Geometric stability theory and pseudofinite combinatorics

Martin Bays

17.09.2020

Chemnitz

Erdős geometry

Example (Szemerédi-Trotter (1983))

Given N^{2} points and N^{2} lines in \mathbb{R}^{2}, the number of incidences is bounded as

$$
|\{(p, I): p \in I\}| \leq O\left(N^{\frac{8}{3}}\right)
$$

Example ("Sum-product phenomenon")
For any finite set $A \subseteq \mathbb{C}$,

$$
|A| \leq O\left(\max (|A+A|,|A * A|)^{\frac{4}{5}}\right)
$$

(This particular bound is due to Solymosi (2005).)
Example (Orchard problem)
Find large finite subsets $X \subseteq \mathbb{R}^{2}$ such that $\geq c|X|^{2}$ lines contain at least 3 points of X.

Orchard solution: linear

Example (Orchard problem)

Find large finite subsets $X \subseteq \mathbb{R}^{2}$ such that $\geq c|X|^{2}$ lines contain at least 3 points of X.

($\sim \frac{|X|^{2}}{18}$ 3-point lines)

Orchard solution: linear

(Image from Elekes-Szabó "On triple lines and cubic curves")
($\sim \frac{|X|^{2}}{18}$ 3-point lines)

Orchard solution: multiplicative $\mathrm{N}=7$

Orchard solution: multiplicative $\mathrm{N}=13$

($\sim \frac{|X|^{2}}{8}$ 3-point lines)

Orchard solution: multiplicative transformed

($\sim \frac{|X|^{2}}{8}$ 3-point lines)

Orchard solution: elliptic

(Image from Green-Tao "On sets defining few ordinary lines")
($\sim \frac{|X|^{2}}{6}$ 3-point lines)

Orchard solutions

Cubic curves provide solutions to the orchard problem. Conversely:
Theorem (Elekes-Szabó '13)
Let $C \subseteq \mathbb{R}^{2}$ be an irreducible algebraic curve which is not cubic, i.e. $\operatorname{deg}(C) \neq 3$.
Then for $X \subseteq_{\text {fin }} C(\mathbb{R})$,

$$
\mid\{3 \text {-point lines }\} \mid \leq O\left(|X|^{2-\epsilon}\right)
$$

where $\epsilon=\epsilon(\operatorname{deg}(C))>0$.

Structures

- A structure is a set M with a choice of \emptyset-definable sets $X \subseteq M^{n}$, closed under intersection, complement, cartesian product, and co-ordinate projection, and including the diagonal $\Delta \subseteq M^{2}$.
- Examples:
(i) Pure infinite set:
\emptyset-definable sets are boolean combinations of diagonals.
(ii) Vector space over a division ring:
\emptyset-definable sets are boolean combinations of linear subspaces.
(iii) Algebraically closed field:
\emptyset-definable sets are boolean combinations of algebraic sets over the prime field.
- The M-definable sets are those of form $\{x:(x, m) \in X\} \subseteq M^{n}$ where $X \subseteq M^{n+m}$ is \emptyset-definable and $m \in M^{m}$.
- We consider only structures M which are ω_{1}-compact: if $X_{0} \supseteq X_{1} \supseteq \ldots$ is a decreasing chain of non-empty M-definable sets, then $\bigcap_{i \in \omega} X_{i} \neq \emptyset$.

Geometric stability theory: minimality

- An infinite \emptyset-definable set X is minimal if the only M-definable subsets are the finite subsets and their complements.
- Then for $C \subseteq X$, the algebraic closure $\operatorname{acl}(C)$ is the closure of C under \emptyset-definable finitely valued multifunctions $X^{n} \rightarrow X$.
- This induces a dimension function $\operatorname{dim}(C)$.

Examples

(i) Pure infinite set:
$-\operatorname{acl}(C)=C$.

- $\operatorname{dim}(C)=|C|$.
(ii) Vector space over a division ring k :
$-\operatorname{acl}(C)=\langle C\rangle_{k}$.
- $\operatorname{dim}(C)=\operatorname{dim}_{k}\left(\langle C\rangle_{k}\right)$.
(iii) Algebraically closed field:
- $\operatorname{acl}(C)=[$ algebraically closed subfield generated by $C]$.
- $\operatorname{dim}(C)=\operatorname{trd}(C)$.

