Independence in positive characteristic

Piotr Kowalski

Instytut Matematyczny Uniwersytetu Wrocławskiego

March 28, 2010

Schanuel conjectures

Schanuel Conjectures

1. Let $x_1, \ldots, x_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

$$\operatorname{trdeg}_{\mathbb{Q}}(x_1,\ldots,x_n,e^{x_1},\ldots,e^{x_n}) \geqslant n.$$

2. Let $x_1, \ldots, x_n \in tC[t]$ be linearly independent over \mathbb{Q} . Then

$$\operatorname{trdeg}_{C(t)}(x_1,\ldots,x_n,e^{x_1},\ldots,e^{x_n}) \geq n.$$

Remark

1. The complex field is Archimedean and the conjecture is very open.

2. The field of Laurent series is non Archimedean (*C* is any characteristic 0 field) and the conjecture was proved by Ax.

Schanuel conjectures

Schanuel Conjectures

1. Let $x_1, \ldots, x_n \in \mathbb{C}$ be linearly independent over \mathbb{Q} . Then

$$\operatorname{trdeg}_{\mathbb{Q}}(x_1,\ldots,x_n,e^{x_1},\ldots,e^{x_n}) \geqslant n.$$

2. Let $x_1, \ldots, x_n \in tC[t]$ be linearly independent over \mathbb{Q} . Then

$$\operatorname{crdeg}_{C(t)}(x_1,\ldots,x_n,e^{x_1},\ldots,e^{x_n}) \geq n.$$

Remark

1. The complex field is Archimedean and the conjecture is very open.

2. The field of Laurent series is non Archimedean (C is any characteristic 0 field) and the conjecture was proved by Ax.

・ マット ・ リッ

Boris Zilber's suggestion

Question

What about a positive characteristic version of Ax's theorem?

Immediate problem

There is no exponential map in positive characteristic. Why?

• Because p! is not invertible in \mathbb{F}_p .

• If a power series F over \mathbb{F}_p satisfies

 $F(X_1 + X_2) = F(X_1)F(X_2),$

then F = 0, 1.

Solution

Try some other power series.

Boris Zilber's suggestion

Question

What about a positive characteristic version of Ax's theorem?

Immediate problem

There is no exponential map in positive characteristic. Why?

- Because p! is not invertible in \mathbb{F}_p .
- If a power series F over \mathbb{F}_p satisfies

$$F(X_1 + X_2) = F(X_1)F(X_2),$$

then F = 0, 1.

Solution

Try some other power series.

Boris Zilber's suggestion

Question

What about a positive characteristic version of Ax's theorem?

Immediate problem

There is no exponential map in positive characteristic. Why?

- Because p! is not invertible in \mathbb{F}_p .
- If a power series F over \mathbb{F}_p satisfies

$$F(X_1 + X_2) = F(X_1)F(X_2),$$

then F = 0, 1.

Solution

Try some other power series.

Why does Ax's theorem hold for exp?

Reasons

- ${\color{black} 0}$ exp is an analytic homomorphism between \mathbb{G}_a and $\mathbb{G}_m.$
- exp is (very) non-algebraic.

We should look for such maps.

Example

- The exponential map to any commutative algebraic group from its Lie algebra (characteristic 0),
- ② Raising to powers on algebraic torus (arbitrary characteristic),
- Formal isomorphisms between algebraic tori and (ordinary) abelian varieties (arbitrary characteristic),
- Additive power series (positive characteristic).

< A >

Why does Ax's theorem hold for exp?

Reasons

- ${\color{black} 0}$ exp is an analytic homomorphism between \mathbb{G}_a and $\mathbb{G}_m.$
- exp is (very) non-algebraic.

We should look for such maps.

Example

- The exponential map to any commutative algebraic group from its Lie algebra (characteristic 0),
- Paising to powers on algebraic torus (arbitrary characteristic),
- Formal isomorphisms between algebraic tori and (ordinary) abelian varieties (arbitrary characteristic),
- Additive power series (positive characteristic).

