Divergence of geodesics

Write $B_{x}(R)$ for the closed ball $\{y: d(y, x) \leq R\}$, and write $B_{x}(R)^{o}$ for its interior.

Definition 3.14. A divergence function for a geodesic metric space (X, d) is an unbounded function $e: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ such that for all geodesics γ, γ^{\prime} with $\gamma(0)=\gamma^{\prime}(0)=: x$, and for all $R, r \geq 0$, if $d\left(\gamma(R), \gamma^{\prime}(R)\right)>e(0)$ and $R+r \in$ $\operatorname{dom}(\gamma) \cap \operatorname{dom}\left(\gamma^{\prime}\right)$, then for any rectifiable path p in $X \backslash B_{x}(R+r)^{o}$ from $\gamma(R+r)$ to $\gamma^{\prime}(R+r)$, we have $\ell(p)>e(r)$.

We say geodesics diverge exponentially in X if there is a divergence function e with $\lim _{r \rightarrow \infty} e(r) a^{-r}=+\infty$ for some $a>1$.

Theorem 3.15. Suppose (X, d) is a hyperbolic geodesic metric space. Then geodesics in X diverge exponentially.

Proof. Let δ be such that geodesic triangles in X are δ-thin.
Let γ, γ^{\prime} be geodesics with $\gamma(0)=\gamma^{\prime}(0)=: x$, let $R, r \geq 0$, suppose $R+r \in$ $\operatorname{dom}(\gamma) \cap \operatorname{dom}\left(\gamma^{\prime}\right)$, and suppose $d\left(\gamma(R), \gamma^{\prime}(R)\right)>\delta$. Let p be a rectifiable path in $X \backslash B_{x}(R+r)^{o}$ from $\gamma(R+r)$ to $\gamma^{\prime}(R+r)$.

We conclude by finding a lower bound on $\ell(p)$ which is exponential in r and depends only on δ.

We will recursively define points a_{i} on geodesics α_{i} for $i \geq 0$.

First, pick a geodesic $\alpha_{0}=\left[\gamma(R+r), \gamma^{\prime}(R+r)\right]$. Since $d\left(\gamma(R), \gamma^{\prime}(R)\right)>\delta$ and triangles are δ-thin, $d\left(\gamma(R), a_{0}\right) \leq \delta$ for some $a_{0} \in \alpha_{0}$ (namely $a_{0}=\alpha_{0}(r)$).

Given a geodesic α_{i} with endpoints b_{1}, b_{2} on p and $a_{i} \in \alpha_{i}$, let $m \in p$ be the midpoint between b_{1} and b_{2} on p, and pick geodesics $\left[b_{j}, m\right]$. Then since triangles are δ-thin, for some $j \in\{1,2\}$ there is $c \in\left[b_{j}, m\right]$ with $d\left(a_{i}, c\right) \leq \delta$. Let $a_{i+1}:=c$ and $\alpha_{i+1}:=\left[b_{j}, m\right]$.

Since we pick the midpoint at each stage, $\ell\left(\alpha_{i}\right) \leq 2^{-i} \ell(p)$ for all i.
Let $n:=\left\lceil\log _{2}(\ell(p))\right\rceil$. Then $d\left(a_{n}, p\right) \leq \ell\left(\alpha_{n}\right) \leq 2^{-n} \ell(p) \leq 1$.
So

$$
\begin{array}{rlrl}
R+r & \leq d(x, p) & \quad\left(\text { since } p \subseteq X \backslash B_{x}(R+r)^{o}\right) \\
& \leq d(x, \gamma(R))+d\left(\gamma(R), a_{0}\right)+\sum_{0 \leq i<n} d\left(a_{i}, a_{i+1}\right)+d\left(a_{n}, p\right) & \\
& \leq R+(n+1) \delta+1 & & \\
& \leq R+\left(\log _{2}(\ell(p))+2\right) \delta+1, &
\end{array}
$$

so $\ell(p) \geq 2^{\frac{r-1}{\delta}-2}$, and

$$
e(r):= \begin{cases}\delta & \text { if } r=0 \\ 2^{\frac{r-1}{\delta}-2} & r>0\end{cases}
$$

is a divergence function as required.
Say geodesics diverge superlinearly in a geodesic metric space X if there is a divergence function e with

$$
\lim _{r \rightarrow \infty} \frac{e(r)}{r}=+\infty
$$

Note that exponential divergence implies superlinear divergence.

Theorem 3.16. If geodesics diverge superlinearly in a geodesic metric space X, then X is hyperbolic.

Proof. Let e be a divergence function with $\lim _{r \rightarrow \infty} \frac{e(r)}{r}=+\infty$. We may assume $e(0)>0$.

Let $\Delta=\left[x_{1}, x_{2}, x_{3}\right]$ be a geodesic triangle.

Let $T_{1} \in\left[0, \min \left(d\left(x_{1}, x_{2}\right), d\left(x_{1}, x_{3}\right)\right)\right]$ be maximal such that $t \leq T_{1} \Rightarrow$ $d\left(\left[x_{1}, x_{2}\right](t),\left[x_{1}, x_{3}\right](t)\right) \leq e(0)$, and let $a_{12}:=\left[x_{1}, x_{2}\right]\left(T_{1}\right)$ and $a_{13}:=\left[x_{1}, x_{3}\right]\left(T_{1}\right)$. For $i=2,3$, define T_{i} and $a_{i j}$ for $j \neq i$ analogously.

For $\{i, j, k\}=\{1,2,3\}$, let $L_{k}:=d\left(a_{i j}, a_{j i}\right)$ if $\left[x_{i}, a_{j i}\right] \cap\left[x_{j}, a_{i j}\right]=\emptyset$, and let $L_{k}:=0$ otherwise.

Pick geodesics $\left[a_{i j}, a_{i k}\right]$.
We may assume $L_{1} \geq L_{2} \geq L_{3}$. So Δ is $\left(e(0)+\frac{L_{1}}{2}\right)$-slim. We conclude by showing that L_{1} is bounded by a constant depending only on e.

We may assume $L_{1}>2 e(0)$. We have

$$
\begin{aligned}
T_{3}+L_{2}+e(0)+L_{3}+T_{2} & \geq d\left(x_{3}, a_{13}\right)+d\left(a_{13}, a_{12}\right)+d\left(a_{12}, x_{2}\right) \\
& \geq d\left(x_{3}, x_{2}\right) \\
& =T_{3}+L_{1}+T_{2}
\end{aligned}
$$

so

$$
\begin{equation*}
2 L_{2} \geq L_{1}-e(0) \tag{1}
\end{equation*}
$$

In particular, $L_{2} \geq \frac{1}{2} e(0)>0$.
We may also assume that $L_{3}=d\left(a_{12}, a_{21}\right)$. Indeed, otherwise we may define $T_{2}^{\prime}:=d\left(x_{2}, a_{12}\right)$, and define $a_{21}^{\prime}:=\left[x_{2}, x_{1}\right]\left(T_{2}^{\prime}\right)=a_{12}$ and $a_{23}^{\prime}:=\left[x_{2}, x_{3}\right]\left(T_{2}^{\prime}\right)$ and $L_{1}^{\prime}:=d\left(a_{23}^{\prime}, a_{32}\right)$ correspondingly. Then $d\left(a_{12}^{\prime}, a_{21}\right)=0=L_{3}$. Now $T_{2}^{\prime} \leq T_{2}$ and $L_{1}^{\prime} \geq L_{1}$, so redefining $T_{2}:=T_{2}^{\prime}, a_{21}:=a_{21}^{\prime}, a_{23}:=a_{23}^{\prime}$ and $L_{1}:=L_{1}^{\prime}$ leaves our assumptions and goal intact; only the maximality property in the definition of T_{2} is lost, and we will not use this property.

Let $t:=\left[x_{3}, x_{2}\right]\left(T_{3}+\frac{L_{1}}{2}\right)$, the midpoint of $\left[a_{32}, a_{23}\right]$. Let $t^{\prime}:=\left[x_{3}, x_{1}\right]\left(T_{3}+\right.$ $\left.\frac{L_{1}}{2}\right)$. Let p be the concatenation of the geodesics

$$
\left[t, a_{23}\right],\left[a_{23}, a_{21}\right],\left[a_{21}, a_{12}\right],\left[a_{12}, a_{13}\right],\left[a_{13}, t^{\prime}\right]
$$

Let $U:=B_{x_{3}}\left(T_{3}+\frac{L_{1}}{2}\right)^{o}$.
Claim. p is a path in $X \backslash U$.
Proof. Let $B_{1}:=B_{x_{1}}\left(T_{1}+L_{2}-\frac{L_{1}}{2}\right)$ and $B_{2}:=B_{x_{2}}\left(T_{2}+\frac{L_{1}}{2}\right)$. Then $\left(B_{1} \cup B_{2}\right) \subseteq$ $X \backslash U$.

We have $\left[a_{23}, a_{21}\right] \subseteq B_{2}$ since we assumed $L_{1}>2 e(0)$ and so $d\left(a_{23}, a_{21}\right) \leq$ $e(0)<\frac{L_{1}}{2}$.

Now $L_{2}-\frac{L_{1}}{2} \geq \frac{e(0)}{2}$ by (1). So since $d\left(a_{13}, a_{12}\right) \leq e(0)$ and $d\left(x_{1}, a_{13}\right)=$ $T_{1}=d\left(x_{1}, a_{12}\right)$, we have $\left[a_{13}, a_{12}\right] \subseteq B_{1}$.

Finally, $L_{3} \leq\left(L_{2}-\frac{L_{1}}{2}\right)+\frac{L_{1}}{2}$, so $\left[a_{12}, a_{21}\right] \subseteq B_{1} \cup B_{2}$.
So we conclude that $p \subseteq B_{1} \cup B_{2} \subseteq X \backslash U$.
Now $L_{1}, L_{2}>0$, and so by the definition of T_{3} there is $0<\epsilon<e(0)<\frac{L_{1}}{2}$ such that $d\left(\left[x_{3}, x_{1}\right]\left(T_{3}+\epsilon\right),\left[x_{3}, x_{2}\right]\left(T_{3}+\epsilon\right)\right)>e(0)$, and so

$$
e\left(\frac{L_{1}}{2}-\epsilon\right) \leq \ell(p) \leq \frac{L_{1}}{2}+e(0)+L_{3}+e(0)+\left(L_{2}-\frac{L_{1}}{2}\right) \leq 2 L_{1}+2 e(0)
$$

It follows from superlinearity of e that L_{1} is bounded, as required.

- Martin Bays 2019

