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Introduction

I The talk will discuss recent and current pieces of work with
Hrushovski-Peterzil, Bays, and Berarducci-Peterzil.

I It will be about group covers in various senses. I will
concentrate on the first order context, but also make some
not very deep comments on infinitary categoricity.

I Among the inspirations are the works of Zilber and his
students around the model theory of universal covers, which I
guess were themselves inspired and motivated by the problem
of understanding the complex exponential field.



Commutative algebraic groups I

I Let G be the group (C,+) as a structure, and consider the
2-sorted structure consisting of G, (C,+, ·) and π : G→ C∗
the exponential map from the first sort into the second sort.

I Equivalently we could consider the 3-sorted structure which in
addition has a sort for the kernel of π, which we identify with
(Z,+) and a symbol for the inclusion of the kernel in G.

I Or just consider the one sorted structure (G,+) equipped with
a predicate for the kernel of π and with the field structure on
the quotient. (So this a group in the sense of model theory.)

I More generally we could take G to be the universal cover of
any commutative complex algebraic group H.

I In any case let M denote this structure.



Commutative algebraic groups II

I From QE results of Boris we know that M , or Th(M), is a
superstable group of U -rank 2, in which both the kernel
(Z,+) and the quotient (C,+, ·) are “stably embedded”, i.e.
acquire no additional structure.

I The kernel and the quotient are groups of U -rank 1, Morley
rank 1, respectively, and their generic types are the only
regular types up to nonorthogonality: Th(M) is
“2-dimensional”.

I Also the theory of the kernel, Th(Z,+), although not
ω-stable, has a “classifiable” class of models: any model is of
the form “elementary substructure of the profinite completion
of Z” direct sum a Q-vector space.



Commutative algebraic groups III

I Let us remark that M is NOT interpretable in the 2-sorted
structure ((Z,+), (C,+, ·)), consisting of the kernel and
quotient with no relations between them.

I Because if it were, then the basic model theory of finite rank
superstable groups would imply that G would definably split
as a direct sum of the kernel and quotient, which it does not
even do as an abstract group. However:

Theorem 0.1
M is (naturally) interpretable in the 2-sorted structure
((Z,+), (R,+, ·)), where we identify C with R× R.



Commutative algebraic groups IV

This is a special case of the following result:

Theorem 0.2
(HPP) Let M0 be an o-minimal expansion of the real field, H a
connected Lie group definable in M0, and π : G→ H its universal
covering group. Then the structure ((G, ·),M0, π) is naturally
interpretable in the 2-sorted structure ((Γ,+),M0), where we
denote the group operation of the (central) kernel Γ additively.

I The proof makes use of results of Edmundo and Eleftheriou.

I Essentially G→ H is isomorphic to an Ind-definable (in M0)
G1 → H and by Skolem functions the latter has a definable
(in M0) section s, yielding a cocycle from H ×H to Γ
definable in (Γ,M0), from which we define a copy of G in
(Γ,M0).



Commutative algebraic groups V

I Let us return to the superstable group M :
((C,+), (C,+, .), π)) from the beginning of the talk.

I Zilber, Gavrilovich, Bays,.. investigated the uncountable
categoricity of the Lω1,ω sentence consisting of the first order
theory of M together with a sentence pinning down the
isomorphism type of the kernel as (Z,+), as well as analogues
with elliptic curves in place of Gm.

I As Martin mentioned in his talk, the methods involving the
action of Galois on torsion points and division sequences,
apertain to the first order theory of M , and one obtains, in
spite of the non-interpretability result mentioned earlier, the
following:



Commutative algebraic groups VI

Theorem 0.3
(BP) ANY model of Th(M) is determined by the isomorphism
type of the kernel and the isomorphism type of the quotient (as an
algebraically closed field). In particular Th(M) has NOTOP ,or
equivalently in this situation PMOP , existence of prime models
over independent pairs.

I Analogous results hold for suitable abelian varieties in place of
Gm.

I So for these universal cover issues ( but NOT for the full
structure (C,+, ·, exp)) the relative categoricity results are
really at the first order level.



Lie groups I

I Given the work on infinitary categoricity of universal covers of
algebraic groups, we were naturally curious about the Lie
group, or o-minimal analogues.

I The situation, as already referred to above, consists of an an
o-minimal expansion M0 of the real field, a connected Lie
group H definable in M0, π : G→ H the universal cover of
H (as a topological group) and M the structure
((G, ·),M0, π) with parameters if necessary from M0 which
are needed to define H. Let Γ denote ker(π).

I What can be said regarding (i) the categoricity of the Lω1,ω

theory of M , (ii) the categoricity, relative to the sorts of the
kernel and field sort, of the first order theory of M?



Lie groups II

I One might think that (ii) has a positive answer because of the
interpretability result Theorem 0.1 that M is interpretable in
((Γ,+),M0). But this is NOT not a bi-interpretability result.

I However one can prove that there is, in M , an Lω1,ω-definable
(over ∅) section s of the cover G→ H.

I This makes use again of the existence of an ind-definable, in
M0, copy G1 → H of G→ H, as well as the definability in M
of the induced isomorphism between G/Γ′ and G1/Γ

′ for each
finite index subgroup Γ′ of Γ.

I From the section s one obtains a definable bijection
H × Γ→ G, and thus:

Theorem 0.4
(BPP) The Lω1,ω-theory of M is outright categorical.



Lie groups III

I A special case of relative categoricity of the first order theory
of M , would be relative categoricity with respect to the
M0-sort of the Lω1,ω-sentence consisting of Th(M) plus a
sentence fixing the isomorphism type of (Γ,+) which is the
precise analogue of the situation studied by Zilber et al.

I This is FALSE, even in the simplest case where H is S1, and
so G is (R,+) and Γ is (Z,+).

I The reason is rather boring. This “real” context is the
opposite of the “algebraic” context. There is no Galois action
on torsion: the torsion points are in dcl(∅). Moreover the
structure M0 is itself rigid (no automorphism).

I The map π̂ from G to Hω taking g to (π(g/n))n is an
embedding, and the isomorphism type of a model of Th(M)
with same M0 and Γ, is determined by this image



Lie groups IV

One concludes

Theorem 0.5
(BPP) There are many (at least continuum) rigid nonisomorphic
models of Th(M) with kernel (isomorphic to) Γ and the field sort
(isomorphic to) M0, all of which are, moreover, rigid.

I A final remark in this section is that the results also hold with
suitable modifications for arbitrary (non Archimedean,
possibly saturated) o-minimal structures M ′0 in place of M0.

I H will be a group definable in M ′0, and now G will be its
“o-minimal universal cover”.

I Again one has Lω1,ω-definability of a section s : H → G
yielding versions of Theorem 0.4.

I And rigidity of torsion is enough to yield versions of Theorem
0.5.



Finite central extensions I

I Let H be a connected compact Lie group, and let π : G→ H
be a finite central extension of H as an abstract group.

I Namely π : G→ H is a surjective homomorphism whose
kernel is finite and in the centre of G.

I The problem or question, is whether any such G can be
realized as a topological cover of H, namely whether G can
be equipped with the structure of a not necessarily connected
(Hausdorff) topological group such that the topology on H is
precisely the quotient topology of G. (In which case G will
itself be compact Lie.)

I We have been recently informed that this is a remaining open
case of Milnor’s conjecture.



Finite central extensions II

I Before being aware of this we tried to prove it, obtaining some
conditional results. I will restrict myself to here to giving some
easy model-theoretic equivalents of the statement/problem.

I Again we take us our structure the 2-sorted structure
M = ((G, .),M0, π) where M0 is an o-minimal expansion of
the real field in which H is definable, and G a finite central
extension of H as an abstract group. Let Γ denote the finite
kernel.

I There is no harm in choosing M0 to be the real field (R,+, ·)
itself.

I Given this structure M , we let M∗ denote a saturated
elementary extension, and π∗ : G∗ → H∗ (with of course the
same kernel Γ as π).

I Note that H∗/(H∗)00 = H under the standard part map.



Finite central extensions III

Theorem 0.6
(BPP) With the above notation, the following are equivalent:

I (i) G can be equipped with the structure of a topological
cover of H.

I (ii) The structure M0 is stably embedded in M (i.e. no
additional structure is acquired).

I (iii) M0 with structure induced from M is o-minimal.

I (iv) M is (naturally) interpretable in M0.

I (v) For some type-definable bounded index subgroup (G∗)00 of
G∗, π∗ induces an isomorphism between (G∗)00 and (H∗)00.



Discussion of proof I

I Assuming (i) that G IS a topological cover, there is no harm
in assuming it to be connected, so a quotient of the universal
cover. The earlier discussion around the ind-interpretability of
the universal cover of H in M0 yields the interpretability of
G→ H in M0 (over H) which essentially implies all other
conditions.

I Without any assumptions, we always have a 0-definable in M
section s : H → G of π, using the fact that ker(π) is finite,
of size n say, and that every element of H has an nth root
(and just finitely many).

I Hence assuming (ii), stably embeddability of M0 in M , we see
that again M is interpretable in M0, G is equipped with a Lie
group structure by o-minimality and everything follows.

I Likewise, if we start with assumption (iii)



Discussion of proof II

I The case where we assume (v) is amusing.

I π∗ : G∗ → H∗ induces f : G∗/(G∗)00 → H∗/(H∗)00.

I The embeddings of G in G∗ and H in H∗ induce
isomorphisms iG of G with G∗/(G∗)00 and iH of H with
H∗/(H∗)00 (as mentioned earlier), in such a way that f
coincides with π : G→ H.

I G∗/(G∗)00 and H∗/(H∗)00 are equipped with the logic
topology, iH is also a homeomorphism, and iG equips G with
topological group structure such that π : G→ H is a
topological covering. End of proof.



Discussion of proof III

I In fact we know in general precisely what (G∗)00 should be: it
should be (with multiplicative notation), the set of nth
powers of (π∗)−1((H∗)00), where n is the cardinality of Γ.

I With this “definition” of (G∗)00, π∗ always induces a bijection
between (G∗)00 and (H∗)00.

I However we want (as (v) states) (G∗)00 to be a subgroup of
G∗, and that is among the technical problems.

I When H is commutative, one sees quickly that G is also
commutative, and so (G∗)00 as defined above IS a subgroup.

I So a conclusion is that for H commutative the conditions (i)
to (v) all hold.