- 4 同 ト 4 ヨ ト 4 ヨ ト

What is known

Ax theorem for some maps

- Ax proved power series SC for exp_A, where A is a semi-abelian variety.
 - Differential versions: Brownawell-Kubota, Kirby, Bertrand.
 - A "non-constant" version: Bertrand-Pillay.
- ② A power series SC for raising to powers α on an n-dimensional characteristic 0 torus, where [Q(α) : Q] > n (K.).
- A power series SC for additive power series (K., preprint available on my web page). In a way it is similar to the raising to powers case.

- **→** → **→**

What is known

Ax theorem for some maps

- Ax proved power series SC for exp_A, where A is a semi-abelian variety.
 - Differential versions: Brownawell-Kubota, Kirby, Bertrand.
 - A "non-constant" version: Bertrand-Pillay.
- A power series SC for raising to powers α on an *n*-dimensional characteristic 0 torus, where [Q(α) : Q] > n (K.).
- A power series SC for additive power series (K., preprint available on my web page). In a way it is similar to the raising to powers case.

< 🗇 > < 🖃 >

What is known

Ax theorem for some maps

- Ax proved power series SC for exp_A, where A is a semi-abelian variety.
 - Differential versions: Brownawell-Kubota, Kirby, Bertrand.
 - A "non-constant" version: Bertrand-Pillay.
- A power series SC for raising to powers α on an *n*-dimensional characteristic 0 torus, where [Q(α) : Q] > n (K.).
- A power series SC for additive power series (K., preprint available on my web page). In a way it is similar to the raising to powers case.

Plan of the rest of the talk

- Statement of the additive version of Ax's theorem.
- Proof.
- Oiscussion of some other cases and the Drinfeld modules situation.

30.00

 Let us fix a prime number p and let 𝔽_p [[Fr]] denote the ring of additive power series

with composition. It is commutative.

- Let 𝔽_p[Fr] be a subring of 𝔽_p[[Fr]] consisting of additive polynomials. Any ring of characteristic p is also an 𝔽_p[Fr]-module, where X acts as Frobenius.
- Let us fix $F \in \mathbb{F}_p[[Fr]]$, which has algebraic degree over $\mathbb{F}_p[Fr]$ greater than *n*.
- Let t be a variable. The power series F converges on t 𝔽_p[[t]] in the complete non Archimedean field 𝔽_p((t)).

・ 同 ト ・ ヨ ト ・ ヨ

 Let us fix a prime number p and let 𝔽_p [[Fr]] denote the ring of additive power series

with composition. It is commutative.

- Let 𝔽_p[Fr] be a subring of 𝔽_p [[Fr]] consisting of additive polynomials. Any ring of characteristic p is also an 𝔽_p[Fr]-module, where X acts as Frobenius.
- Let us fix F ∈ 𝔽_p [[Fr]], which has algebraic degree over 𝔽_p [Fr] greater than n.
- Let t be a variable. The power series F converges on tF_p[[t]] in the complete non Archimedean field F_p((t)).

(4月) (1日) (日)

 Let us fix a prime number p and let 𝔽_p [[Fr]] denote the ring of additive power series

with composition. It is commutative.

- Let 𝔽_p[Fr] be a subring of 𝔽_p [[Fr]] consisting of additive polynomials. Any ring of characteristic p is also an 𝔽_p[Fr]-module, where X acts as Frobenius.
- Let us fix F ∈ 𝔽_p [[Fr]], which has algebraic degree over 𝔽_p [Fr] greater than n.
- Let t be a variable. The power series F converges on tF_p[[t]] in the complete non Archimedean field F_p((t)).

 Let us fix a prime number p and let 𝔽_p [[Fr]] denote the ring of additive power series

with composition. It is commutative.

