EXPONENTIATIONS OVER THE QUANTUM ALGEBRA $U_{q}\left(s l_{2}(\mathbb{C})\right)$

Sonia L'Innocente ${ }^{1}$ and Françoise Point ${ }^{2}$
 ${ }^{1}$ School of Science and Technology, University of Camerino, Italy ${ }^{2}$ Institute of Mathematics, University of Mons, Belgium

 Geometric Model Theory, $25^{\text {th }}-28^{\text {th }}$ March 2010, Oxford, UK
Abstract

: We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra $U_{q}\left(s l_{2}(\mathbb{C})\right)$, for any parameter q. We discuss two cases, according to whether the parameter q is a root of unity

MOTIVATIONS, SETTING and AIMS

Our setting

Quantum algebras are very interesting objects which are beginning to be investigated from a model theoretic point of view. This is witnessed, for instance, by [Zi] and [HL].

Motivations

This work is inspired by [LMP] where some possible exponentiations are defined over the universal enveloping U of the Lie algebra $s l_{2}(\mathbb{C})$ of 2×2 traceless matrices with entries in the field of complex numbers \mathbb{C}, via its finite-dimensional representations.

Aims

Our present aim is to define in a similar way some exponentiations over the quantum algebras $U_{q}:=U_{q}\left(s l_{2}(\mathbb{C})\right)$, which can be regarded as the quantized version of U, for any parameter $q \in \mathbb{C}-\{0\}, q^{2} \neq 1$.

Quantum algebra U_{q}

Consider any element $q \in \mathbb{C}-\{0\}$ such that $q^{2} \neq 1$, the quantum algebra U_{q} described (see $[J],[K]$) as the associative \mathbb{C}-algebra with generators K, K^{-1}, E, F and relations:

$$
\begin{equation*}
K K^{-1}=K^{-1} K=1, K E K^{-1}=q^{2} E, K F K^{-1}=q^{-2} F, \quad[E, F]=\frac{K-K^{-1}}{q-q^{-1}} . \tag{1}
\end{equation*}
$$

The relations (1) imply by induction for every integers s and $t, s, t \geq 2$, that:

$$
\left[E, F^{t}\right]=[t] F^{t-1} \frac{K q^{1-t}-K^{-1} q^{t-1}}{q-q^{-1}}, \quad\left[E^{s}, F\right]=[s] E^{s-1} \frac{K q^{s-1}-K^{-1} q^{1-s}}{q-q^{-1}}
$$

where, for every $a \in \mathbb{Z},[a]:=\frac{q^{a}-q^{-a}}{q-q^{-1}}$ denotes the q-number of a.

Our strategy

We will discuss two cases, according to whether the parameter q is a root of unity. To define some exponentiations over U_{q}, we use:

- its simple representation maps,
- the natural matrix exponential map exp in $M_{\ell}(\mathbb{C})$, where
$\exp : \quad M_{\ell}(\mathbb{C}) \rightarrow G L_{\ell}(\mathbb{C}), \ell \in \omega-\{0\}$ is defined for any $A \in M_{\ell}(\mathbb{C})$ as the power series

$$
\begin{aligned}
& \exp (A)=\sum_{n=0}^{\infty} \frac{A^{n}}{n!} \\
& \text { Properties of } U_{q}
\end{aligned}
$$

Some properties of U_{q}, used for our results are the following (see $[J],[K]$).

- U_{q}, as graded \mathbb{C}-algebra over the set of integers \mathbb{Z}, decomposes as

$$
U_{q}=\oplus_{m \in \mathbb{Z}} U_{q, m},
$$

where $U_{q, m}=<E^{i} . K^{z} . F^{j}: i-j=m, \quad i, j \in \omega, z \in \mathbb{Z}>$ denotes the m-homogenous component of U_{q}.

- $U_{q, 0}$ is isomorphic to the polynomial ring $k\left[C_{q}, K, K^{-1}\right]$, where $C_{q}:=\frac{q^{-1} K+q K^{-1}}{\left(q-q^{-1}\right)^{2}}+E F$ denotes the (quantum) Casimir element of U_{q}.
- Any element of $U_{q, m}$, for any q, can be written as $E^{m} u$, for $m \geq 0$, and $u F^{-m}$, for $m<0$, with $u \in U_{q, 0}$.

