EXPONENTIATIONS OVER THE QUANTUM ALGEBRA $U_q(sl_2(\mathbb{C}))$ Sonia L'Innocente¹ AND Françoise Point²

¹School of Science and Technology, University of Camerino, Italy ²Institute of Mathematics, University of Mons, Belgium

Geometric Model Theory, $25^{th} - 28^{th}$ March 2010, Oxford, UK

Abstract:

We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra $U_q(sl_2(\mathbb{C}))$, for any parameter q. We discuss two cases, according to whether the parameter q is a root of unity.

MOTIVATIONS, SETTING and AIMS

Our setting

Quantum algebras are very interesting objects which are beginning to be investigated from a model theoretic point of view. This is witnessed, for instance, by [Zi] and [HL].

Motivations

This work is inspired by [LMP] where some possible exponentiations are defined over the universal enveloping U of the Lie algebra $sl_2(\mathbb{C})$ of 2x2 traceless matrices with entries in the field of complex numbers \mathbb{C} , via its finite-dimensional representations.

Our strategy

We will discuss two cases, according to whether the parameter q is a root of unity. To define some exponentiations over U_q , we use:

• its simple representation maps,

• the natural matrix exponential map exp in $M_{\ell}(\mathbb{C})$, where

Aims

Our present aim is to define in a similar way some exponentiations over the quantum algebras $U_q := U_q(sl_2(\mathbb{C}))$, which can be regarded as the quantized version of U, for any parameter $q \in \mathbb{C} - \{0\}, q^2 \neq 1$.

Quantum algebra U_a

Consider any element $q \in \mathbb{C} - \{0\}$ such that $q^2 \neq 1$, the quantum algebra U_q described (see [J], [K]) as the associative \mathbb{C} -algebra with generators K, K^{-1}, E, F and relations:

$$KK^{-1} = K^{-1}K = 1, \ KEK^{-1} = q^2E, \ KFK^{-1} = q^{-2}F, \ \ [E, F] = \frac{K - K^{-1}}{q - q^{-1}}.$$
 (1)

The relations (1) imply by induction for every integers s and t, s, $t \ge 2$, that:

$$[E, F^{t}] = [t]F^{t-1}\frac{Kq^{1-t} - K^{-1}q^{t-1}}{q - q^{-1}}, \qquad [E^{s}, F] = [s]E^{s-1}\frac{Kq^{s-1} - K^{-1}q^{1-s}}{q - q^{-1}},$$

where, for every $a \in \mathbb{Z}$, $[a] := \frac{q^a - q^{-a}}{q - q^{-1}}$ denotes the *q*-number of *a*.

exp: $M_{\ell}(\mathbb{C}) \to GL_{\ell}(\mathbb{C}), \ell \in \omega - \{0\}$ is defined for any $A \in M_{\ell}(\mathbb{C})$ as the power series

$$\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!}$$

Properties of U_a

Some properties of U_q , used for our results are the following (see [J], [K]).

• U_q , as graded \mathbb{C} -algebra over the set of integers \mathbb{Z} , decomposes as

 $U_q = \bigoplus_{m \in \mathbb{Z}} U_{q,m},$

where $U_{q,m} = \langle E^i . K^z . F^j : i - j = m, i, j \in \omega, z \in \mathbb{Z} \rangle$ denotes the *m*-homogenous component of U_q .

• $U_{q,0}$ is isomorphic to the polynomial ring $k[C_q, K, K^{-1}]$, where $C_q := \frac{q^{-1}K + qK^{-1}}{(q-q^{-1})^2} + EF$ denotes the (quantum) Casimir element of U_q .

• Any element of $U_{q,m}$, for any q, can be written as $E^m u$, for $m \ge 0$, and uF^{-m} , for m < 0, with $u \in U_{q,0}$.

MAIN RESULTS

q is not a root of unity

q is a root of unity

In this case, all simple finite dimensional representations of U_q are classified in terms of highest weight. So, various exponentiations over U_q can be defined just by strategies similar to the ones used in [LMP] for the classical case.

