GNS constructions, and functions of positive type

Based on Appendix C of "Kazhdan's Property T" by Bekka, Harpe, and Valeppe.

Cyclic representations

Definition:

A unitary representation (π, \mathcal{H}) is cyclic if there exists $\xi \in \mathcal{H}$ s.t. the span of the orbit of ξ is dense. Call such ξ a cyclic vector.

Remark:

If (π, \mathcal{H}) is a representation and $\xi \in \mathcal{H}$, then the closure of the span of the orbit of ξ, $<G \xi>$, is an invariant closed subspace, so yields a cyclic subrepresentation.
So irreducible \Rightarrow cyclic (any $\xi \neq 0$ is cyclic),
and any unitary representation (π, \mathcal{H}) can be decomposed as an orthogonal direct sum of cyclic subrepresentations.
(Proof: take a maximal such direct sum; if not \mathcal{H}, consider closure of orbit of an element of the orthogonal complement for a contradiction.)

Functions of positive type

Definition:

(i) For X a topological space, a kernel of positive type is a continuous function Φ : $X^{2} \rightarrow \mathbb{C}$ such that for any finite tuple $\left(x_{1}, \ldots, x_{n}\right)$ from X and any $\left(a_{1}, \ldots, a_{n}\right) \in$ \mathbb{C}^{n},

$$
\sum_{i, j} a_{i} \Phi\left(x_{i}, x_{j}\right) \bar{a}_{j} \geq 0
$$

(ii) For G a topological group, a function of positive type is a continuous function $\phi: G \rightarrow \mathbb{C}$ such that $(g, h) \mapsto \overline{\phi\left(h^{-1} g\right) \text { is a kernel of positive type. }}$

Remark:

Φ is of positive type iff for any finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq X$, the matrix $\left(a_{i j}\right)_{i j}$ with $a_{i j}=\Phi\left(x_{i}, x_{j}\right)$ is positive semidefinite.

Example:

$G:=\langle\mathbb{R} ;+\rangle, \phi(z):=e^{i z}$.

Lemma:

(i) If $\Phi: X^{2} \rightarrow \mathbb{C}$ is of + ve type,
(a) $\overline{\Phi(x, y)}=\Phi(y, x)($ so $\Phi(x, x) \in \mathbb{R})$
(b) $|\Phi(x, y)|^{2} \leq \Phi(x, x) \Phi(y, y)$
(ii) If $\phi: G \rightarrow \mathbb{C}$ is of + ve type,
(a) $\overline{\phi(g)}=\phi\left(g^{-1}\right)($ so $\phi(e) \in \mathbb{R})$
(b) $|\phi(g)| \leq \phi(e)$

Proof:

(i) The matrix

$$
\left[\begin{array}{ll}
\Phi(x, x) & \Phi(x, y) \\
\Phi(y, x) & \Phi(y, y)
\end{array}\right]
$$

is positive semidefinite, so is Hermitian with non-negative determinant.
(ii) Follows, by considering $\Phi(g, e)$.

Remark:

Let (π, \mathcal{H}) be a unitary representation of G, let $\xi \in \mathcal{H}$.
Define $\phi_{\pi, \xi}: g \mapsto\langle g \xi, \xi\rangle$.
Then $\phi_{\pi, \xi}$ is of + ve type.
Indeed, $(g, h) \mapsto\left\langle h^{-1} g \xi, \xi\right\rangle=\langle g \xi, h \xi\rangle$ is of + ve type,
since $\sum_{i j} a_{i}\left\langle g_{i} \xi, g_{j} \xi\right\rangle \bar{a}_{j}=\sum_{i j}\left\langle a_{i} g_{i} \xi, a_{j} g_{j} \xi\right\rangle=\left\langle\sum_{i} a_{i} g_{i} \xi, \sum_{i} a_{i} g_{i} \xi\right\rangle \geq 0$.

Theorem ["GNS construction"]:

G topological group, $\phi: G \rightarrow \mathbb{C}$ of + ve type.
Then $\phi=\phi_{\pi_{\phi}, \xi_{\phi}}$ for some unitary representation $\left(\pi_{\phi}, \mathcal{H}_{\phi}\right)$ and cyclic vector $\xi_{\phi} \in \mathcal{H}_{\phi}$.
Moreover, the pair $\left(\pi_{\phi}, \xi_{\phi}\right)$ associated to ϕ is unique up to isomorphism, in the sense that if $\phi=\phi_{\pi^{\prime}, \xi^{\prime}}$ where ξ^{\prime} is a cyclic vector in another unitary representation $\left(\pi^{\prime}, \mathcal{H}^{\prime}\right)$, then there is an intertwining isomorphism $\mathcal{H}_{\phi} \stackrel{\cong}{\leftrightarrows} \mathcal{H}^{\prime} ; \xi_{\phi} \mapsto \xi^{\prime}$.

Remark:

So $(\pi, \xi) \mapsto \phi_{\pi, \xi}$ induces a bijective correspondence between + ve functions and cyclic vectors in unitary representations up to isomorphism.

The zero function corresponds to the trivial representation.

Cone of functions of + ve type

$\mathcal{P}(G):=\{\phi: G \rightarrow \mathbb{C}$ of + ve type $\}$.
$\mathcal{P}(G)$ is a cone (i.e. closed under taking positive linear combinations).
$\mathcal{P}_{1}(G):=\{\phi \in \mathcal{P}(G) \mid \phi(e)=1\}$.
So $\mathcal{P}_{1}(G)$ is a convex subset of $\mathcal{P}(G)$.
Note $\phi_{\pi, \xi} \in \mathcal{P}_{1}(G)$ iff $\|\xi\|=1$.

Definition:

A pure function of + ve type is an extreme point of $\mathcal{P}_{1}(G)$;
i.e. $\phi \in \mathcal{P}_{1}(G)$ such that whenever $\phi=t \psi_{1}+(1-t) \psi_{2}$ with $t \in[0,1]$ and $\psi_{i} \in \mathcal{P}_{1}(G)$, actually $t \in\{0,1\}$.

Theorem:

$\phi \in \mathcal{P}_{1}(G)$ is pure iff the GNS representation π_{ϕ} is irreducible.

Proof:

We have $\phi=\phi_{\pi_{\phi}, \xi_{\phi}}$, with ξ_{ϕ} cyclic.
Suppose π_{ϕ} is reducible.
Say $\mathcal{H}_{\phi}=\mathcal{K} \oplus \mathcal{K}^{\perp}$ is a non-trivial invariant orthogonal decomposition;
decompose $\xi=\xi_{\mathcal{K}}+\xi_{\mathcal{K}^{\perp}}$.
Set $s:=\left\|\xi_{\mathcal{K}}\right\|, t:=\left\|\xi_{\mathcal{K}^{\perp}}\right\|$.
So $s^{2}+t^{2}=\left\|\xi_{\phi}\right\|^{2}=\phi(e)=1$.
Now one may calculate that $\phi=s^{2} \phi_{\pi_{\phi}, \widehat{\xi_{\mathcal{K}}}}+t^{2} \phi_{\pi_{\phi}, \widehat{\xi_{\mathcal{K}}}}$,
but $s \neq 0 \neq t$ since ξ is cyclic.
So ϕ is not pure.
Conversely, suppose ϕ is not pure,
say $\phi=s^{2} \phi_{1}+t^{2} \phi_{2}, s^{2}+t^{2}=1, s \neq 0 \neq t, \phi_{i} \in \mathcal{P}_{1}(G)$,
and suppose π_{ϕ} is irreducible.
By GNS, say $\phi_{1}=\phi_{\pi_{1}, \xi_{1}}$ and $\phi_{2}=\phi_{\pi_{2}, \xi_{2}}$;
consider the direct sum representation $\pi_{1} \oplus \pi_{2}$ of G on $\mathcal{H}_{1} \oplus \mathcal{H}_{2}$,
and let $\xi^{\prime}:=s \xi_{1}+t \xi_{2}$.
Then $\phi_{\pi_{1} \oplus \pi_{2}, \xi^{\prime}}(g)=\left\langle s g \xi_{1}+t g \xi_{2}, s \xi_{1}+t \xi_{2}\right\rangle=s^{2} \phi_{1}(g)+t^{2} \phi_{2}(g)=\phi(g)$.
Consider the subrepresentation π_{0} on $\mathcal{H}^{\prime}:=\overline{\left\langle G \xi^{\prime}\right\rangle}$.
By the uniqueness of GNS, this is equivalent to π_{ϕ}.
Since ξ_{1} is cyclic,
the projection $T: \mathcal{H}^{\prime} \rightarrow \mathcal{H}_{1} ; \xi^{\prime} \mapsto \xi_{1}$ has dense image,
so by irreducibility of π_{ϕ}, T is an isomorphism
(lest $(\operatorname{ker} T)^{\perp}$ be a proper subrepresentation).
So $\phi=\phi_{\pi_{0}, \xi^{\prime}}=\phi_{\pi_{1}, \xi_{1}}=\phi_{1}$, contradicting impurity.

