CCM

A sort for each compact complex manifold, and for each reduced irreducible compact analytic space; relations for analytic subsets of products of the sorts (locally defined by vanishing of holomorphic C-valued functions on polydiscs).

1

QE, EI; tt, fRM, Z.

Chow: analytic subsets of $\P^n(\mathbb{C})$ are precisely the Zariski closed sets in the sense of AG.

Corollary:

The structure induced on $\mathbb{A}^1 := \P^1 \setminus \infty$ is precisely that of the complex field, with constants for complex points.

TA and CCMA

Let T be a complete theory.

 $T_{\sigma} := \operatorname{Th}(\{ \langle M; \sigma \rangle \mid M \models T, \sigma : M \to Mautomorphism \})$

TA := model companion = theory of existentially closed models of T_{σ} if such exists.

Facts: Suppose TA exists. Then:

- $\operatorname{acl}^{TA}(C) = \operatorname{acl}_{\sigma}(C) := \operatorname{acl} \widehat{T}(\bigcup_{i \in \mathbb{Z}}) \sigma^{i}(C))$
- QE: for $C = \operatorname{acl}_{\sigma}(C)$, $\operatorname{qftp}^{TA}(C) \models tp^{TA}(C)$
- T (super)stable => TA (super)simple

CCMA exists,

SKIPME:

axiomatised by:

- CCM_{σ} ;
- given $X \subseteq Y \times Y^{\sigma}$, X and Y closed irreducible, - Fact: this is 1st order. co-ord projections dominant, $X' \subseteq X$ proper closed, then $(X \setminus X') \cap \Gamma_{\sigma} \neq 0$

Holomorphic dynamics and finite-dimensional types:

 $X \text{ CCM}, f : X \to X$ holomorphic automorphism, $(X, f)^{\sharp} := \{x \in X \mid \sigma(x) = f(x)\}$ finite-dimensional definable set in CCMA.

More generally: $(\mathcal{A}, \sigma) \models \text{CCMA},$ X, F closed irreducible in $\mathcal{A},$ $F \subseteq X \times X^{\sigma},$ projections dominant with finite fibres. Then $(X, F)^{\sharp} := \{x \in X \mid (x, \sigma(x)) \in F\}.$

The <u>finite-dimensional</u> types are the generic types of such $(X, F)^{\sharp}$.

Theorem [Trichotomy]:

Let p be a finite-dimensional minimal type.

If p is not one-based, it is non-orthogonal to $(\P^1, \mathrm{id})^{\sharp}$.

If p is one-based non-trivial, it is non-orthogonal to some $(X, F)^{\sharp}$ with X and F definable groups. (Proof of Zilber Dichotomy: CBP via jet spaces)

This is for *real* types, but imaginary types can come up in an analysis...

Imaginaries in TA

Suppose T superstable with EI and TA exists.

Fact [Hrushovski]: TA has gEI (imaginaries are interalgebraic with reals)

Example:

T := theory of a connected groupoid with $\pi_1 = Z/2Z$. In TA, X := fixed objects, $E(x, y) \leftrightarrow Mor(x, y)$ fixed pointwise by σ ; then X/E is not eliminable.

Theorem [Hrushovski]: TFAE:

- (i) TA has EI
- (ii) T "eliminates finite groupoid imaginaries"
- (iii) T has "3-uniqueness": Given b, and a_0, a_1, a_2 independent over $b \in \operatorname{acl}(a_i)$, (i.e. $a_i \perp \underline{b}\underline{a}\underline{j}a_k$) $\operatorname{acl}(a_1a_2) \cap \operatorname{dcl}(\operatorname{acl}(a_0a_1), \operatorname{acl}(a_0a_2)) = \operatorname{dcl}(\operatorname{acl}(a_1), \operatorname{acl}(a_2))$

Remark: $acl(b) \models T => 3$ -uniqueness (by coheiring). So e.g. ACFA has EI.

Theorem:

CCM does not have 3-uniqueness, so CCMA does not have EI.

Idea:

Let $X \to B$ be a principal \mathbb{C}^* -bundle (so have definable principal action of \mathbb{C}^* on fibres).

Work in monster model $\mathbb{A}' \models CCM$.

Let $b \in B$ generic; $a_0, a_1, a_2 \in X_b$ generic independent /b; let $\phi \in (a_2/a_1)^{1/n} \in \mathbb{C}^*$. Now $(a_2/a_1)^{1/n} = (a_2/a_0)^{1/n} * (a_0/a_1)^{1/n}$, so $\phi \in \operatorname{dcl}(\operatorname{acl}(a_0a_1), \operatorname{acl}(a_0a_2))$.

So this shows non-3-uniqueness unless $\phi \in dcl(acl(a_1), acl(a_2))$.

Now $\phi \notin \operatorname{dcl}(a_1, a_2) = \operatorname{dcl}(a_1, \phi^n)$ since $\phi \notin \operatorname{dcl}(\phi^n)$.

So STS $\operatorname{acl}(a_i) = \operatorname{dcl}(a_i)$.

So want $X \to B$ defble \mathbb{C}^* -bundle s.t. $a \in *X$ generic $=> \operatorname{acl}(a) = \operatorname{dcl}(a)$; i.e. any dominant generically finite $X' \to X$ has a generic section.

Finite covers of \mathbb{C}^* -bundles:

(I) Base change:

```
C* === C*
. |
. |
v fin v
X' ..> X
. |
```

. | v v B' --> B fin

(II) Quotient by action of nth roots of unity on fibres:

[n] C* --> C* . Ι . v v ..> X X, v v === B В

Fact:

Holomorphic \mathbb{C}^* -bundles over B are classified by first cohomology group of sheaf of local holomorphic \mathbb{C}^* -valued functions,

 $H^1(\mathcal{O}_B^*),$

and (II) corresponds to multiplication by n in this group.

Fact:

Exists simply connected strongly minimal smooth compact (K3) surface B with $H^1(\mathcal{O}_B^*) \cong \mathbb{Z}$

Let $X \to B$ correspond to generator of $H^1(\mathcal{O}_B^*)$.

B s.c. s.m. => no non-trivial finite $B' \to B$; B s.m. => X has no ramified finite covers, => any cover has to be as in (II) but no such exist since $[X] \in H^1(\mathcal{O}_B^*)$ not divisible.

Explicitly, the following imaginary is not eliminable:

 $X \cap \operatorname{Fix}(\sigma)$ with xEx' iff $\pi(x) = \pi(x')$ and $(x'/x)^{1/2} \subseteq \operatorname{Fix}(\sigma)$

Proof:

Let $b \in B$ generic with $\sigma(b) = b$; let $x \in X_b$ generic with $\sigma(x) = x$.

Since $\operatorname{acl}_{\sigma}(x) = \operatorname{acl}(x) = \operatorname{dcl}(x)$ and $\operatorname{acl}_{\sigma}(b) = \operatorname{acl}(b) = \operatorname{dcl}(b)$, by the QE, $tp(x/\operatorname{acl}_{\sigma}(b))$ is determined by "x is generic in X_b and $\sigma(x) = x$ ". So $x/E \in \operatorname{acl}^{TA,eq}(b) \setminus \operatorname{acl}^{TA}(b)$.