Combinatorial geometries

Geometry of a minimal set X :

$$
\mathcal{G}_{X}:=(\{\operatorname{acl}(x): x \in X\} ; \operatorname{acl}) .
$$

Definitions

A geometry $(P ; \mathrm{cl})$ is modular if for $a, b \in P$ and $C=c l(C) \subseteq P$, if $a \in \operatorname{cl}(b C)$ then $a \in \operatorname{cl}(b c)$ for some $c \in C$.

Fact (Veblen-Young co-ordinatisation theorem)
A geometry is modular if and only if it is the disjoint union of

- geometries of dimension ≤ 3, and
- projective geometries $\mathbb{P}_{k}(V)$ of vector spaces over division rings.

Trichotomy

Theorem (Zilber's weak trichotomy theorem; 1980's)
For X minimal, up to naming parameters, exactly one of the following holds:
(i) Modular and disintegrated:

For $A \subseteq \mathcal{G}_{X}, \operatorname{acl}(A)=A$.
(ii) Modular and not disintegrated:
$\mathcal{G}_{X}=\mathbb{P}_{k}(V)$
where V is a definable abelian group with a division ring k of definable finitely-valued endomorphisms and no further structure, and X is in definable finite-to-finite correspondence with V.
(iii) Not modular:

There exists a 2-dimensional definable family of minimal subsets of X^{2}, e.g. $\{\{y=a x+b\}: a, b\}$.

Coherence

- Let K be a field.
- Let $V \subseteq K^{m}$ be an algebraic set over K.
- "Trivial bound": For $A_{i} \subseteq K$ with $\left|A_{i}\right|=N$, we have

$$
\left|V \cap \prod_{i=1}^{m} A_{i}\right| \leq O\left(N^{\operatorname{dim}(V)}\right)
$$

- Say V is coherent if the exponent in the trivial bound is optimal i.e. for no $\epsilon>0$ do we have for $A_{i} \subseteq K$ with $\left|A_{i}\right|=N$

$$
\left|V \cap \prod_{i=1}^{m} A_{i}\right| \leq O\left(N^{\operatorname{dim}(V)-\epsilon}\right)
$$

Coherence examples

- $V:=\{(x, y, a, b): y=a x+b\} ; \operatorname{dim}(V)=3$.

By Szemerédi-Trotter, for $K=\mathbb{R}$ (in fact: whenever $\operatorname{char}(K)=0$), if $\left|A_{i}\right|=N$ then

$$
\left|V \cap \prod_{i=1}^{4} A_{i}\right| \leq O\left(N^{\frac{8}{3}}\right)=O\left(N^{3-\frac{1}{3}}\right)
$$

so V is not coherent.

- Sum-product implies $V:=\{(x, y, z, w): z=x+y, w=x y\} \subseteq \mathbb{C}^{4}$ is not coherent.
- Orchard: Given an irreducible algebraic curve $C \subseteq \mathbb{C}^{2}$, let $V_{C}:=\left\{(x, y, z) \in C^{3}: x, y, z\right.$ are collinear and distinct $\} \subseteq \mathbb{C}^{6}$.

Then by Elekes-Szabó, C is coherent iff cubic.

Positive characteristic

For $K=\mathbb{F}_{p}^{\text {alg }}$, any algebraic set $V \subseteq K^{n}$ is coherent: in fact there is $r>0$ such that for $n \gg 0$,

$$
\left|V\left(\mathbb{F}_{p^{n}}\right)\right| \geq r\left(p^{n}\right)^{\operatorname{dim} V}
$$

Modularity of coherence

- Szemerédi-Trotter for \mathbb{C} implies:

The family of lines on the plane $\{y=a x+b\} \subseteq \mathbb{C}^{4}$ is not coherent.

- Generalisations imply: no \geq 2-dimensional family of plane curves $C_{b} \subseteq \mathbb{C}^{2}$ is coherent.
- Hrushovski '13: This suggests "coherence is modular".

Modularity of coherence

- Szemerédi-Trotter for \mathbb{C} implies:

The family of lines on the plane $\{y=a x+b\} \subseteq \mathbb{C}^{4}$ is not coherent.

- Generalisations imply: no \geq 2-dimensional family of plane curves $C_{b} \subseteq \mathbb{C}^{2}$ is coherent.
- Hrushovski '13: This suggests "coherence is modular".
- Elekes-Szabó '12: using these Szemerédi-Trotter bounds and arguments inspired by model theory (group configuration), characterise coherence for surfaces $V \subseteq \mathbb{C}^{3}$.

