Geometric stability theory and pseudofinite combinatorics

Martin Bays

17.09.2020 Chemnitz

Erdős geometry

Example (Szemerédi-Trotter (1983))

Given N^2 points and N^2 lines in \mathbb{R}^2 , the number of incidences is bounded as

$$|\{(p, l) : p \in l\}| \le O(N^{\frac{8}{3}}).$$

Example ("Sum-product phenomenon")

For any finite set $A \subseteq \mathbb{C}$,

$$|A| \le O(\max(|A + A|, |A * A|)^{\frac{4}{5}}).$$

(This particular bound is due to Solymosi (2005).)

Example (Orchard problem)

Find large finite subsets $X \subseteq \mathbb{R}^2$ such that $\geq c|X|^2$ lines contain at least 3 points of X.

Orchard solution: linear

Example (Orchard problem)

Find large finite subsets $X \subseteq \mathbb{R}^2$ such that $\geq c|X|^2$ lines contain at least 3 points of X.

(
$$\sim \frac{|X|^2}{18}$$
 3-point lines)

Orchard solution: linear

(Image from Elekes-Szabó "On triple lines and cubic curves")

(~ $\frac{|X|^2}{18}$ 3-point lines)

Orchard solution: multiplicative N=7

Orchard solution: multiplicative N=13

$$(\sim \frac{|X|^2}{8}$$
 3-point lines)

Orchard solution: multiplicative transformed

(Image from Green-Tao "On sets defining few ordinary lines")

 $(\sim \frac{|X|^2}{8}$ 3-point lines)

Orchard solution: elliptic

(Image from Green-Tao "On sets defining few ordinary lines")

 $(\sim \frac{|X|^2}{6}$ 3-point lines)

Orchard solutions

Cubic curves provide solutions to the orchard problem. Conversely:

Theorem (Elekes-Szabó '13)

Let $C \subseteq \mathbb{R}^2$ be an irreducible algebraic curve which is **not** cubic, i.e. deg(C) \neq 3. Then for $X \subseteq_{fin} C(\mathbb{R})$,

 $|\{ \text{ 3-point lines }\}| \leq O(|X|^{2-\epsilon}),$

where $\epsilon = \epsilon(\deg(C)) > 0$.

Structures

- A structure is a set M with a choice of Ø-definable sets X ⊆ Mⁿ, closed under intersection, complement, cartesian product, and co-ordinate projection, and including the diagonal Δ ⊆ M².
- Examples:
 - (i) Pure infinite set:

 \emptyset -definable sets are boolean combinations of diagonals.

- (ii) Vector space over a division ring:
 ∅-definable sets are boolean combinations of linear subspaces.
- (iii) Algebraically closed field:
 Ø-definable sets are boolean combinations of algebraic sets over the prime field.
- ▶ The *M*-definable sets are those of form $\{x : (x, m) \in X\} \subseteq M^n$ where $X \subseteq M^{n+m}$ is Ø-definable and $m \in M^m$.
- We consider only structures M which are ω₁-compact: if X₀ ⊇ X₁ ⊇ ... is a decreasing chain of non-empty M-definable sets, then ∩_{i∈ω} X_i ≠ Ø.

Geometric stability theory: minimality

- ► An infinite Ø-definable set X is **minimal** if the only *M*-definable subsets are the finite subsets and their complements.
- Then for C ⊆ X, the algebraic closure acl(C) is the closure of C under Ø-definable finitely valued multifunctions Xⁿ → X.
- ► This induces a **dimension function** dim(*C*).

Examples

- (i) Pure infinite set:
 - $\operatorname{acl}(C) = C$.
 - dim(C) = |C|.
- (ii) Vector space over a division ring k:

•
$$\operatorname{acl}(C) = \langle C \rangle_k$$
.

- dim(C) = dim_k($\langle C \rangle_k$).
- (iii) Algebraically closed field:
 - acl(C) = [algebraically closed subfield generated by C].
 - dim(C) = trd(C).

