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Erdős geometry

Example (Szemerédi-Trotter (1983))

Given N2 points and N2 lines in R2, the number of incidences is bounded
as

|{(p, l) : p ∈ l}| ≤ O(N
8
3 ).

Example (“Sum-product phenomenon”)

For any finite set A ⊆ C,

|A| ≤ O(max(|A + A|, |A ∗ A|)
4
5 ).

(This particular bound is due to Solymosi (2005).)

Example (Orchard problem)

Find large finite subsets X ⊆ R2 such that ≥ c |X |2 lines contain at least
3 points of X .
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Orchard solution: linear

(Image from Elekes-Szabó “On triple lines and cubic curves”)
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Orchard solution: multiplicative N=7



Orchard solution: multiplicative N=13
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Orchard solution: multiplicative transformed

(Image from Green-Tao “On sets defining few ordinary lines”)
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Orchard solution: elliptic

(Image from Green-Tao “On sets defining few ordinary lines”)

(∼ |X |
2

6 3-point lines)



Orchard solutions

Cubic curves provide solutions to the orchard problem. Conversely:

Theorem (Elekes-Szabó ’13)

Let C ⊆ R2 be an irreducible algebraic curve which is not cubic, i.e.
deg(C ) 6= 3.
Then for X ⊆fin C (R),

|{ 3-point lines }| ≤ O(|X |2−ε),

where ε = ε(deg(C )) > 0.



Structures

I A structure is a set M with a choice of ∅-definable sets X ⊆ Mn,
closed under intersection, complement, cartesian product, and
co-ordinate projection, and including the diagonal ∆ ⊆ M2.

I Examples:
(i) Pure infinite set:
∅-definable sets are boolean combinations of diagonals.

(ii) Vector space over a division ring:
∅-definable sets are boolean combinations of linear subspaces.

(iii) Algebraically closed field:
∅-definable sets are boolean combinations of algebraic sets over the
prime field.

I The M-definable sets are those of form {x : (x ,m) ∈ X} ⊆ Mn

where X ⊆ Mn+m is ∅-definable and m ∈ Mm.
I We consider only structures M which are ω1-compact:

if X0 ⊇ X1 ⊇ . . . is a decreasing chain of non-empty M-definable
sets, then

⋂
i∈ω Xi 6= ∅.



Geometric stability theory: minimality
I An infinite ∅-definable set X is minimal if the only M-definable

subsets are the finite subsets and their complements.
I Then for C ⊆ X , the algebraic closure acl(C ) is the closure of C

under ∅-definable finitely valued multifunctions X n → X .
I This induces a dimension function dim(C ).

Examples

(i) Pure infinite set:
I acl(C ) = C .
I dim(C ) = |C |.

(ii) Vector space over a division ring k :
I acl(C ) = 〈C 〉k .
I dim(C ) = dimk(〈C 〉k).

(iii) Algebraically closed field:
I acl(C ) = [algebraically closed subfield generated by C ].
I dim(C ) = trd(C ).



Combinatorial geometries

Geometry of a minimal set X :

GX := ({acl(x) : x ∈ X}; acl).

Definitions

A geometry (P; cl) is modular if for a, b ∈ P and C = cl(C ) ⊆ P ,
if a ∈ cl(bC ) then a ∈ cl(bc) for some c ∈ C .

Fact (Veblen-Young co-ordinatisation theorem)

A geometry is modular if and only if it is the disjoint union of
I geometries of dimension ≤ 3, and
I projective geometries Pk(V ) of vector spaces over division rings.



Trichotomy

Theorem (Zilber’s weak trichotomy theorem; 1980’s)

For X minimal, up to naming parameters, exactly one of the following
holds:
(i) Modular and disintegrated:

For A ⊆ GX , acl(A) = A.
(ii) Modular and not disintegrated:
GX = Pk(V )
where V is a definable abelian group with a division ring k of
definable finitely-valued endomorphisms and no further structure,
and X is in definable finite-to-finite correspondence with V .

(iii) Not modular:
There exists a 2-dimensional definable family of minimal subsets of
X 2, e.g. {{y = ax + b} : a, b}.



Coherence

I Let K be a field.
I Let V ⊆ Km be an algebraic set over K .
I “Trivial bound” : For Ai ⊆ K with |Ai | = N, we have∣∣∣∣∣V ∩

m∏
i=1

Ai

∣∣∣∣∣ ≤ O(Ndim(V )).