Modularity of coherence

- Szemerédi-Trotter for \mathbb{C} implies:

The family of lines on the plane $\{y=a x+b\} \subseteq \mathbb{C}^{4}$ is not coherent.

- Generalisations imply: no \geq 2-dimensional family of plane curves $C_{b} \subseteq \mathbb{C}^{2}$ is coherent.
- Hrushovski '13: This suggests "coherence is modular".
- Elekes-Szabó '12: using these Szemerédi-Trotter bounds and arguments inspired by model theory (group configuration), characterise coherence for surfaces $V \subseteq \mathbb{C}^{3}$.
- B-Breuillard '18: associate a modular geometry to coherent structure, and hence characterise coherence for $V \subseteq \mathbb{C}^{n}$.

Geometry of coherence

Fix $\mathcal{U} \subseteq \mathbb{P}(\mathbb{N})$ a non-principal ultrafilter, and let $K:=\mathbb{C}^{\mathcal{U}}$ be the corresponding countable ultrapower of \mathbb{C}. Let \mathcal{U}^{\prime} be a further ultrafilter and set $\mathbb{K}:=K^{\mathcal{U}^{\prime}}$. Fix $N_{i} \in \mathbb{N}$.

Definition (Hrushovski-Wagner coarse pseudo-finite dimension)
For $\bar{a} \in \mathbb{K}^{n}$, define $\boldsymbol{\delta}(\bar{a}) \in[0, \infty]$ by:
$\delta(\bar{a}) \leq \alpha \in \mathbb{R}$ if and only if $\bar{a} \in\left(\prod_{i \rightarrow \mathcal{U}} A_{i}\right)^{\mathcal{U}^{\prime}}$ for some $A_{i} \subseteq_{\text {fin }} \mathbb{C}^{n}$ with $\left|A_{i}\right| \leq O\left(N_{i}^{\alpha}\right)$.

- Say $P \subseteq \mathbb{K}$ is coherent if $\delta(\bar{a})=\operatorname{trd}(\mathbb{C}(\bar{a}) / \mathbb{C})$ for any $\bar{a} \in P^{<\omega}$.
- Then an irreducible algebraic set $V \subseteq \mathbb{C}^{n}$ is coherent iff it is the \mathbb{C}-Zariski closure of some $\bar{a} \in P^{n}$ for some coherent P (for some choice of \mathcal{U}^{\prime} and N_{i}).

Lemma (B-Breuillard '18)

If $P \subseteq \mathbb{K}$ is a maximal coherent subset, then field-theoretic algebraic closure on P is a modular geometry $(P ; \mathrm{acl})$.

Characterising coherence

- A special subgroup H is an algebraic subgroup of a power of a 1-dimensional algebraic group, $H \leq G^{n}$.
- A variety $V \subseteq \mathbb{C}^{n}$ is special if it is in co-ordinatewise algebraic correspondence with a product of special subgroups.

Theorem (B-Breuillard '18)
$V \subseteq \mathbb{C}^{n}$ is coherent if and only if it is special.

- (For a surface $V \subseteq \mathbb{C}^{3}$, this was already proven by Elekes-Szabó (2012)).

Generalised sum-product

Corollary (B-Breuillard '18)

If $*_{1}, *_{2}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ are (induced from) group operations on 1-dimensional algebraic groups G_{i} (i.e. \mathbb{G}_{a} or \mathbb{G}_{m} or an elliptic curve), then either G_{1} and G_{2} are isogenous, or there exist $c, \epsilon>0$ such that for finite sets $A \subseteq_{\text {fin }} \mathbb{C}$,

$$
|A| \leq c \cdot\left(\max \left(\left|A *_{1} A\right|,\left|A *_{2} A\right|\right)^{1-\epsilon}\right) .
$$

Higher dimension

Question (Higher orchard)
Which algebraic surfaces $S \subseteq \mathbb{R}^{3}$ support arbitrarily large finite subsets $X \subseteq S$ with $\geq c|X|^{2}$ 3-point lines?

Question (Erdős discrete distances problem)
Given N points in \mathbb{R}^{2}, what is the minimal number of distances between pairs of the points? (Guth-Katz '15: $\geq c \frac{N}{\log N}$.)

General context: rather than $V \subseteq \mathbb{C}^{n}$, consider subvarieties $V \subseteq \prod_{i} W_{i}$ where W_{1}, \ldots, W_{n} are arbitrary complex algebraic varieties.

Coherence with general position

$V \subseteq \prod_{i=1}^{n} W_{i}, \operatorname{dim}\left(W_{i}\right)=d$.

- V is coherent if for no $\epsilon>0$ do we have a bound

$$
\left|V \cap \prod_{i} A_{i}\right| \leq O\left(N^{\operatorname{dim}(V)-\epsilon}\right)
$$

for $A_{i} \subseteq W_{i}$ in "sufficiently general position" with $\left|A_{i}\right| \leq N^{d}$.

- A special subgroup H is an algebraic subgroup of a power of a commutative d-dimensional algebraic group, $H \leq G^{k}$
- (and $H=\operatorname{ker}(M)^{0}$ for some $M \in \operatorname{Mat}_{k}(F)$ for some division ring F of quasi-endomorphisms.)
- A variety is special if it is in co-ordinatewise algebraic correspondence with a product of special subgroups.
- Generalising a result of [Elekes-Szabó '12] in the case $n=3$:

Theorem (B-Breuillard '18)

V is coherent if and only if it is special.

General position

"Sufficiently general position" means (C, τ)-general position for some C, τ, where:

Definition

$A \subseteq_{\text {fin }} W$ is in (C, τ)-general position if for any proper subvariety $W^{\prime} \nsubseteq W$ of complexity $\leq C$, we have $\left|W^{\prime} \cap A\right| \leq|A|^{\frac{1}{\tau}}$.

Pseudofinitely, general position corresponds to a "minimality" condition: $a \in W(\mathbb{K})$ is in (coarse) general position if

$$
\forall B \subseteq \mathbb{K} .(\operatorname{trd}(a / B)<\operatorname{trd}(a) \Rightarrow \boldsymbol{\delta}(a / B)=0)
$$

Approximate subgroups of linear algebraic groups
Example (Approximate subgroups of nilpotent algebraic groups)

$$
X:=\left\{\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right): a, b \in\{-N, \ldots, N\}, c \in\left\{-N^{2}, \ldots, N^{2}\right\}\right\}
$$

then $\left|X^{3} \cap \Gamma_{*}\right| \geq c|X|^{2}$,
but X is not in general position.

Approximate subgroups of linear algebraic groups

Example (Approximate subgroups of nilpotent algebraic groups)

$$
X:=\left\{\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right): a, b \in\{-N, \ldots, N\}, c \in\left\{-N^{2}, \ldots, N^{2}\right\}\right\}
$$

then $\left|X^{3} \cap \Gamma_{*}\right| \geq c|X|^{2}$, but X is not in general position.

- Define "weak general position" (wgp) by $\operatorname{trd}(a / B)<\operatorname{trd}(a) \Rightarrow \boldsymbol{\delta}(a / B)<\boldsymbol{\delta}(a)$.
- By a result of Breuillard-Green-Tao '11: if G is a linear complex algebraic group, then $\Gamma_{*} \leq G$ is wgp-coherent iff G is nilpotent.
- Can we characterise wgp-coherence in terms of nilpotent algebraic groups?

Positive characteristic revisited

- For $K=\mathbb{F}_{p}^{\text {alg }}$, any algebraic set $V \subseteq K^{n}$ is coherent.

Positive characteristic revisited

- For $K=\mathbb{F}_{p}^{\text {alg }}$, any algebraic set $V \subseteq K^{n}$ is coherent.
- Hrushovski conjectures that coherence satisfies trichotomy in the form: "Any non-modularity of coherence is due to an infinite pseudofinite field".

Positive characteristic revisited

- For $K=\mathbb{F}_{p}^{\text {alg }}$, any algebraic set $V \subseteq K^{n}$ is coherent.
- Hrushovski conjectures that coherence satisfies trichotomy in the form: "Any non-modularity of coherence is due to an infinite pseudofinite field".
- So what about coherence in K where $K \cap \mathbb{F}_{p}^{\text {alg }}$ is finite, e.g. $K=\mathbb{F}_{p}(t)$?

