrm{eq}}(h)$; but also x and z are interalgebraic over c, so $\mathrm{aCb}(x z / a b)=\mathrm{aCb}(x z / c)=\operatorname{acl}^{\mathrm{eq}}(c)$.
So replace c with h, and we are done.