I Say V is coherent if the exponent in the trivial bound is optimal
i.e. for no ε > 0 do we have for Ai ⊆ K with |Ai | = N∣∣∣∣∣V ∩

m∏
i=1

Ai

∣∣∣∣∣ ≤ O(Ndim(V )−ε).



Coherence examples

I V := {(x , y , a, b) : y = ax + b}; dim(V ) = 3.
By Szemerédi-Trotter, for K = R (in fact: whenever char(K ) = 0),
if |Ai | = N then

|V ∩
4∏

i=1

Ai | ≤ O(N
8
3 ) = O(N3− 1

3 ),

so V is not coherent.
I Sum-product implies V := {(x , y , z ,w) : z = x + y ,w = xy} ⊆ C4

is not coherent.
I Orchard: Given an irreducible algebraic curve C ⊆ C2, let

VC := {(x , y , z) ∈ C 3 : x , y , z are collinear and distinct } ⊆ C6.

Then by Elekes-Szabó, C is coherent iff cubic.



Positive characteristic

For K = Falg
p , any algebraic set V ⊆ Kn is coherent:

in fact there is r > 0 such that for n� 0,

|V (Fpn)| ≥ r(pn)dim V .



Modularity of coherence

I Szemerédi-Trotter for C implies:
The family of lines on the plane {y = ax + b} ⊆ C4 is not coherent.

I Generalisations imply:
no ≥ 2-dimensional family of plane curves Cb ⊆ C2 is coherent.

I Hrushovski ’13: This suggests “coherence is modular”.
I Elekes-Szabó ’12: using these Szemerédi-Trotter bounds and

arguments inspired by model theory (group configuration),
characterise coherence for surfaces V ⊆ C3.

I B-Breuillard ’18: associate a modular geometry to coherent
structure, and hence characterise coherence for V ⊆ Cn.
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Geometry of coherence
Fix U ⊆ P(N) a non-principal ultrafilter, and let K := CU be the
corresponding countable ultrapower of C. Let U ′ be a further ultrafilter
and set K := KU

′
. Fix Ni ∈ N.

Definition (Hrushovski-Wagner coarse pseudo-finite dimension)

For a ∈ Kn, define δ(a) ∈ [0,∞] by:
δ(a) ≤ α ∈ R if and only if a ∈ (

∏
i→U Ai )

U ′
for some Ai ⊆fin Cn with

|Ai | ≤ O(Nα
i ).

I Say P ⊆ K is coherent if δ(a) = trd(C(a)/C) for any a ∈ P<ω.
I Then an irreducible algebraic set V ⊆ Cn is coherent iff it is the

C-Zariski closure of some a ∈ Pn for some coherent P (for some
choice of U ′ and Ni ).

Lemma (B-Breuillard ’18)

If P ⊆ K is a maximal coherent subset, then field-theoretic algebraic
closure on P is a modular geometry (P; acl).



Characterising coherence

I A special subgroup H is an algebraic subgroup of a power of a
1-dimensional algebraic group, H ≤ Gn.

I A variety V ⊆ Cn is special if it is in co-ordinatewise algebraic
correspondence with a product of special subgroups.

Theorem (B-Breuillard ’18)

V ⊆ Cn is coherent if and only if it is special.

I (For a surface V ⊆ C3, this was already proven by Elekes-Szabó
(2012)).



Generalised sum-product

Corollary (B-Breuillard ’18)

If ∗1, ∗2 : C2 → C are (induced from) group operations on 1-dimensional
algebraic groups Gi (i.e. Ga or Gm or an elliptic curve), then either G1
and G2 are isogenous,
or there exist c , ε > 0 such that for finite sets A ⊆fin C,

|A| ≤ c · (max(|A ∗1 A|, |A ∗2 A|)1−ε).



Higher dimension

Question (Higher orchard)

Which algebraic surfaces S ⊆ R3 support arbitrarily large finite subsets
X ⊆ S with ≥ c |X |2 3-point lines?

Question (Erdős discrete distances problem)

Given N points in R2, what is the minimal number of distances between
pairs of the points? (Guth-Katz ’15: ≥ c N

log N .)

General context: rather than V ⊆ Cn, consider subvarieties V ⊆
∏

i Wi
where W1, . . . ,Wn are arbitrary complex algebraic varieties.



Coherence with general position
V ⊆

∏n
i=1 Wi , dim(Wi ) = d .

I V is coherent if for no ε > 0 do we have a bound∣∣∣∣∣V ∩∏
i

Ai

∣∣∣∣∣ ≤ O
(
Ndim(V )−ε

)
for Ai ⊆Wi in “sufficiently general position” with |Ai | ≤ Nd .