Combinatorial geometries

Geometry of a minimal set X:

$$\mathcal{G}_X := (\{\operatorname{acl}(x) : x \in X\}; \operatorname{acl}).$$

Definitions

A geometry (P; cl) is **modular** if for $a, b \in P$ and $C = cl(C) \subseteq P$, if $a \in cl(bC)$ then $a \in cl(bc)$ for some $c \in C$.

Fact (Veblen-Young co-ordinatisation theorem)

A geometry is modular if and only if it is the disjoint union of

- geometries of dimension \leq 3, and
- projective geometries $\mathbb{P}_k(V)$ of vector spaces over division rings.

Trichotomy

Theorem (Zilber's weak trichotomy theorem; 1980's)

For X minimal, up to naming parameters, exactly one of the following holds:

- (i) Modular and disintegrated: For $A \subseteq \mathcal{G}_X$, $\operatorname{acl}(A) = A$.
- (ii) Modular and not disintegrated:

 $\mathcal{G}_X = \mathbb{P}_k(V)$

where V is a definable abelian group with a division ring k of definable finitely-valued endomorphisms and no further structure, and X is in definable finite-to-finite correspondence with V.

(iii) Not modular:

There exists a 2-dimensional definable family of minimal subsets of X^2 , e.g. $\{\{y = ax + b\} : a, b\}$.

Coherence

- ► Let *K* be a field.
- Let $V \subseteq K^m$ be an algebraic set over K.
- "Trivial bound": For $A_i \subseteq K$ with $|A_i| = N$, we have

$$\left|V\cap\prod_{i=1}^m A_i\right|\leq O(N^{\dim(V)}).$$

Say V is coherent if the exponent in the trivial bound is optimal i.e. for no e > 0 do we have for A_i ⊆ K with |A_i| = N

$$\left| V \cap \prod_{i=1}^m A_i \right| \leq O(N^{\dim(V)-\epsilon}).$$

Coherence examples

V := {(x, y, a, b) : y = ax + b}; dim(V) = 3.
 By Szemerédi-Trotter, for K = ℝ (in fact: whenever char(K) = 0), if |A_i| = N then

$$|V \cap \prod_{i=1}^{4} A_i| \le O(N^{\frac{8}{3}}) = O(N^{3-\frac{1}{3}}),$$

so V is not coherent.

- Sum-product implies V := {(x, y, z, w) : z = x + y, w = xy} ⊆ C⁴ is not coherent.
- Orchard: Given an irreducible algebraic curve $C \subseteq \mathbb{C}^2$, let $V_C := \{(x, y, z) \in C^3 : x, y, z \text{ are collinear and distinct } \} \subseteq \mathbb{C}^6$.

Then by Elekes-Szabó, C is coherent iff cubic.

Positive characteristic

For $K = \mathbb{F}_p^{\text{alg}}$, any algebraic set $V \subseteq K^n$ is coherent: in fact there is r > 0 such that for $n \gg 0$,

 $|V(\mathbb{F}_{p^n})| \geq r(p^n)^{\dim V}.$

Modularity of coherence

- Szemerédi-Trotter for C implies: The family of lines on the plane {y = ax + b} ⊆ C⁴ is not coherent.
- Generalisations imply: **no** \geq 2-dimensional family of plane curves $C_b \subseteq \mathbb{C}^2$ is coherent.
- ► Hrushovski '13: This suggests "coherence is modular".

Modularity of coherence

- Szemerédi-Trotter for C implies: The family of lines on the plane {y = ax + b} ⊆ C⁴ is not coherent.
- Generalisations imply:
 no ≥ 2-dimensional family of plane curves C_b ⊆ C² is coherent.
- ► Hrushovski '13: This suggests "coherence is modular".
- ► Elekes-Szabó '12: using these Szemerédi-Trotter bounds and arguments inspired by model theory (group configuration), characterise coherence for surfaces V ⊆ C³.

