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Divergence of geodesics

Write Bx(R) for the closed ball {y : d(y, x) ≤ R}, and write Bx(R)o for its
interior.

Definition 3.14. A divergence function for a geodesic metric space (X, d)
is an unbounded function e : R≥0 → R such that for all geodesics γ, γ′ with
γ(0) = γ′(0) =: x, and for all R, r ≥ 0, if d(γ(R), γ′(R)) > e(0) and R + r ∈
dom(γ)∩dom(γ′), then for any rectifiable path p in X\Bx(R+r)o from γ(R+r)
to γ′(R+ r), we have `(p) > e(r).

We say geodesics diverge exponentially in X if there is a divergence
function e with limr→∞ e(r)a−r = +∞ for some a > 1.

Theorem 3.15. Suppose (X, d) is a hyperbolic geodesic metric space. Then
geodesics in X diverge exponentially.

Proof. Let δ be such that geodesic triangles in X are δ-thin.
Let γ, γ′ be geodesics with γ(0) = γ′(0) =: x, let R, r ≥ 0, suppose R + r ∈

dom(γ) ∩ dom(γ′), and suppose d(γ(R), γ′(R)) > δ. Let p be a rectifiable path
in X \Bx(R+ r)o from γ(R+ r) to γ′(R+ r).

We conclude by finding a lower bound on `(p) which is exponential in r and
depends only on δ.

We will recursively define points ai on geodesics αi for i ≥ 0.
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First, pick a geodesic α0 = [γ(R + r), γ′(R + r)]. Since d(γ(R), γ′(R)) > δ
and triangles are δ-thin, d(γ(R), a0) ≤ δ for some a0 ∈ α0 (namely a0 = α0(r)).

Given a geodesic αi with endpoints b1, b2 on p and ai ∈ αi, let m ∈ p be
the midpoint between b1 and b2 on p, and pick geodesics [bj ,m]. Then since
triangles are δ-thin, for some j ∈ {1, 2} there is c ∈ [bj ,m] with d(ai, c) ≤ δ.
Let ai+1 := c and αi+1 := [bj ,m].

Since we pick the midpoint at each stage, `(αi) ≤ 2−i`(p) for all i.
Let n := dlog2(`(p))e. Then d(an, p) ≤ `(αn) ≤ 2−n`(p) ≤ 1.
So

R+ r ≤ d(x, p) (since p ⊆ X \Bx(R+ r)o)

≤ d(x, γ(R)) + d(γ(R), a0) +
∑

0≤i<n

d(ai, ai+1) + d(an, p)

≤ R+ (n+ 1)δ + 1

≤ R+ (log2(`(p)) + 2)δ + 1,

so `(p) ≥ 2
r−1
δ −2, and

e(r) :=

{
δ if r = 0

2
r−1
δ −2 r > 0

is a divergence function as required.

Say geodesics diverge superlinearly in a geodesic metric space X if there is a
divergence function e with

lim
r→∞

e(r)

r
= +∞.

Note that exponential divergence implies superlinear divergence.
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Theorem 3.16. If geodesics diverge superlinearly in a geodesic metric space
X, then X is hyperbolic.

Proof. Let e be a divergence function with limr→∞
e(r)
r = +∞. We may assume

e(0) > 0.
Let ∆ = [x1, x2, x3] be a geodesic triangle.

Let T1 ∈ [0,min(d(x1, x2), d(x1, x3))] be maximal such that t ≤ T1 ⇒
d([x1, x2](t), [x1, x3](t)) ≤ e(0), and let a12 := [x1, x2](T1) and a13 := [x1, x3](T1).
For i = 2, 3, define Ti and aij for j 6= i analogously.

For {i, j, k} = {1, 2, 3}, let Lk := d(aij , aji) if [xi, aji] ∩ [xj , aij ] = ∅, and let
Lk := 0 otherwise.

Pick geodesics [aij , aik].
We may assume L1 ≥ L2 ≥ L3. So ∆ is (e(0) + L1

2 )-slim. We conclude by
showing that L1 is bounded by a constant depending only on e.
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We may assume L1 > 2e(0). We have

T3 + L2 + e(0) + L3 + T2 ≥ d(x3, a13) + d(a13, a12) + d(a12, x2)

≥ d(x3, x2)

= T3 + L1 + T2,

so
2L2 ≥ L1 − e(0). (1)

In particular, L2 ≥ 1
2e(0) > 0.

We may also assume that L3 = d(a12, a21). Indeed, otherwise we may define
T ′2 := d(x2, a12), and define a′21 := [x2, x1](T ′2) = a12 and a′23 := [x2, x3](T ′2) and
L′1 := d(a′23, a32) correspondingly. Then d(a′12, a21) = 0 = L3. Now T ′2 ≤ T2
and L′1 ≥ L1, so redefining T2 := T ′2, a21 := a′21, a23 := a′23 and L1 := L′1 leaves
our assumptions and goal intact; only the maximality property in the definition
of T2 is lost, and we will not use this property.

Let t := [x3, x2](T3 + L1

2 ), the midpoint of [a32, a23]. Let t′ := [x3, x1](T3 +
L1

2 ). Let p be the concatenation of the geodesics

[t, a23], [a23, a21], [a21, a12], [a12, a13], [a13, t
′].

Let U := Bx3
(T3 + L1

2 )o.

Claim. p is a path in X \ U .

Proof. Let B1 := Bx1
(T1 +L2− L1

2 ) and B2 := Bx2
(T2 + L1

2 ). Then (B1∪B2) ⊆
X \ U .

We have [a23, a21] ⊆ B2 since we assumed L1 > 2e(0) and so d(a23, a21) ≤
e(0) < L1

2 .

Now L2 − L1

2 ≥
e(0)
2 by (1). So since d(a13, a12) ≤ e(0) and d(x1, a13) =

T1 = d(x1, a12), we have [a13, a12] ⊆ B1.
Finally, L3 ≤ (L2 − L1

2 ) + L1

2 , so [a12, a21] ⊆ B1 ∪B2.
So we conclude that p ⊆ B1 ∪B2 ⊆ X \ U .

Now L1, L2 > 0, and so by the definition of T3 there is 0 < ε < e(0) < L1

2
such that d([x3, x1](T3 + ε), [x3, x2](T3 + ε)) > e(0), and so

e(
L1

2
− ε) ≤ `(p) ≤ L1

2
+ e(0) + L3 + e(0) + (L2 −

L1

2
) ≤ 2L1 + 2e(0).

It follows from superlinearity of e that L1 is bounded, as required.
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