- Let 𝔽_p[Fr] be a subring of 𝔽_p [[Fr]] consisting of additive polynomials. Any ring of characteristic p is also an 𝔽_p[Fr]-module, where X acts as Frobenius.
- Let us fix F ∈ 𝔽_p [[Fr]], which has algebraic degree over 𝔽_p [Fr] greater than n.
- Let t be a variable. The power series F converges on t 𝔽_p [[t]] in the complete non Archimedean field 𝔽_p((t)).

The statement

Theorem (Schanuel Conjecture for additive power series)

Let $x_1, \ldots, x_n \in t \mathbb{F}_p[t]$. Assume x_1, \ldots, x_n are linearly independent over $\mathbb{F}_p[\mathsf{Fr}]$ and

$$g := (x_1, \ldots, x_n, F(x_1), \ldots, F(x_n)).$$

Then

 $\operatorname{trdeg}_{\mathbb{F}_p(t)}(g) \ge n.$

▲ 同 ▶ → 三 ▶

Outline of the proof

Let us assume that $\operatorname{trdeg}_{\mathbb{F}_p}(g) \leq n$ and we want to conclude that x_1, \ldots, x_n are $\mathbb{F}_p[\operatorname{Fr}]$ -dependent, i.e. $(x_1, \ldots, x_n) \in N$, where N is a proper algebraic subgroup of \mathbb{G}_a^n over \mathbb{F}_p . We proceed as follows:

- Find (higher) differential forms vanishing on g,
- Ind an additive power series vanishing on g in a certain sense,
- If ind proper algebraic subgroup of \mathbb{G}_{a}^{2n} over \mathbb{F}_{p} containing g,
- Using non-algebraicity of F, find N.

Outline of the proof

Let us assume that $\operatorname{trdeg}_{\mathbb{F}_p}(g) \leq n$ and we want to conclude that x_1, \ldots, x_n are $\mathbb{F}_p[\operatorname{Fr}]$ -dependent, i.e. $(x_1, \ldots, x_n) \in N$, where N is a proper algebraic subgroup of \mathbb{G}_a^n over \mathbb{F}_p . We proceed as follows:

- Find (higher) differential forms vanishing on g,
- Ind an additive power series vanishing on g in a certain sense,
- Solution Find proper algebraic subgroup of \mathbb{G}_{a}^{2n} over \mathbb{F}_{p} containing g,
- Using non-algebraicity of F, find N.

How a power series may vanish

- A power series is a limit of a Cauchy sequence from 𝔽_p[X] in the topology given by (X^m𝔽_p[X])_m.
- However an additive power series $\sum c_i X^{p^i}$ is also a limit of

$$(\sum_{i=0}^m c_i X^{p^i})_m$$

in the topology given by $(\mathbb{F}_p[X]^{p^m})_m$.

• Such a topology may be considered on any \mathbb{F}_p -algebra \mathcal{T} . Let $\phi : \mathbb{F}_p[X] \to \mathcal{T}$ be a \mathbb{F}_p -algebra homomorphism.

Definition

Let $h = \lim h_m$ (second sense!) be an additive power series. We say that h vanishes on T if for each m, we have $\phi(h_m) \in T^{p^{m+1}}$.

How a power series may vanish

- A power series is a limit of a Cauchy sequence from 𝔽_p[X] in the topology given by (X^m𝔽_p[X])_m.
- However an additive power series $\sum c_i X^{p^i}$ is also a limit of

$$(\sum_{i=0}^m c_i X^{p^i})_m$$

in the topology given by $(\mathbb{F}_p[X]^{p^m})_m$.

• Such a topology may be considered on any \mathbb{F}_p -algebra \mathcal{T} . Let $\phi : \mathbb{F}_p[X] \to \mathcal{T}$ be a \mathbb{F}_p -algebra homomorphism.

Definition

Let $h = \lim h_m$ (second sense!) be an additive power series. We say that h vanishes on T if for each m, we have $\phi(h_m) \in T^{p^{m+1}}$.

