CCM

A sort for each compact complex manifold,
and for each reduced irreducible compact analytic space;
relations for analytic subsets of products of the sorts (locally defined by vanishing of holomorphic \mathbb{C}-valued functions on polydiscs).

QE, EI; tt, fRM, Z.
Chow: analytic subsets of $\mathbb{\Phi}^{n}(\mathbb{C})$ are precisely the Zariski closed sets in the sense of AG.

Corollary:

The structure induced on $\mathbb{A}^{1}:=\boldsymbol{\Pi}^{1} \backslash \infty$ is precisely that of the complex field, with constants for complex points.

TA and CCMA

Let T be a complete theory.
$T_{\sigma}:=\operatorname{Th}(\{\langle M ; \sigma\rangle \mid M \models T, \sigma: M \rightarrow$ Mautomorphism $\})$
$T A:=$ model companion $=$ theory of existentially closed models of T_{σ} if such exists.

Facts: Suppose TA exists. Then:

- $\left.\operatorname{acl}^{T A}(C)=\operatorname{acl}_{\sigma}(C):=\operatorname{acl} \widehat{T}\left(\Psi_{i \in \mathbb{Z}}\right) \sigma^{i}(C)\right)$
- QE: for $C=\operatorname{acl}_{\sigma}(C), \operatorname{qftp}^{T A}(C)=t p^{T A}(C)$
- T (super)stable $=>$ TA (super)simple

CCMA exists,

SKIPME:

axiomatised by:

- $C C M_{\sigma}$;
- given $X \subseteq Y \times Y^{\sigma}$,
X and Y closed irreducible, - Fact: this is 1st order. co-ord projections dominant, $X^{\prime} \subseteq X$ proper closed, then $\left(X \backslash X^{\prime}\right) \cap \Gamma_{\sigma} \neq 0$

Holomorphic dynamics and finite-dimensional types:

X CCM, $f: X \rightarrow X$ holomorphic automorphism,
$(X, f)^{\sharp}:=\{x \in X \mid \sigma(x)=f(x)\}$ finite-dimensional definable set in CCMA.
More generally:
$(\mathcal{A}, \sigma) \models$ CCMA,
X, F closed irreducible in \mathcal{A},
$F \subseteq X \times X^{\sigma}$,
projections dominant with finite fibres.
Then $(X, F)^{\sharp}:=\{x \in X \mid(x, \sigma(x)) \in F\}$.
The finite-dimensional types are the generic types of such $(X, F)^{\sharp}$.

Theorem [Trichotomy]:

Let p be a finite-dimensional minimal type.
If p is not one-based,
it is non-orthogonal to $\left(\boldsymbol{\top}^{1}, \mathrm{id}\right)^{\sharp}$.
If p is one-based non-trivial,
it is non-orthogonal to some $(X, F)^{\sharp}$ with X and F definable groups.
(Proof of Zilber Dichotomy: CBP via jet spaces)
This is for *real* types, but imaginary types can come up in an analysis...

Imaginaries in TA

Suppose T superstable with EI and TA exists.
Fact [Hrushovski]: TA has gEI (imaginaries are interalgebraic with reals)

Example:

$T:=$ theory of a connected groupoid with $\pi_{1}=Z / 2 Z$.
In TA,
$X:=$ fixed objects,
$E(x, y) \leftrightarrow M o r(x, y)$ fixed pointwise by σ;
then X / E is not eliminable.

Theorem [Hrushovski]: TFAE:

(i) TA has EI
(ii) T "eliminates finite groupoid imaginaries"
(iii) T has "3-uniqueness":

Given b,
and a_{0}, a_{1}, a_{2} independent over $b \in \operatorname{acl}\left(a_{i}\right)$,
(i.e. $\left.a_{i} \downarrow \underline{\text { baja }} a_{k}\right) \operatorname{acl}\left(a_{1} a_{2}\right) \cap \operatorname{dcl}\left(\operatorname{acl}\left(a_{0} a_{1}\right), \operatorname{acl}\left(a_{0} a_{2}\right)\right)=\operatorname{dcl}\left(\operatorname{acl}\left(a_{1}\right), \operatorname{acl}\left(a_{2}\right)\right)$

Remark: $\operatorname{acl}(b) \models T=>3$-uniqueness (by coheiring).
So e.g. ACFA has EI.