Modularity of coherence

- Szemerédi-Trotter for C implies: The family of lines on the plane {y = ax + b} ⊆ C⁴ is not coherent.
- Generalisations imply:
 no ≥ 2-dimensional family of plane curves C_b ⊆ C² is coherent.
- ► Hrushovski '13: This suggests "coherence is modular".
- ► Elekes-Szabó '12: using these Szemerédi-Trotter bounds and arguments inspired by model theory (group configuration), characterise coherence for surfaces V ⊆ C³.
- ▶ B-Breuillard '18: associate a modular geometry to coherent structure, and hence characterise coherence for V ⊆ Cⁿ.

Geometry of coherence

Fix $\mathcal{U} \subseteq \mathbb{P}(\mathbb{N})$ a non-principal ultrafilter, and let $\mathcal{K} := \mathbb{C}^{\mathcal{U}}$ be the corresponding countable ultrapower of \mathbb{C} . Let \mathcal{U}' be a further ultrafilter and set $\mathbb{K} := \mathcal{K}^{\mathcal{U}'}$. Fix $N_i \in \mathbb{N}$.

Definition (Hrushovski-Wagner coarse pseudo-finite dimension)

For $\overline{a} \in \mathbb{K}^n$, define $\delta(\overline{a}) \in [0, \infty]$ by: $\delta(\overline{a}) \leq \alpha \in \mathbb{R}$ if and only if $\overline{a} \in (\prod_{i \to \mathcal{U}} A_i)^{\mathcal{U}'}$ for some $A_i \subseteq_{fin} \mathbb{C}^n$ with $|A_i| \leq O(N_i^{\alpha})$.

- Say $P \subseteq \mathbb{K}$ is coherent if $\delta(\overline{a}) = \operatorname{trd}(\mathbb{C}(\overline{a})/\mathbb{C})$ for any $\overline{a} \in P^{<\omega}$.
- Then an irreducible algebraic set V ⊆ Cⁿ is coherent iff it is the C-Zariski closure of some ā ∈ Pⁿ for some coherent P (for some choice of U' and N_i).

Lemma (B-Breuillard '18)

If $P \subseteq \mathbb{K}$ is a maximal coherent subset, then field-theoretic algebraic closure on P is a modular geometry (P; acl).

Characterising coherence

- A special subgroup *H* is an algebraic subgroup of a power of a 1-dimensional algebraic group, *H* ≤ *Gⁿ*.
- A variety V ⊆ Cⁿ is special if it is in co-ordinatewise algebraic correspondence with a product of special subgroups.

Theorem (B-Breuillard '18)

- $V \subseteq \mathbb{C}^n$ is coherent if and only if it is special.
 - (For a surface V ⊆ C³, this was already proven by Elekes-Szabó (2012)).

Generalised sum-product

Corollary (B-Breuillard '18)

If $*_1, *_2 : \mathbb{C}^2 \to \mathbb{C}$ are (induced from) group operations on 1-dimensional algebraic groups G_i (i.e. \mathbb{G}_a or \mathbb{G}_m or an elliptic curve), then either G_1 and G_2 are isogenous, or there exist $c, \epsilon > 0$ such that for finite sets $A \subseteq_{\text{fin}} \mathbb{C}$,

$$|\mathsf{A}| \leq c \cdot (\mathsf{max}(|\mathsf{A}*_1\mathsf{A}|,|\mathsf{A}*_2\mathsf{A}|)^{1-\epsilon}).$$

Higher dimension

Question (Higher orchard)

Which algebraic surfaces $S \subseteq \mathbb{R}^3$ support arbitrarily large finite subsets $X \subseteq S$ with $\geq c|X|^2$ 3-point lines?

Question (Erdős discrete distances problem)

Given N points in \mathbb{R}^2 , what is the minimal number of distances between pairs of the points? (Guth-Katz '15: $\geq c \frac{N}{\log N}$.)

General context: rather than $V \subseteq \mathbb{C}^n$, consider subvarieties $V \subseteq \prod_i W_i$ where W_1, \ldots, W_n are arbitrary complex algebraic varieties. Coherence with general position

$$V \subseteq \prod_{i=1}^{n} W_i$$
, dim $(W_i) = d$.

• V is coherent if for no $\epsilon > 0$ do we have a bound

$$\left| V \cap \prod_{i} A_{i} \right| \leq O\left(N^{\dim(V) - \epsilon} \right)$$

for $A_i \subseteq W_i$ in "sufficiently general position" with $|A_i| \leq N^d$.

- A special subgroup *H* is an algebraic subgroup of a power of a <u>commutative</u> *d*-dimensional algebraic group, *H* ≤ *G^k*
 - (and H = ker(M)⁰ for some M ∈ Mat_k(F) for some division ring F of quasi-endomorphisms.)
- A variety is special if it is in co-ordinatewise algebraic correspondence with a product of special subgroups.
- Generalising a result of [Elekes-Szabó '12] in the case n = 3:

Theorem (B-Breuillard '18)

V is coherent if and only if it is special.

General position

"Sufficiently general position" means (C, τ)-general position for some C, τ , where:

Definition

 $A \subseteq_{\text{fin}} W$ is in (C, τ) -general position if for any proper subvariety $W' \not\subseteq W$ of complexity $\leq C$, we have $|W' \cap A| \leq |A|^{\frac{1}{\tau}}$.

Pseudofinitely, general position corresponds to a "minimality" condition: $a \in W(\mathbb{K})$ is in (coarse) general position if

 $\forall B \subseteq \mathbb{K}. \ (\operatorname{trd}(a/B) < \operatorname{trd}(a) \Rightarrow \delta(a/B) = 0).$

Approximate subgroups of linear algebraic groups

Example (Approximate subgroups of nilpotent algebraic groups)

$$X := \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b \in \{-N, \dots, N\}, \ c \in \{-N^2, \dots, N^2\} \right\}$$

then $|X^3 \cap \Gamma_*| \ge c |X|^2$, but X is <u>not</u> in general position.

Approximate subgroups of linear algebraic groups

Example (Approximate subgroups of nilpotent algebraic groups)

$$X := \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b \in \{-N, \dots, N\}, \ c \in \{-N^2, \dots, N^2\} \right\}$$

then $|X^3 \cap \Gamma_*| \ge c |X|^2$, but X is <u>not</u> in general position.

- Define "weak general position" (wgp) by $\operatorname{trd}(a/B) < \operatorname{trd}(a) \Rightarrow \delta(a/B) < \delta(a)$.
- ▶ By a result of Breuillard-Green-Tao '11: if G is a linear complex algebraic group, then $\Gamma_* \leq G$ is wgp-coherent iff G is nilpotent.
- Can we characterise wgp-coherence in terms of nilpotent algebraic groups?

Positive characteristic revisited

• For $K = \mathbb{F}_p^{\text{alg}}$, any algebraic set $V \subseteq K^n$ is coherent.

Positive characteristic revisited

- For $K = \mathbb{F}_p^{\text{alg}}$, any algebraic set $V \subseteq K^n$ is coherent.
- Hrushovski conjectures that coherence satisfies trichotomy in the form: "Any non-modularity of coherence is due to an infinite pseudofinite field".

Positive characteristic revisited

- For $K = \mathbb{F}_p^{\text{alg}}$, any algebraic set $V \subseteq K^n$ is coherent.
- Hrushovski conjectures that coherence satisfies trichotomy in the form: "Any non-modularity of coherence is due to an infinite pseudofinite field".
- So what about coherence in K where $K \cap \mathbb{F}_p^{\text{alg}}$ is finite, e.g. $K = \mathbb{F}_p(t)$?

Distal cutting

Definition

A distal cell decomposition of a binary relation $R \subseteq A \times B$ consists of relations $\Delta_1, \ldots, \Delta_t \subseteq A \times B^s$ such that: for any finite $B_0 \subseteq_{\text{fin}} B$, any $a \in A$ is in some $\Delta_i(b)$ with $b \in B_0^s$ such that for all $b' \in B_0$: $\Delta_i(b) \subseteq R(b')$ or $\Delta_i(b) \cap R(b') = \emptyset$.

Theorem (Chernikov-Galvin-Starchenko, Chernikov-Starchenko '20; "Szemerédi-Trotter case")

If $R \subseteq A \times B$ admits a distal cell decomposition and

 $\exists t \in \mathbb{N}. \forall b \neq b' \in B. |R(b) \cap R(b')| < t,$

then there is $\epsilon > 0$ such that for all N and $A_0 \subseteq A$ and $B_0 \subseteq B$ with $|A_0| \leq N^2, |B_0| \leq N^m$:

$$R \cap (A_0 \times B_0) \leq O(N^{m+1-\epsilon}).$$

Distality in $\mathbb{F}_p(t)$

Fact (Chernikov-Simon '12)

A theory is distal iff every definable relation admits a distal cell decomposition with definable Δ_i .

The fields \mathbb{R} and \mathbb{Q}_p are distal. $\mathbb{F}_p(t)$ is certainly not distal. However

Proposition (B - J-F Martin '20?)

If K is a valued field with finite residue field, then it is "quantifier-free distal": every quantifier-free definable relation admits a distal cell decomposition with quantifier-free definable Δ_i .

Corollary

If K is a finitely generated field of positive characteristic (e.g. $\mathbb{F}_p(t)$), then any polynomially defined relation $R \subseteq K^n \times K^m$ admits a distal cell decomposition.

Hence no 2-dimensional algebraic family of plane curves $V \subseteq K^2 \times K^m$ is coherent, and coherence in K is modular.

Thanks

Thanks.

Bonus: Speculation

Tentative Definition

- ▶ $V \subseteq \prod_i W_i$ is special if there are $f_i : W_i \to S_i$ such that: $V' := (\prod f_i)(V) \subseteq \prod S_i$ is special, and there are commutative group schemes $G_i \to S_i$ and a subgroup scheme $H \to V'$ of $\prod_i G_i \to \prod_i S_i$ (with fibres being subgroups defined by division rings) and a relative algebraic correspondence $V \sim H$ over V'projecting to relative correspondences $W_i \sim G_i$.
- $\{(0,\ldots,0)\} \subseteq \{0\} \times \ldots \times \{0\}$ is special.
- $\Gamma_G \subseteq G^3$ is special for G a nilpotent algebraic group.
- Coherent \Leftrightarrow special?

References

- Martin Bays and Emmanuel Breuillard.
 Projective geometries arising from Elekes-Szabó problems.
 2018.
 arxiv:1806.03422 [math.CO; math.LO].
 - Emmanuel Breuillard, Ben Green, and Terence Tao. Approximate subgroups of linear groups. Geom. Funct. Anal., 21(4):774–819, 2011.
- György Elekes and Endre Szabó. How to find groups? (and how to use them in Erdős geometry?). Combinatorica, 32(5):537–571, 2012.

György Elekes and Endre Szabó.
 On triple lines and cubic curves - the orchard problem revisited.
 2013.
 arxiv:1302.5777 [math.CO].

Further references

- Ben Green and Terence Tao. On sets defining few ordinary lines. Discrete Comput. Geom., 50(2):409–468, 2013.
 - Ehud Hrushovski. On pseudo-finite dimensions. Notre Dame J. Form. Log., 54(3-4):463–495, 2013.
 - József Solymosi.

On sum-sets and product-sets of complex numbers. *J. Théor. Nombres Bordeaux*, 17(3):921–924, 2005.

Richard Pink.

A combination of the conjectures of Mordell-Lang and André-Oort. In *Geometric methods in algebra and number theory*, volume 235 of *Progr. Math.*, pages 251–282. Birkhäuser Boston, Boston, MA, 2005.