Power series vanishing on $\mathbb{F}_p((\overline{t}))$

Let us set
$$\bar{X} = (X_1, \dots, X_n), \bar{Y} = (Y_1, \dots, Y_n)$$
 and we have
 $\mathbb{F}_p[\bar{X}, \bar{Y}] \ni W \mapsto W(g) \in \mathbb{F}_p((t))$

Example

Since
$$g = (x_1, \ldots, x_n, F(x_1), \ldots, F(x_n))$$
, each series $Y_i - F(X_i)$ vanishes on $\mathbb{F}_p((t))$.

(人間) (人) (人) (人) (人) (人)

э

Linear dependence of differential forms

A usage of the Lie derivative is crucial in Ax's proof to obtain C-dependence of certain differential forms. Here we use:

Proposition

Let $\mathbb{F}_p \subseteq L \subseteq K$ be a tower of fields and $\mathbb{F}_p[\bar{X}, \bar{Y}] \to L$ an \mathbb{F}_p -algebra homomorphism. Assume f_1, \ldots, f_n are additive power series in variables \bar{X}, \bar{Y} and:

•
$$K^{p^{\infty}} = \mathbb{F}_{p}$$
,

- trdeg $_{\mathbb{F}_p}(L)\leqslant n$,
- $L \nsubseteq K^p$,
- f_1, \ldots, f_n vanish on K.

Then $d(f_1), \ldots, d(f_n)$ are \mathbb{F}_p -dependent in Ω_{L/\mathbb{F}_p} . An appropriate version for higher forms is also true.

・ 同 ト ・ ヨ ト ・ ヨ ト

Vanishing additive power series

We set $L = \mathbb{F}_p(g)$ and $K = \mathbb{F}_p((t))$.

Proposition

There is a non-zero tuple h_1, \ldots, h_n of additive power series s. t.

$$h:=h_1\circ(Y_1-F(X_1))+\ldots+h_n\circ(Y_n-F(X_n))$$

vanishes on L.

Idea of the proof

By the linear dependence result we get $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_p$ such that

$$\alpha_1 \mathrm{d}(F(x_1) - x_1) + \ldots + \alpha_n \mathrm{d}(F(x_n) - x_n) = 0 \in \Omega_{L/\mathbb{F}_p}.$$

Each α_i is (almost) the constant term of h_i . Other coefficients are obtained using higher differential forms.

Vanishing additive power series

We set $L = \mathbb{F}_{p}(g)$ and $K = \mathbb{F}_{p}((t))$.

Proposition

There is a non-zero tuple h_1, \ldots, h_n of additive power series s. t.

$$h:=h_1\circ(Y_1-F(X_1))+\ldots+h_n\circ(Y_n-F(X_n))$$

vanishes on L.

Idea of the proof

By the linear dependence result we get $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_p$ such that

$$\alpha_1 \mathrm{d}(F(x_1) - x_1) + \ldots + \alpha_n \mathrm{d}(F(x_n) - x_n) = 0 \in \Omega_{L/\mathbb{F}_p}.$$

Each α_i is (almost) the constant term of h_i . Other coefficients are obtained using higher differential forms.

Vanishing power series and formal subvarieties

Let $A = \mathbb{G}_{a}^{2n}$ and $W \subseteq A$ be an algebraic subvariety containing 0 as a smooth point. The series h may vanish on W in two ways:

"Strong" vanishing

Using the restriction map $C[\bar{X}, \bar{Y}] \rightarrow C(W)$ it makes sense to say that *h* vanishes on C(W).

Vanishing on W

Let $\widehat{\mathcal{O}}_W = \varprojlim (\mathcal{O}_{W,0}/\mathfrak{m}_{W,0}^{p^{m+1}})$ and $\pi : \widehat{\mathcal{O}}_A \to \widehat{\mathcal{O}}_W$ be the restriction map. We say that h vanishes on \widehat{W} if $\pi(h) = 0$.

Easy to see that strong vanishing implies vanishing on $\widehat{W}.$

Vanishing power series and formal subvarieties

Let $A = \mathbb{G}_{a}^{2n}$ and $W \subseteq A$ be an algebraic subvariety containing 0 as a smooth point. The series h may vanish on W in two ways:

"Strong" vanishing

Using the restriction map $C[\bar{X}, \bar{Y}] \rightarrow C(W)$ it makes sense to say that *h* vanishes on C(W).

Vanishing on W

Let $\widehat{\mathcal{O}}_W = \varprojlim (\mathcal{O}_{W,0}/\mathfrak{m}_{W,0}^{p^{m+1}})$ and $\pi : \widehat{\mathcal{O}}_A \to \widehat{\mathcal{O}}_W$ be the restriction map. We say that h vanishes on \widehat{W} if $\pi(h) = 0$.

Easy to see that strong vanishing implies vanishing on \widehat{W} .

Algebraic subgroup

Let V be the locus of g over \mathbb{F}_p^{alg} and H be the coset generated by V (Chevalley-Zilber).

- From the form of g, H is an algebraic subgroup over \mathbb{F}_p .
- h vanishes on $\mathbb{F}_p(g)$.
- *h* vanishes on \widehat{V} (perhaps after translating *V*).
- *h* vanishes on \widehat{H} .

Main point behind

Let \mathcal{H} be a formal subgroup ("zeroes of power series") of A. Then

$$\widehat{V} \subseteq \mathcal{H} \quad \Longrightarrow \quad \widehat{\langle V \rangle} \subseteq \mathcal{H}.$$

Algebraic subgroup

Let V be the locus of g over $\mathbb{F}_p^{\text{alg}}$ and H be the coset generated by V (Chevalley-Zilber).

- From the form of g, H is an algebraic subgroup over \mathbb{F}_p .
- *h* vanishes on $\mathbb{F}_p(g)$.
- *h* vanishes on \widehat{V} (perhaps after translating *V*).
- *h* vanishes on \widehat{H} .

Main point behind

Let $\mathcal H$ be a formal subgroup ("zeroes of power series") of A. Then

$$\widehat{V} \subseteq \mathcal{H} \implies \widehat{\langle V \rangle} \subseteq \mathcal{H}.$$

Conclusion of the proof I

We have:

- g = (x, F(x)).
- $g \in H(\mathbb{F}_p((t))).$
- *h* vanishes on \hat{H} .

We want:

• A proper algebraic $N < \mathbb{G}_{a}^{n}$ such that $x \in N(\mathbb{F}_{p}((t)))$.

Conclusion of the proof I

We have:

- g = (x, F(x)).
- $g \in H(\mathbb{F}_p((t))).$
- *h* vanishes on \widehat{H} .

We want:

• A proper algebraic $N < \mathbb{G}_{a}^{n}$ such that $x \in N(\mathbb{F}_{p}((t)))$.

Conclusion of the proof II

• We know that h vanishes on \widehat{H} and

$$h:=h_1\circ (Y_1-F(X_1))+\ldots+h_n\circ (Y_n-F(X_n)).$$

• If the projection of H to \mathbb{G}_a^n is proper we are done. Assume not. Then we get $M = (t_{ij}) \in M_n(\mathbb{F}_p[Fr])$ such that

$$h_1 \circ t_1 + \ldots + h_n \circ t_n = h_k \circ F$$

for each $1 \leq k \leq n$, so F is a characteristic value of M.

• By Cayley-Hamilton, F is algebraic over $\mathbb{F}_p[Fr]$ of degree $\leq n$.

Conclusion of the proof II

• We know that h vanishes on \widehat{H} and

$$h:=h_1\circ(Y_1-F(X_1))+\ldots+h_n\circ(Y_n-F(X_n)).$$

• If the projection of H to \mathbb{G}_a^n is proper we are done. Assume not. Then we get $M = (t_{ij}) \in M_n(\mathbb{F}_p[Fr])$ such that

$$h_1 \circ t_1 + \ldots + h_n \circ t_n = h_k \circ F$$

for each $1 \leq k \leq n$, so F is a characteristic value of M.

• By Cayley-Hamilton, F is algebraic over $\mathbb{F}_p[Fr]$ of degree $\leq n$.

Conclusion of the proof II

• We know that h vanishes on \widehat{H} and

$$h:=h_1\circ(Y_1-F(X_1))+\ldots+h_n\circ(Y_n-F(X_n)).$$

• If the projection of H to \mathbb{G}_a^n is proper we are done. Assume not. Then we get $M = (t_{ij}) \in M_n(\mathbb{F}_p[Fr])$ such that

$$h_1 \circ t_1 + \ldots + h_n \circ t_n = h_k \circ F$$

for each $1 \leq k \leq n$, so F is a characteristic value of M.

• By Cayley-Hamilton, F is algebraic over $\mathbb{F}_p[\mathsf{Fr}]$ of degree $\leq n$.

Coefficients other than \mathbb{F}_p

- If we replace \mathbb{F}_p with an arbitrary perfect field C, then the proof goes smoothly till the very last sentence the usage of Cayley-Hamilton.
- If C ≇ 𝔽_p, then C[Fr] is not commutative, so Cayley-Hamilton can not be applied. Proceeding "by hand" one can still obtain that F is "algebraic of degree at most n" over C[Fr], i.e. there are α_{i,j} ∈ C[Fr] such that

$$\alpha_{0,n}^{\pm 1} \circ F \circ \alpha_{1,n}^{\pm 1} \circ F \circ \ldots \circ F \circ \alpha_{n,n}^{\pm 1} + \ldots + \alpha_{0,1}^{\pm 1} \circ F \circ \alpha_{1,1}^{\pm 1} + \alpha_{0,0}^{\pm 1} = 0.$$

Coefficients other than \mathbb{F}_p

- If we replace \mathbb{F}_p with an arbitrary perfect field C, then the proof goes smoothly till the very last sentence the usage of Cayley-Hamilton.
- If C ≇ 𝔽_p, then C[Fr] is not commutative, so Cayley-Hamilton can not be applied. Proceeding "by hand" one can still obtain that F is "algebraic of degree at most n" over C[Fr], i.e. there are α_{i,j} ∈ C[Fr] such that

$$\alpha_{0,n}^{\pm 1} \circ \mathcal{F} \circ \alpha_{1,n}^{\pm 1} \circ \mathcal{F} \circ \ldots \circ \mathcal{F} \circ \alpha_{n,n}^{\pm 1} + \ldots + \alpha_{0,1}^{\pm 1} \circ \mathcal{F} \circ \alpha_{1,1}^{\pm 1} + \alpha_{0,0}^{\pm 1} = 0.$$

Drinfeld modules

Definition

Let $A = \mathbb{F}_p[t]$ and $K = \mathbb{F}_p((\frac{1}{t}))$. A Drinfeld A-module (over K) is a (nontrivial) homomorphism

$$\varphi: \mathcal{A} \to \mathsf{End}_{\mathcal{K}}(\mathbb{G}_{\mathrm{a}}) = \mathcal{K}[\mathsf{Fr}].$$

- An additive power series over K is attached to each Drinfeld module, which "formally trivializes" it. This series plays the role of the exponential (Weierstrass) map.
- Many transcendence results were obtained for such "exponential maps". A couple of them are on the next slide.