Distal cutting

Definition

A distal cell decomposition of a binary relation $R \subseteq A \times B$ consists of relations $\Delta_{1}, \ldots, \Delta_{t} \subseteq A \times B^{s}$ such that:
for any finite $B_{0} \subseteq_{\text {fin }} B$, any $a \in A$ is in some $\Delta_{i}(b)$ with $b \in B_{0}^{s}$ such that for all $b^{\prime} \in B_{0}$:
$\Delta_{i}(b) \subseteq R\left(b^{\prime}\right)$ or $\Delta_{i}(b) \cap R\left(b^{\prime}\right)=\emptyset$.
Theorem (Chernikov-Galvin-Starchenko, Chernikov-Starchenko '20; "Szemerédi-Trotter case")

If $R \subseteq A \times B$ admits a distal cell decomposition and

$$
\exists t \in \mathbb{N} . \forall b \neq b^{\prime} \in B .\left|R(b) \cap R\left(b^{\prime}\right)\right|<t
$$

then there is $\epsilon>0$ such that for all N and $A_{0} \subseteq A$ and $B_{0} \subseteq B$ with $\left|A_{0}\right| \leq N^{2},\left|B_{0}\right| \leq N^{m}$:

$$
R \cap\left(A_{0} \times B_{0}\right) \leq O\left(N^{m+1-\epsilon}\right)
$$

Distality in $\mathbb{F}_{p}(t)$

Fact (Chernikov-Simon '12)

A theory is distal iff every definable relation admits a distal cell decomposition with definable Δ_{i}.

The fields \mathbb{R} and \mathbb{Q}_{p} are distal. $\mathbb{F}_{p}(t)$ is certainly not distal. However

Proposition (B - J-F Martin '20?)

If K is a valued field with finite residue field, then it is "quantifier-free distal": every quantifier-free definable relation admits a distal cell decomposition with quantifier-free definable Δ_{i}.

Corollary

If K is a finitely generated field of positive characteristic (e.g. $\mathbb{F}_{p}(t)$), then any polynomially defined relation $R \subseteq K^{n} \times K^{m}$ admits a distal cell decomposition.
Hence no 2-dimensional algebraic family of plane curves $V \subseteq K^{2} \times K^{m}$ is coherent, and coherence in K is modular.

Thanks

Thanks.

Bonus: Speculation

Tentative Definition

- $V \subseteq \prod_{i} W_{i}$ is special if there are $f_{i}: W_{i} \rightarrow S_{i}$ such that:
$V^{\prime}:=\left(\prod f_{i}\right)(V) \subseteq \prod S_{i}$ is special,
and there are commutative group schemes $G_{i} \rightarrow S_{i}$ and a subgroup scheme $H \rightarrow V^{\prime}$ of $\prod_{i} G_{i} \rightarrow \prod_{i} S_{i}$ (with fibres being subgroups defined by division rings) and a relative algebraic correspondence $V \sim H$ over V^{\prime} projecting to relative correspondences $W_{i} \sim G_{i}$.
- $\{(0, \ldots, 0)\} \subseteq\{0\} \times \ldots \times\{0\}$ is special.
- $\Gamma_{G} \subseteq G^{3}$ is special for G a nilpotent algebraic group.
- Coherent \Leftrightarrow special?

References

- Martin Bays and Emmanuel Breuillard.

Projective geometries arising from Elekes-Szabó problems. 2018.
arxiv:1806.03422 [math.CO; math.LO].
Emmanuel Breuillard, Ben Green, and Terence Tao.
Approximate subgroups of linear groups.
Geom. Funct. Anal., 21(4):774-819, 2011.
固 György Elekes and Endre Szabó.
How to find groups? (and how to use them in Erdős geometry?). Combinatorica, 32(5):537-571, 2012.

图 György Elekes and Endre Szabó.
On triple lines and cubic curves - the orchard problem revisited. 2013.
arxiv:1302.5777 [math.CO].

Further references

Ben Green and Terence Tao.
On sets defining few ordinary lines.
Discrete Comput. Geom., 50(2):409-468, 2013.
Ehud Hrushovski.
On pseudo-finite dimensions.
Notre Dame J. Form. Log., 54(3-4):463-495, 2013.
围 József Solymosi.
On sum-sets and product-sets of complex numbers.
J. Théor. Nombres Bordeaux, 17(3):921-924, 2005.

Richard Pink.
A combination of the conjectures of Mordell-Lang and André-Oort.
In Geometric methods in algebra and number theory, volume 235 of Progr. Math., pages 251-282. Birkhäuser Boston, Boston, MA, 2005.

