GNS constructions, and functions of positive type

Based on Appendix C of "Kazhdan's Property T" by Bekka, Harpe, and Valeppe.

Cyclic representations

Definition:

A unitary representation (π, \mathcal{H}) is cyclic if there exists $\xi \in \mathcal{H}$ s.t. the span of the orbit of ξ is dense. Call such ξ a cyclic vector.

Remark:

If (π, \mathcal{H}) is a representation and $\xi \in \mathcal{H}$, then the closure of the span of the orbit of ξ , $\overline{\langle G\xi \rangle}$, is an invariant closed subspace, so yields a cyclic subrepresentation. So irreducible \Rightarrow cyclic (any $\xi \neq 0$ is cyclic),

and any unitary representation (π, \mathcal{H}) can be decomposed as an orthogonal direct sum of cyclic subrepresentations.

(Proof: take a maximal such direct sum; if not \mathcal{H} , consider closure of orbit of an element of the orthogonal complement for a contradiction.)

Functions of positive type

Definition:

(i) For X a topological space, a kernel of positive type is a continuous function Φ : $X^2 \to \mathbb{C}$ such that for any finite tuple $(x_1, ..., x_n)$ from X and any $(a_1, ..., a_n) \in \mathbb{C}^n$,

$$\sum_{i,j} a_i \Phi(x_i, x_j) \overline{a}_j \ge 0.$$

(ii) For G a topological group, a function of positive type is a continuous function $\phi: G \to \mathbb{C}$ such that $(g, h) \mapsto \overline{\phi(h^{-1}g)}$ is a kernel of positive type.

Remark:

 Φ is of positive type iff for any finite subset $\{x_1, ..., x_n\} \subseteq X$, the matrix $(a_{ij})_{ij}$ with $a_{ij} = \Phi(x_i, x_j)$ is positive semidefinite.

Example:

 $G := \langle \mathbb{R}; + \rangle, \ \phi(z) := e^{iz}.$

Lemma:

- (i) If $\Phi: X^2 \to \mathbb{C}$ is of +ve type,
 - (a) $\overline{\Phi(x,y)} = \Phi(y,x)$ (so $\Phi(x,x) \in \mathbb{R}$)
 - (b) $|\Phi(x,y)|^2 \le \Phi(x,x)\Phi(y,y)$
- (ii) If $\phi: G \to \mathbb{C}$ is of +ve type,
 - (a) φ(g) = φ(g⁻¹) (so φ(e) ∈ ℝ)
 (b) |φ(g)| ≤ φ(e)

Proof:

(i) The matrix

$$\begin{bmatrix} \Phi(x,x) & \Phi(x,y) \\ \Phi(y,x) & \Phi(y,y) \end{bmatrix}$$

is positive semidefinite, so is Hermitian with non-negative determinant.

(ii) Follows, by considering $\Phi(g, e)$.

Remark:

Let (π, \mathcal{H}) be a unitary representation of G, let $\xi \in \mathcal{H}$. Define $\phi_{\pi,\xi} : g \mapsto \langle g\xi, \xi \rangle$. Then $\phi_{\pi,\xi}$ is of +ve type. Indeed, $(g,h) \mapsto \langle h^{-1}g\xi, \xi \rangle = \langle g\xi, h\xi \rangle$ is of +ve type, since $\sum_{ij} a_i \langle g_i\xi, g_j\xi \rangle \overline{a}_j = \sum_{ij} \langle a_ig_i\xi, a_jg_j\xi \rangle = \langle \sum_i a_ig_i\xi, \sum_i a_ig_i\xi \rangle \ge 0$.

Theorem ["GNS construction"]:

G topological group, $\phi : G \to \mathbb{C}$ of +ve type. Then $\phi = \phi_{\pi_{\phi},\xi_{\phi}}$ for some unitary representation $(\pi_{\phi}, \mathcal{H}_{\phi})$ and cyclic vector $\xi_{\phi} \in \mathcal{H}_{\phi}$.

Moreover, the pair (π_{ϕ}, ξ_{ϕ}) associated to ϕ is unique up to isomorphism, in the sense that if $\phi = \phi_{\pi',\xi'}$ where ξ' is a cyclic vector in another unitary representation (π', \mathcal{H}') , then there is an intertwining isomorphism $\mathcal{H}_{\phi} \xrightarrow{\cong} \mathcal{H}'; \xi_{\phi} \mapsto \xi'$.

Remark:

So $(\pi, \xi) \mapsto \phi_{\pi,\xi}$ induces a bijective correspondence between +ve functions and cyclic vectors in unitary representations up to isomorphism.

The zero function corresponds to the trivial representation.

Cone of functions of +ve type

 $\mathcal{P}(G) := \{ \phi : G \to \mathbb{C} \text{ of } + \text{ve type} \}.$ $\mathcal{P}(G) \text{ is a cone (i.e. closed under taking positive linear combinations)}.$

 $\mathcal{P}_1(G) := \{ \phi \in \mathcal{P}(G) \mid \phi(e) = 1 \}.$ So $\mathcal{P}_1(G)$ is a convex subset of $\mathcal{P}(G)$.

Note $\phi_{\pi,\xi} \in \mathcal{P}_1(G)$ iff $\|\xi\| = 1$.

Definition:

A pure function of +ve type is an extreme point of $\mathcal{P}_1(G)$; i.e. $\phi \in \mathcal{P}_1(G)$ such that whenever $\phi = t\psi_1 + (1-t)\psi_2$ with $t \in [0,1]$ and $\psi_i \in \mathcal{P}_1(G)$, actually $t \in \{0,1\}$.

Theorem:

 $\phi \in \mathcal{P}_1(G)$ is pure iff the GNS representation π_{ϕ} is irreducible.