I A special subgroup H is an algebraic subgroup of a power of a
commutative d -dimensional algebraic group, H ≤ G k

I (and H = ker(M)0 for some M ∈ Matk(F ) for some division ring F of
quasi-endomorphisms.)

I A variety is special if it is in co-ordinatewise algebraic
correspondence with a product of special subgroups.

I Generalising a result of [Elekes-Szabó ’12] in the case n = 3:

Theorem (B-Breuillard ’18)

V is coherent if and only if it is special.



General position

“Sufficiently general position” means (C , τ)-general position for some
C , τ , where:

Definition

A ⊆fin W is in (C , τ)-general position if for any proper subvariety
W ′ 6⊆W of complexity ≤ C , we have |W ′ ∩ A| ≤ |A|

1
τ .

Pseudofinitely, general position corresponds to a “minimality” condition:
a ∈W (K) is in (coarse) general position if

∀B ⊆ K. (trd(a/B) < trd(a)⇒ δ(a/B) = 0).



Approximate subgroups of linear algebraic groups

Example (Approximate subgroups of nilpotent algebraic groups)

X :=


1 a c
0 1 b
0 0 1

 : a, b ∈ {−N, . . . ,N}, c ∈ {−N2, . . . ,N2}


then |X 3 ∩ Γ∗| ≥ c |X |2,
but X is not in general position.

I Define “weak general position” (wgp) by
trd(a/B) < trd(a)⇒ δ(a/B) < δ(a).

I By a result of Breuillard-Green-Tao ’11: if G is a linear complex
algebraic group, then Γ∗ ≤ G is wgp-coherent iff G is nilpotent.

I Can we characterise wgp-coherence in terms of nilpotent algebraic
groups?
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Positive characteristic revisited

I For K = Falg
p , any algebraic set V ⊆ Kn is coherent.

I Hrushovski conjectures that coherence satisfies trichotomy in the
form: “Any non-modularity of coherence is due to an infinite
pseudofinite field”.

I So what about coherence in K where K ∩ Falg
p is finite, e.g.

K = Fp(t)?
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Distal cutting
Definition

A distal cell decomposition of a binary relation R ⊆ A× B consists of
relations ∆1, . . . ,∆t ⊆ A× Bs such that:
for any finite B0 ⊆fin B , any a ∈ A is in some ∆i (b) with b ∈ Bs

0 such
that for all b′ ∈ B0:
∆i (b) ⊆ R(b′) or ∆i (b) ∩ R(b′) = ∅.

Theorem (Chernikov-Galvin-Starchenko, Chernikov-Starchenko ’20;
“Szemerédi-Trotter case”)

If R ⊆ A× B admits a distal cell decomposition and

∃t ∈ N. ∀b 6= b′ ∈ B. |R(b) ∩ R(b′)| < t,

then there is ε > 0 such that for all N and A0 ⊆ A and B0 ⊆ B with
|A0| ≤ N2, |B0| ≤ Nm:

R ∩ (A0 × B0) ≤ O(Nm+1−ε).



Distality in Fp(t)
Fact (Chernikov-Simon ’12)

A theory is distal iff every definable relation admits a distal cell
decomposition with definable ∆i .

The fields R and Qp are distal. Fp(t) is certainly not distal. However

Proposition (B - J-F Martin ’20?)

If K is a valued field with finite residue field, then it is “quantifier-free
distal”: every quantifier-free definable relation admits a distal cell
decomposition with quantifier-free definable ∆i .

Corollary

If K is a finitely generated field of positive characteristic (e.g. Fp(t)),
then any polynomially defined relation R ⊆ Kn × Km admits a distal cell
decomposition.
Hence no 2-dimensional algebraic family of plane curves V ⊆ K 2 × Km is
coherent, and coherence in K is modular.



Thanks

Thanks.



Bonus: Speculation

Tentative Definition

I V ⊆
∏

i Wi is special if there are fi : Wi → Si such that:
V ′ := (

∏
fi )(V ) ⊆

∏
Si is special,

and there are commutative group schemes Gi → Si
and a subgroup scheme H → V ′ of

∏
i Gi →

∏
i Si

(with fibres being subgroups defined by division rings)
and a relative algebraic correspondence V ∼ H over V ′

projecting to relative correspondences Wi ∼ Gi .
I {(0, . . . , 0)} ⊆ {0} × . . .× {0} is special.

I ΓG ⊆ G 3 is special for G a nilpotent algebraic group.
I Coherent ⇔ special?
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