MAIN RESULTS

q is not a root of unity

In this case, all simple finite dimensional representations of U_{q} are classified in terms of highest weight. So, various exponentiations over U_{q} can be defined just by strategies similar to the ones used in [LMP] for the classical case.
$\forall \lambda \in \omega-\{0\}$, there exist (up to \cong) exactly two simple representations of dimension $\lambda+1$, denoted by $V_{\epsilon, \lambda}$, where $\epsilon \in\{-1,1\}$. Let $\Theta_{\varepsilon, \lambda}$ the representation map:
$\Theta_{\varepsilon, \lambda}: U_{q} \rightarrow \operatorname{End}\left(V_{\varepsilon, \lambda}\right)$, where $\operatorname{End}\left(V_{\varepsilon, \lambda}\right)=M_{\lambda+1}(\mathbb{C})$.

New exponentiations

- We define a new exponential map over $U_{q}: \operatorname{EXP}_{\varepsilon, \lambda}: U_{q} \xrightarrow{\Theta_{\varepsilon, \lambda}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\exp } G L_{\lambda+1}(\mathbb{C})$, defined $\forall u \in U_{q}$ as:

$$
\operatorname{EXP}_{\epsilon, \lambda}(u):=\exp \left(\Theta_{\epsilon, \lambda}(u)\right), \quad(\text { for } \epsilon \pm 1) .
$$

- Let \mathcal{U} be a non principal ultrafilter on ω.

We define another exponential map: EXP $: U_{q} \xrightarrow{\left[\Theta_{\varepsilon, \lambda}\right]} \prod_{\mathcal{U}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\exp } \prod_{\mathcal{U}} G L_{\lambda+1}(\mathbb{C})$, defined $\forall u \in U_{q}$ as:

$$
\operatorname{EXP}(u):=\left[\operatorname{EXP}_{\epsilon, \lambda}(u)\right], \quad(\text { for } \epsilon \pm 1) .
$$

Our results

- For any $\lambda \in \omega,\left(U_{q}, \operatorname{EXP}_{\epsilon, \lambda}, G L_{\lambda+1}(\mathbb{C})\right)$ is a (non commutative) exponential ring.
- $\left(U_{q}, \operatorname{EXP}, \prod_{\mathcal{U}} G L_{\lambda+1}(\mathbb{C})\right)$ is a (non commutative) exponential ring.

We use the transfer the following properties of the classical matrix exponential to $\operatorname{EXP}_{\epsilon, \lambda}$ If $u, v \in U_{q}$, then $\forall \lambda \in \omega-\{0\}$:
(i) $\operatorname{EXP}_{\epsilon, \lambda}\left(0_{U_{q}}\right)=I_{\lambda}$, where $0_{U_{q}}$ denotes the identity element in U_{q}.
(ii) $\operatorname{EXP}_{\epsilon, \lambda}(u) \operatorname{EXP}_{\epsilon, \lambda}(-u)=I_{\lambda}$;
(iii) for u and v commuting, $\operatorname{EXP}_{\epsilon, \lambda}(u+v)=\operatorname{EXP}_{\epsilon, \lambda}(u) \operatorname{EXP}_{\epsilon, \lambda}(v)$;
(iv) for an invertible element v in $U_{q}, \operatorname{EXP}_{\epsilon, \lambda}\left(v u v^{-1}\right)=\Theta_{\epsilon, \lambda}(v) \operatorname{EXP}_{\epsilon, \lambda}(u) \Theta_{\epsilon, \lambda}(v)^{-1}$;

- $\forall \lambda \in \omega-\{0\}$, the map $\operatorname{EXP}_{\epsilon, \lambda}$ is surjective
- For every non-principal ultrafilter \mathcal{U} on ω, the map $\left[\Theta_{\varepsilon, \lambda}\right]$ is injective.

is a root of unity

Assume that q is a primitive $\ell^{q t^{t} t}$ is a root of unity for $\ell \geq 3$.
There exists two families of simple representations of dimension $\ell, V_{a, b c}$ depending on $a, b, c \in \mathbb{C}$ and $\tilde{V}_{\text {d.f }}$ depending on $f, d \in \mathbb{C}$.
We denote the related representation maps by $\Theta_{a, b, c}: U_{q} \rightarrow M_{\ell}(\mathbb{C})$ and $\widetilde{\Theta}_{d, f}: U_{q} \rightarrow$ $M_{\ell}(\mathbb{C})$.