Proof:

We have $\phi = \phi_{\pi_{\phi},\xi_{\phi}}$, with ξ_{ϕ} cyclic. Suppose π_{ϕ} is reducible. Say $\mathcal{H}_{\phi} = \mathcal{K} \oplus \mathcal{K}^{\perp}$ is a non-trivial invariant orthogonal decomposition; decompose $\xi = \xi_{\mathcal{K}} + \xi_{\mathcal{K}^{\perp}}$. Set $s := \|\xi_{\mathcal{K}}\|, t := \|\xi_{\mathcal{K}^{\perp}}\|$. So $s^2 + t^2 = \|\xi_{\phi}\|^2 = \phi(e) = 1$.

Now one may calculate that $\phi = s^2 \phi_{\pi_{\phi},\widehat{\xi_{\mathcal{K}}}} + t^2 \phi_{\pi_{\phi},\widehat{\xi_{\mathcal{K}^{\perp}}}}$, but $s \neq 0 \neq t$ since ξ is cyclic. So ϕ is not pure.

Conversely, suppose ϕ is not pure, say $\phi = s^2 \phi_1 + t^2 \phi_2$, $s^2 + t^2 = 1$, $s \neq 0 \neq t$, $\phi_i \in \mathcal{P}_1(G)$, and suppose π_{ϕ} is irreducible.

By GNS, say $\phi_1 = \phi_{\pi_1,\xi_1}$ and $\phi_2 = \phi_{\pi_2,\xi_2}$; consider the direct sum representation $\pi_1 \oplus \pi_2$ of G on $\mathcal{H}_1 \oplus \mathcal{H}_2$, and let $\xi' := s\xi_1 + t\xi_2$. Then $\phi_{\pi_1 \oplus \pi_2,\xi'}(g) = \langle sg\xi_1 + tg\xi_2, s\xi_1 + t\xi_2 \rangle = s^2\phi_1(g) + t^2\phi_2(g) = \phi(g)$.

Consider the subrepresentation π_0 on $\mathcal{H}' := \overline{\langle G\xi' \rangle}$. By the uniqueness of GNS, this is equivalent to π_{ϕ} . Since ξ_1 is cyclic, the projection $T : \mathcal{H}' \to \mathcal{H}_1; \xi' \mapsto \xi_1$ has dense image, so by irreducibility of π_{ϕ} , T is an isomorphism (lest $(\ker T)^{\perp}$ be a proper subrepresentation).

So $\phi = \phi_{\pi_0,\xi'} = \phi_{\pi_1,\xi_1} = \phi_1$, contradicting impurity. \Box

Fact:

If G is locally compact, the convex hull of $ext(\mathcal{P}_1(G))$ is dense in $\mathcal{P}_1(G)$ for the topology of uniform convergence on compact subsets of G.

Proof of GNS

Let ϕ be a non-zero function of +ve type on G. Consider the translates of ϕ , $\phi_h(g) := \phi(h^{-1}g)$. Let V be the subspace of C(G) they span. Let W be the vector space freely generated by G. $\langle g, h \rangle := \phi(h^{-1}g)$ extends to a conjugate-symmetric sesquilinear form on W, $\langle \sum_i a_i g_i, \sum_i b_i h_i \rangle = \sum_{ij} a_i \phi(h_i^{-1}g_i) \overline{b}_j$. Now $\langle \sum_i a_i h_i, \sum_i a_i h_i \rangle = \sum_{ij} a_i \phi(h_i^{-1}h_j) \overline{a}_j \ge 0$ by definition of a positive function, so \langle , \rangle is a semi-inner product on W.

The kernel is $\{\sum_i b_i h_i \mid \sum_i \phi_{h_i} = 0\}$, so it induces a well-defined inner product \langle , \rangle on V.

Let \mathcal{H} be the Hilbert space completion of V with respect to \langle , \rangle ; so \mathcal{H} is the space of functions on G which are pointwise limits of Cauchy sequences in V with respect to the norm induced by \langle , \rangle .

Let π be the representation of G acting by translation on \mathcal{H} , $\pi(h)f(g) := f(h^{-1}g)$, and let $\xi := \phi \in \mathcal{H}$. This is unitary, since it preserves \langle , \rangle on the ϕ_g , and is strongly continuous since ϕ is continuous (and so then $g \mapsto gf$ is continuous for $f = \phi$, hence for any $f \in V$, and hence for $f \in \mathcal{H}$ since a uniform limit of continuous functions is continuous), and ξ is cyclic, and $\phi_{\pi,\xi}(h) = \langle \phi_h, \phi_e \rangle = \phi(h)$.

It remains to show the uniqueness.

Suppose
$$\phi_{\pi',\xi'} = \phi_{\pi,\xi}$$
,
with ξ' cyclic for $\pi': G \to \mathcal{H}'$.
(*) $\|\sum_i a_i g_i \xi\|^2 = \sum_{ij} a_i \langle g_i \xi, g_j \xi \rangle \,\overline{a}_j = \sum_{ij} a_i \langle g_i \xi', g_j \xi' \rangle \,\overline{a}_j = \|\sum_i a_i g_i \xi'\|^2$

Define an isomorphism $T : \mathcal{H} \xrightarrow{\cong} \mathcal{H}'$ by $T(g\xi) := g\xi'$ and extending linearly and continuously; this is well-defined by (*). T intertwines π and π' , and $T(\xi) = \xi'$. \Box

Example:

$$\begin{split} G &:= \langle \mathbb{\bar{R}}; + \rangle, \ \phi(z) := e^{iz}.\\ \phi_a(z) &= e^{i(z-a)} = e^{-ia}\phi(z),\\ \text{so }\mathcal{H} \text{ is 1-dimensional,}\\ \text{and the representation is } a \mapsto (e^{-ia}\cdot). \end{split}$$