 $\forall \lambda \in \omega - \{0\}$, there exist (up to \cong) exactly two simple representations of dimension $\lambda + 1$, denoted by $V_{\epsilon,\lambda}$, where $\epsilon \in \{-1, 1\}$. Let $\Theta_{\epsilon,\lambda}$ the representation map: $\Theta_{\varepsilon,\lambda}: U_q \to End(V_{\varepsilon,\lambda}), \text{ where } End(V_{\varepsilon,\lambda}) = M_{\lambda+1}(\mathbb{C}).$

New exponentiations

• We define a new exponential map over U_q : $\mathrm{EXP}_{\varepsilon,\lambda} : U_q \xrightarrow{\Theta_{\varepsilon,\lambda}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\exp} GL_{\lambda+1}(\mathbb{C})$, defined $\forall u \in U_q$ as:

$$\mathbf{EXP}_{\epsilon,\lambda}(u) := \exp(\Theta_{\epsilon,\lambda}(u)), \quad \text{(for } \epsilon \pm 1).$$

• Let \mathcal{U} be a non principal ultrafilter on ω .

References:

We define another exponential map: EXP : $U_q \xrightarrow{[\Theta_{\varepsilon,\lambda}]} \prod_{\mathcal{U}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\exp} \prod_{\mathcal{U}} GL_{\lambda+1}(\mathbb{C})$, defined $\forall u \in U_q$ as:

 $\text{EXP}(u) := [\text{EXP}_{\epsilon,\lambda}(u)], \text{ (for } \epsilon \pm 1).$

Our results

• For any $\lambda \in \omega$, $(U_q, \text{EXP}_{\epsilon,\lambda}, GL_{\lambda+1}(\mathbb{C}))$ is a (non commutative) exponential ring. • $(U_q, \text{EXP}, \prod_{\mathcal{U}} GL_{\lambda+1}(\mathbb{C}))$ is a (non commutative) exponential ring.

We use the transfer the following properties of the classical matrix exponential to $\text{EXP}_{\epsilon,\lambda}$. If $u, v \in U_q$, then $\forall \lambda \in \omega - \{0\}$: (i) $\text{EXP}_{\epsilon,\lambda}(0_{U_q}) = I_{\lambda}$, where 0_{U_q} denotes the identity element in U_q . (ii) $\operatorname{EXP}_{\epsilon,\lambda}(u)\operatorname{EXP}_{\epsilon,\lambda}(-u) = I_{\lambda};$ (iii) for u and v commuting, $\text{EXP}_{\epsilon,\lambda}(u+v) = \text{EXP}_{\epsilon,\lambda}(u)\text{EXP}_{\epsilon,\lambda}(v)$; (iv) for an invertible element v in U_q , $\text{EXP}_{\epsilon,\lambda}(vuv^{-1}) = \Theta_{\epsilon,\lambda}(v)\text{EXP}_{\epsilon,\lambda}(u)\Theta_{\epsilon,\lambda}(v)^{-1}$; • $\forall \lambda \in \omega - \{0\}$, the map $\text{EXP}_{\epsilon,\lambda}$ is surjective. • For every non-principal ultrafilter \mathcal{U} on ω , the map $[\Theta_{\varepsilon,\lambda}]$ is injective.

Assume that q is a primitive ℓ^{th} root of unity for $\ell \geq 3$. There exists two families of simple representations of dimension ℓ , $V_{a,bc}$ depending on $a, b, c \in \mathbb{C}$ and $V_{d, f}$ depending on $f, d \in \mathbb{C}$. We denote the related representation maps by $\Theta_{a,b,c} : U_q \to M_\ell(\mathbb{C})$ and $\Theta_{d,f} : U_q \to$ $M_{\ell}(\mathbb{C}).$

New exponentiations

• We define two new exponential maps over U_q :

 $\operatorname{EXP}_{a,b,c} : U_a \xrightarrow{\Theta_{a,b,c}} M_{\ell}(\mathbb{C}) \xrightarrow{\operatorname{exp}} GL_{\ell}(\mathbb{C}) \text{ and } \widetilde{\operatorname{EXP}}_{d,f} : U_a \xrightarrow{\Theta_{d,f}} M_{\ell}(\mathbb{C}) \xrightarrow{\operatorname{exp}} GL_{\ell}(\mathbb{C}),$ defined respectively $\forall u \in U_q$ as:

 $\mathbf{EXP}_{a,b,c}(u) := \exp(\Theta_{a,b,c}(u)), \qquad \widetilde{\mathbf{EXP}}_{d,f}(u) := \exp(\widetilde{\Theta}_{d,f}(u)).$

• Then we will vary these maps along certain non principal ultrafilters \mathcal{W} on ω^2 . We define other exponential maps, EXP : $U_q \xrightarrow{[\Theta_{a,b,c}]} \prod_{\mathcal{W}} M_\ell(\mathbb{C}) \xrightarrow{\exp} \prod_{\mathcal{W}} GL_\ell(\mathbb{C})$ and $\widetilde{\mathrm{EXP}}: U_a \xrightarrow{[\Theta,f]} \prod_{\mathcal{W}} M_{\ell}(\mathbb{C}) \xrightarrow{\mathrm{exp}} \prod_{\mathcal{W}} GL_{\ell}(\mathbb{C}), \text{ defined } \forall u \in U_q \text{ as:}$ $\mathbf{EXP}(u) := [\mathbf{EXP}_{a,b,c}(u)], \qquad \widetilde{\mathbf{EXP}}_{d,f}(u) := \exp(\widetilde{\Theta}_{d,f}(u)).$

Our results

Let \mathcal{W} be a non-principal ultrafilter on ω^2 which will index subsets of complex numbers of the form (d_n, f_m) with $|f_m| > 1$, or (b_n, c_m) with $a_n b_n$ a real constant and $|c_m| > 1$. For $u \in U_q$, set $\Theta_{n,m}(u) := \Theta_{d_n,f_m}(u_z)$ and $\Theta_{n,m}(u) := \Theta_{a_n,b_n,c_m}(u_z)$. We prove: • Let D, I be two countable bounded subsets of complex numbers of modulus strictly bigger than 1. For any $u \in \sum_{m>0} U_{q,m} - \{0\}, \exists W_u \in \mathcal{W}$ such that for all $(n,m) \in W_u$ we have $\Theta_{n,m}(u) \neq 0$. • For any $u \in U_q - \{0\}$, $\exists W_u \in \mathcal{W}$ such that for all $n \in W_u$ we have $\Theta_{n,m}(u) \neq 0$. • $(U_a, \text{EXP}, \prod_{\mathcal{W}} GL_{\ell}(\mathbb{C}))$ and $(U_a, \text{EXP}, \prod_{\mathcal{W}} GL_{\ell}(\mathbb{C}))$ are exponential rings. Recall that the classical enveloping algebra U is generated by X, Y, H and defining relations [H, X] = 2X, [H, Y] = -2Y, [X, Y] = H. Consider $q_{\ell} = e^{\theta_{\ell}}$, where $\theta_{\ell} = \frac{2\pi i}{\ell}$ and a non-principal ultraproduct of $U_{q_{\ell}}, \ell \in \omega$, over a non principal ultrafilter \mathcal{U} over ω . • The map $\tau: U \to \prod_{\mathcal{U}} U_{q_{\ell}}$ sending X to $[E]_{\mathcal{U}}$, Y to $[F]_U$ and H to $[\frac{K-K^{-1}}{q-q^{-1}}]_U$ is injective.

[*HL*] I. Herzog, S. L'Innocente, The nonstandard quantum plane, *Annals of Pure and Applied Logic* 156, 2008, 78-85.

[J] J. Jantzen, Lectures on Quantum groups, Graduate Studies in Mathematics, volume 9, AMS, 1996.

[K] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, 1995.

[LMP] S. L'Innocente, A. Macintyre, F. Point, Exponentiations over the universal enveloping algebra of $U(sl_2(\mathbb{C}))$, Annals of Pure and Applied Logic, submitted.

[Zi] B. Zilber, A class of quantum Zariski geometries, In: Model Theory with applications to algebra and analysis, I and II (Z. Chatzidakis, H.D. Macpherson, A. Pillay, A.J. Wilkie editors), LMS Lecture Note Series 349, (2008)