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A REMARK ON GROUPS WITHOUT FINITE QUOTIENTS

JAKUB GISMATULLIN AND ALEXEY MURANOV

Abstract. We notice that the class of nontrivial groups without proper
subgroups of finite index is not elementary, because some groups in this
class, such as Q ∗ Q, have ultrapowers that map homomorphically onto
Z/pZ for every prime p. Also, some ultrapowers of certain simple groups
map homomorphically onto Z/2Z.

Definition. By NFQ we denote the class of nontrivial groups without
proper subgroups of finite index (equivalently, nontrivial groups which have
No nontrivial Finite Quotients).

For example, (Q, +) is NFQ.
Our main observation is the following proposition.

Main Proposition. If A and B are NFQ groups, then the free product

G = A ∗ B is NFQ as well; however, for every non-principal ultrafilter U
on ω and for every prime p, there exists a homomorphism of Gω/U onto

Z/pZ, and hence Gω/U and Gω are not NFQ.

Corollary. The class NFQ is not elementary and is not closed under infinite

products.

Definition. A generating subset S of a group G is said to generate G in n
steps if

G = (S±1 ∪ {1}) · · · (S±1 ∪ {1})
︸ ︷︷ ︸

n times

.

For a group G and a group word w = w(X̄), define

Vw(G) = { w(ḡ) | ḡ ⊂ G }.

For example, VXn(G) = { gn | g ∈ G }, V[X,Y ](G) = { [g, h] | g, h ∈ G }.

Definition. If w = w(X̄) is a group word and G a group, the verbal width

of G with respect to w is the minimal number of steps in which Vw(G)
generates 〈Vw(G)〉.

Remark 1. A group generated by its NFQ subgroups is NFQ itself.

Remark 2. The class NFQ is closed under taking homomorphic images,
extensions, direct sums, and free products.

Remark 3. An abelian group G is NFQ if and only if it is divisible (for
every prime p, G/pG is a vector space over the finite field Z/pZ, so if it is
nontrivial, then it has an epimorphism onto Z/pZ).
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Remark 4. An arbitrary (Cartesian) product of abelian NFQ groups is NFQ.

Remark 5. If G is an NFQ group and n ∈ N, then VXn(G) ∪ V[X,Y ](G)
generates G (the abelianization G/〈V[X,Y ](G)〉 is divisible by Remark 3).

Lemma 1. Let G be a group and p a prime number. If VXp(G)∪V[X,Y ](G)
does not generate G in finitely many steps, then for every non-principal

ultrafilter U on ω, the ultrapower Gω/U maps homomorphically onto Z/pZ.

Proof. Denote H the abelianization of Gω/U . Choose f ∈ Gω such that

(∀n < ω)
(

f(n) /∈ VXp(G) · V[X,Y ](G) · · · V[X,Y ](G)
︸ ︷︷ ︸

n times

)

.

Then f represents a nontrivial element of H/Hp, and hence H/Hp is a
nontrivial vector space over Z/pZ and has an epimorphism onto Z/pZ. �

Remark 6. Since every commutator is the product of 3 squares (e.g. [X, Y ] =
(Y X)−2 · (Y X2Y −1) · Y 2), in the case p = 2, the hypothesis of the lemma
reduces to “VX2(G) does not generate G in finitely many steps.”

Proof of the main proposition relies on the following remarkable result of
Rhemtulla.

Theorem (Rhemtulla, 1967, [2]). If w = w(X̄) is a group word such that

there exists a group H such that {1} 6= 〈Vw(H)〉 6= H, and if A and B are

two nontrivial groups of which at least one has order greater than 2, then

the verbal subgroup 〈Vw(A ∗ B)〉 of A ∗ B is not generated by Vw(A ∗ B) in

finitely many steps.

Proof of the main proposition. Clearly G is NFQ, see Remark 1.
Let w = w(X, Y, Z) = Xp[Y, Z]. By Rhemtulla’s theorem, G is not

generated by Vw(G) in finitely many steps. Since Vw(G) ⊃ VXp(G) ∪
V[Y,Z](G), Gω/U maps homomorphically onto Z/pZ by Lemma 1. �

Another (more complicated) way to prove that NFQ is not a first-order
property, without using Rhemtulla’s theorem, is to consider the simple
groups constructed in [1]: those groups are of infinite width with respect
to X2, and hence have ultrapowers that map homomorphically onto Z/2Z.
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