New exponentiations

- We define two new exponential maps over U_{q} :
$\operatorname{EXP}_{a, b, c}: U_{q} \xrightarrow{\Theta_{a, b, c}} M_{\ell}(\mathbb{C}) \xrightarrow{\exp } G L_{\ell}(\mathbb{C})$ and $\widetilde{\operatorname{EXP}}_{d, f}: U_{q} \xrightarrow{\tilde{\theta}_{d, f}} M_{\ell}(\mathbb{C}) \xrightarrow{\exp } G L_{\ell}(\mathbb{C})$, defined respectively $\forall u \in U_{q}$ as:

$$
\operatorname{EXP}_{a, b, c}(u):=\exp \left(\Theta_{a, b, c}(u)\right), \quad \widetilde{\operatorname{EXP}}_{d, f}(u):=\exp \left(\widetilde{\Theta}_{d, f}(u)\right)
$$

- Then we will vary these maps along certain non principal ultrafilters \mathcal{W} on ω^{2}.

We define other exponential maps, EXP $: U_{q} \xrightarrow{\left[\theta_{a, b, \ell}\right.} \prod_{\mathcal{W}} M_{\ell}(\mathbb{C}) \xrightarrow{\exp } \prod_{\mathcal{W}} G L_{\ell}(\mathbb{C})$ and $\widetilde{\operatorname{EXP}}: U_{q} \xrightarrow{\left[\widetilde{\theta}_{\theta}, f\right.} \prod_{\mathcal{W}} M_{\ell}(\mathbb{C}) \xrightarrow{\exp } \prod_{\mathcal{W}} G L_{\ell}(\mathbb{C})$, defined $\forall u \in U_{q}$ as:

$$
\operatorname{EXP}(u):=\left[\operatorname{EXP}_{a, b, c}(u)\right], \quad \widetilde{\operatorname{EXP}}_{d, f}(u):=\exp \left(\widetilde{\Theta}_{d, f}(u)\right) .
$$

Our results

Let \mathcal{W} be a non-principal ultrafilter on ω^{2} which will index subsets of complex numbers of the form $\left(d_{n}, f_{m}\right)$ with $\left|f_{m}\right|>1$, or $\left(b_{n}, c_{m}\right)$ with $a_{n} . b_{n}$ a real constant and $\left|c_{m}\right|>1$. For $u \in U_{q}$, set $\Theta_{n, m}(u):=\Theta_{d_{n}, f_{m}}\left(u_{z}\right)$ and $\Theta_{n, m}(u):=\Theta_{a_{n}, b_{n}, c_{m}}\left(u_{z}\right)$. We prove:

- Let D, I be two countable bounded subsets of complex numbers of modulus strictly bigger than 1 . For any $u \in \sum_{m>0} U_{q, m}-\{0\}, \exists W_{u} \in \mathcal{W}$ such that for all $(n, m) \in W_{u}$ we have $\widetilde{\Theta}_{n, m}(u) \neq 0$.
- For any $u \in U_{q}-\{0\}, \exists W_{u} \in \mathcal{W}$ such that for all $n \in W_{u}$ we have $\Theta_{n, m}(u) \neq 0$.
- $\left(U_{q}, \operatorname{EXP}, \prod_{\mathcal{W}} G L_{\ell}(\mathbb{C})\right)$ and $\left(U_{q}, \widetilde{\operatorname{EXP}}, \prod_{\mathcal{W}} G L_{\ell}(\mathbb{C})\right)$ are exponential rings.

Recall that the classical enveloping algebra U is generated by X, Y, H and defining relations $[H, X]=2 X,[H, Y]=-2 Y,[X, Y]=H$. Consider $q_{\ell}=e^{\theta_{\ell}}$, where $\theta_{\ell}=\frac{2 \pi . i}{\zeta}$ and a non-principal ultraproduct of $U_{q_{\ell}}, \ell \in \omega$, over a non principal ultrafilter \mathcal{U} over ω.

- The map $\tau: U \rightarrow \prod_{\mathcal{U}} U_{q_{\ell}}$ sending X to $[E]_{\mathcal{U}}, Y$ to $[F]_{U}$ and H to $\left[\frac{K-K^{-1}}{q-q^{-1}}\right]_{U}$ is injective.

References:

