Divergence of geodesics

Write B,(R) for the closed ball {y : d(y,z) < R}, and write B,(R)° for its

interior.

Definition 3.14. A divergence function for a geodesic metric space (X, d)
is an unbounded function e : R>¢ — R such that for all geodesics v,~" with
~v(0) = ~4/(0) =: z, and for all R,r > 0, if d(y(R),7 (R)) > e(0) and R+ r €
dom(y)Ndom(v’), then for any rectifiable path p in X\ B, (R+7r)° from y(R+7)
to 7' (R + 1), we have £(p) > e(r).
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We say geodesics diverge exponentially in X if there is a divergence
function e with lim,_, e(r)a™" = 400 for some a > 1.

Theorem 3.15. Suppose (X,d) is a hyperbolic geodesic metric space. Then
geodesics in X diverge exponentially.

Proof. Let ¢ be such that geodesic triangles in X are J-thin.

Let 7,7 be geodesics with v(0) = v/(0) =: «, let R,r > 0, suppose R+ r €
dom(y) Ndom(y’), and suppose d(y(R),y' (R)) > 6. Let p be a rectifiable path
in X\ By(R+7)° from v(R+ 1) to v (R+ 7).

We conclude by finding a lower bound on ¢(p) which is exponential in r and
depends only on J.

We will recursively define points a; on geodesics «; for i > 0.



First, pick a geodesic ag = [y(R + 7),+' (R + r)]. Since d(y(R),7(R)) > §
and triangles are d-thin, d(y(R), ap) < ¢ for some ag € g (namely ag = ag(r)).

Given a geodesic «; with endpoints b1,b2 on p and a; € «;, let m € p be
the midpoint between b; and by on p, and pick geodesics [b;, m]. Then since
triangles are d-thin, for some j € {1,2} there is ¢ € [b;, m] with d(a;,c) < 4.
Let a;y1 := c and ;41 := [b;, m].

Since we pick the midpoint at each stage, £(c;) < 27%(p) for all i.
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Let n := [logy(¢(p))]. Then d(an,p) < l(ay,) <27™(p) < 1.
So
R+r <d(z,p) (since p C X \ By (R+1)°)
< d(z,7(R)) + d(v(R),a0) + Y d(a;,ais1) + d(an,p)
0<i<n
<R+ (n+1)5+1
< R+ (logy(£(p)) +2)6 + 1,
so £(p) > 25 =2, and
) ifr=0
elr) = {2%12 r>0
is a divergence function as required. O

Say geodesics diverge superlinearly in a geodesic metric space X if there is a
divergence function e with

lim @ = +o00.
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Note that exponential divergence implies superlinear divergence.



Theorem 3.16. If geodesics diverge superlinearly in a geodesic metric space
X, then X s hyperbolic.

Proof. Let e be a divergence function with lim,_, o e(:) =

e(0) > 0.
Let A = [x1, 29, 23] be a geodesic triangle.

+o00. We may assume

Let Ty € [0,min(d(z1,x2),d(z1,23))] be maximal such that ¢ < T} =
d([x1, xz2](t), [x1,23](t)) < €(0), and let aj2 := [x1, 22](T1) and ay3 := [x1, x3](T}).
For ¢ = 2,3, define T; and a;; for j # 4 analogously.

For {i,j,k} = {1,2,3}, let Ly := d(a;j, a;;) if [x;,a;;] N [z}, a;;] = 0, and let
L, := 0 otherwise.
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Pick geodesics [a;j, aik)-
We may assume L; > Ly > L. So A is (e(0) + &L)-slim. We conclude by
showing that L is bounded by a constant depending only on e.



We may assume L; > 2e(0). We have

T3+ Ly +€(0) + L3 + 1o > d(x3,a13) + d(ai3, a12) + d(aiz, z2)
> d(x3,x2)
=15+ L1 + 1o,

” 2L2 Z L1 - 6(0) (1)

In particular, Ly > Ze(0) > 0.

We may also assume that L3 = d(ai2,a21). Indeed, otherwise we may define
TS := d(z2,a12), and define ab; = [z2, 1](T5) = a12 and ahs := [r2, x3](Ty) and
L} := d(aks,as2) correspondingly. Then d(a)s,a01) = 0 = L3. Now T3 < Th
and L} > Ly, so redefining T := T4, ag1 := aby, azs := ahy and L; := L leaves
our assumptions and goal intact; only the maximality property in the definition
of Ty is lost, and we will not use this property.

Let ¢ := [v3,22](T5 + £t), the midpoint of [az2, ass]. Let ¢/ := [v3,21](T5 +
%) Let p be the concatenation of the geodesics

[t, az3], [azs, az1], [a21, a12], [a12, a1s], [as, t'].
Let U := B,,(Ts + &)°.
Claim. p is a path in X \ U.

Proof. Let By := By, (T1 + Ly — %) and By := B, (To+%). Then (B1UBs) C
X\ U.

We have [as3,a21] C Bo since we assumed L; > 2e(0) and so d(ass,a21) <
e(0) < L.

Now L, — & > @ by (1). So since d(a13,a12) < e(0) and d(z1,a13) =
T1 = d(.%‘h(llg), we have [a13, a12] Q Bl.

Finally, L < (Lo — %) + %, S0 [a12,a91] € By U Bs.

So we conclude that p C By UBs C X \ U. O

Now L1, Ls > 0, and so by the definition of T3 there is 0 < € < €(0) < %
such that d([zs, 21](T5 + €), [x3, 22](T5 + €)) > e(0), and so

L L L
e(5 =€) SUp) < 5 +e(0) + Ls +e(0) + (L2 — ) < 2Ly + 2¢(0).
It follows from superlinearity of e that L; is bounded, as required. O
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