Drinfeld modules

Definition

Let $A = \mathbb{F}_p[t]$ and $K = \mathbb{F}_p((\frac{1}{t}))$. A Drinfeld A-module (over K) is a (nontrivial) homomorphism

$$\varphi: A \to \mathsf{End}_{\mathcal{K}}(\mathbb{G}_{\mathrm{a}}) = \mathcal{K}[\mathsf{Fr}].$$

- An additive power series over K is attached to each Drinfeld module, which "formally trivializes" it. This series plays the role of the exponential (Weierstrass) map.
- Many transcendence results were obtained for such "exponential maps". A couple of them are on the next slide.

Carlitz exponential and logarithm

• The Carlitz module is a Drinfeld module where

$$\varphi(t) = tX + X^p$$

and the corresponding "exponential map" is denoted \exp_C .

• It has the following form

$$\exp_{C} = X + \sum_{i=1}^{\infty} \frac{X^{p^{i}}}{(t^{p^{i}} - t)(t^{p^{i}} - t^{p})\dots(t^{p^{i}} - t^{p^{i-1}})}$$

• Denis obtained some Schanuel-type results for exp_C.

 Papanikolas proved a Carlitz version of the (still open) conjecture on algebraic independence of logarithms of algebraic numbers. Carlitz exponential and logarithm

• The Carlitz module is a Drinfeld module where

$$\varphi(t) = tX + X^p$$

and the corresponding "exponential map" is denoted \exp_C .

• It has the following form

$$\exp_{C} = X + \sum_{i=1}^{\infty} \frac{X^{p^{i}}}{(t^{p^{i}} - t)(t^{p^{i}} - t^{p}) \dots (t^{p^{i}} - t^{p^{i-1}})}$$

- Denis obtained some Schanuel-type results for exp_C.
- Papanikolas proved a Carlitz version of the (still open) conjecture on algebraic independence of logarithms of algebraic numbers.

Our case vs Drinfeld modules

- The power series considered here do not fit in the Drinfeld modules framework, since they have constant coefficients, i.e. there is no transcendental element present.
- The Carlitz exponential exp_C is "algebraic" in our terminology since it satisfies the following functional equation:

 $\exp_C \circ \theta X = \theta X \circ \exp_C + X^p \circ \exp_C.$

• A Drinfeld (or even Carlitz) version of the *full* Schanuel conjecture is still open.

Our case vs Drinfeld modules

- The power series considered here do not fit in the Drinfeld modules framework, since they have constant coefficients, i.e. there is no transcendental element present.
- The Carlitz exponential exp_C is "algebraic" in our terminology since it satisfies the following functional equation:

$$\exp_{\mathcal{C}}\circ\theta X=\theta X\circ\exp_{\mathcal{C}}+X^{p}\circ\exp_{\mathcal{C}}.$$

• A Drinfeld (or even Carlitz) version of the *full* Schanuel conjecture is still open.

Our case vs Drinfeld modules

- The power series considered here do not fit in the Drinfeld modules framework, since they have constant coefficients, i.e. there is no transcendental element present.
- The Carlitz exponential exp_C is "algebraic" in our terminology since it satisfies the following functional equation:

$$\exp_{\mathcal{C}}\circ\theta X=\theta X\circ\exp_{\mathcal{C}}+X^{p}\circ\exp_{\mathcal{C}}.$$

• A Drinfeld (or even Carlitz) version of the *full* Schanuel conjecture is still open.

Non-additive power series

- Our transcendence statement was obtained for certain additive power series, i.e. for sufficiently non-algebraic formal maps between vector groups.
- It is natural to extend this result to the context of an arbitrary "sufficiently non-algebraic" formal map between algebraic groups.
- An example of such a map is a formal isomorphism between an ordinary elliptic curve and the multiplicative group.
- This is work in progress.

Non-additive power series

- Our transcendence statement was obtained for certain additive power series, i.e. for sufficiently non-algebraic formal maps between vector groups.
- It is natural to extend this result to the context of an arbitrary "sufficiently non-algebraic" formal map between algebraic groups.
- An example of such a map is a formal isomorphism between an ordinary elliptic curve and the multiplicative group.
- This is work in progress.