Theorem:

CCM does not have 3-uniqueness,
so CCMA does not have EI.

Idea:

Let $X \rightarrow B$ be a principal \mathbb{C}^{*}-bundle (so have definable principal action of \mathbb{C}^{*} on fibres).

Work in monster model $\mathbb{A}^{\prime} \models C C M$.
Let $b \in B$ generic;
$a_{0}, a_{1}, a_{2} \in X_{b}$ generic independent $/ b$;
let $\phi \in\left(a_{2} / a_{1}\right)^{1 / n} \in \mathbb{C}^{*}$.
Now $\left(a_{2} / a_{1}\right)^{1 / n}=\left(a_{2} / a_{0}\right)^{1 / n} *\left(a_{0} / a_{1}\right)^{1 / n}$,
so $\phi \in \operatorname{dcl}\left(\operatorname{acl}\left(a_{0} a_{1}\right), \operatorname{acl}\left(a_{0} a_{2}\right)\right)$.
So this shows non-3-uniqueness unless $\phi \in \operatorname{dcl}\left(\operatorname{acl}\left(a_{1}\right), \operatorname{acl}\left(a_{2}\right)\right)$.
Now $\phi \notin \operatorname{dcl}\left(a_{1}, a_{2}\right)=\operatorname{dcl}\left(a_{1}, \phi^{n}\right)$ since $\phi \notin \operatorname{dcl}\left(\phi^{n}\right)$.
So $\operatorname{STS} \operatorname{acl}\left(a_{i}\right)=\operatorname{dcl}\left(a_{i}\right)$.
So want $X \rightarrow B$ defble \mathbb{C}^{*}-bundle s.t. $a \in * X$ generic $=>\operatorname{acl}(a)=\operatorname{dcl}(a)$;
i.e. any dominant generically finite $X^{\prime} \rightarrow X$ has a generic section.

Finite covers of \mathbb{C}^{*}-bundles:

(I) Base change:


```
|
v v
B' --> B
    fin
```

(II) Quotient by action of nth roots of unity on fibres:

[n]	
C*	--> C*
\|	-
\|	-
v	v
X'	. . ${ }^{\text {X }}$
1	-
1	-
v	v
B	$===\mathrm{B}$

Fact:

Holomorphic \mathbb{C}^{*}-bundles over B are classified by first cohomology group of sheaf of local holomorphic \mathbb{C}^{*}-valued functions,
$H^{1}\left(\mathcal{O}_{B}^{*}\right)$,
and (II) corresponds to multiplication by n in this group.

Fact:

Exists simply connected strongly minimal smooth compact (K3) surface B with $H^{1}\left(\mathcal{O}_{B}^{*}\right) \cong \mathbb{Z}$
Let $X \rightarrow B$ correspond to generator of $H^{1}\left(\mathcal{O}_{B}^{*}\right)$.
B s.c. s.m. $=>$ no non-trivial finite $B^{\prime} \rightarrow B$;
B s.m. $=>X$ has no ramified finite covers,
$=>$ any cover has to be as in (II) but no such exist since $[X] \in H^{1}\left(\mathcal{O}_{B}^{*}\right)$ not divisible.

Explicitly, the following imaginary is not eliminable:

$X \cap \operatorname{Fix}(\sigma)$ with $x E x^{\prime}$ iff $\pi(x)=\pi\left(x^{\prime}\right)$ and $\left(x^{\prime} / x\right)^{1 / 2} \subseteq \operatorname{Fix}(\sigma)$

Proof:

Let $b \in B$ generic with $\sigma(b)=b$;
let $x \in X_{b}$ generic with $\sigma(x)=x$.
Since $\operatorname{acl}_{\sigma}(x)=\operatorname{acl}(x)=\operatorname{dcl}(x)$ and $\operatorname{acl}_{\sigma}(b)=\operatorname{acl}(b)=\operatorname{dcl}(b)$,
by the QE, $\operatorname{tp}\left(x / \operatorname{acl}_{\sigma}(b)\right)$ is determined by " x is generic in X_{b} and $\sigma(x)=x$ ".
So $x / E \in \operatorname{acl}^{T A, e q}(b) \backslash \operatorname{acl}^{T A}(b)$.