Fact:

If G is locally compact, the convex hull of $\operatorname{ext}\left(\mathcal{P}_{1}(G)\right)$ is dense in $\mathcal{P}_{1}(G)$ for the topology of uniform convergence on compact subsets of G.

Proof of GNS

Let ϕ be a non-zero function of +ve type on G.
Consider the translates of $\phi, \phi_{h}(g):=\phi\left(h^{-1} g\right)$.
Let V be the subspace of $C(G)$ they span.
Let W be the vector space freely generated by G.
$\langle g, h\rangle:=\phi\left(h^{-1} g\right)$ extends to a conjugate-symmetric sesquilinear form on W, $\left\langle\sum_{i} a_{i} g_{i}, \sum_{i} b_{i} h_{i}\right\rangle=\sum_{i j} a_{i} \phi\left(h_{i}^{-1} g_{i}\right) \bar{b}_{j}$.
Now $\left\langle\sum_{i} a_{i} h_{i}, \sum_{i} a_{i} h_{i}\right\rangle=\sum_{i j} a_{i} \phi\left(h_{i}^{-1} h_{j}\right) \bar{a}_{j} \geq 0$ by definition of a positive function, so \langle,$\rangle is a semi-inner product on W$.

The kernel is $\left\{\sum_{i} b_{i} h_{i} \mid \sum_{i} \phi_{h_{i}}=0\right\}$,
so it induces a well-defined inner product \langle,$\rangle on V$.
Let \mathcal{H} be the Hilbert space completion of V with respect to \langle,
so \mathcal{H} is the space of functions on G which are pointwise limits of Cauchy sequences in V with respect to the norm induced by $<,>$.

Let π be the representation of G acting by translation on \mathcal{H},
$\pi(h) f(g):=f\left(h^{-1} g\right)$,
and let $\xi:=\phi \in \mathcal{H}$.
This is unitary, since it preserves $<,>$ on the ϕ_{g},
and is strongly continuous since ϕ is continuous
(and so then $g \mapsto g f$ is continuous for $f=\phi$, hence for any $f \in V$, and hence for $f \in \mathcal{H}$ since a uniform limit of continuous functions is continuous),
and ξ is cyclic, and $\phi_{\pi, \xi}(h)=\left\langle\phi_{h}, \phi_{e}\right\rangle=\phi(h)$.
It remains to show the uniqueness.
Suppose $\phi_{\pi^{\prime}, \xi^{\prime}}=\phi_{\pi, \xi}$,
with ξ^{\prime} cyclic for $\pi^{\prime}: G \rightarrow \mathcal{H}^{\prime}$.
$\left(^{*}\right)\left\|\sum_{i} a_{i} g_{i} \xi\right\|^{2}=\sum_{i j} a_{i}\left\langle g_{i} \xi, g_{j} \xi\right\rangle \bar{a}_{j}=\sum_{i j} a_{i}\left\langle g_{i} \xi^{\prime}, g_{j} \xi^{\prime}\right\rangle \bar{a}_{j}=\left\|\sum_{i} a_{i} g_{i} \xi^{\prime}\right\|^{2}$
Define an isomorphism $T: \mathcal{H} \xrightarrow{\cong} \mathcal{H}^{\prime}$ by $T(g \xi):=g \xi^{\prime}$ and extending linearly and continuously; this is well-defined by $(*)$.
T intertwines π and π^{\prime}, and $T(\xi)=\xi^{\prime}$.

Example:

$G:=\langle\mathbb{R} ;+\rangle, \phi(z):=e^{i z}$.
$\phi_{a}(z)=e^{i(z-a)}=e^{-i a} \phi(z)$,
so \mathcal{H} is 1 -dimensional,
and the representation is $a \mapsto\left(e^{-i a}.\right)$.

