Covers

David Evans, School of Mathematics, UEA, Norwich.

LMH, Oxford, March 2010.

Zilber meeting ()

March 2010 1 / 16

1. Uncountably categorical theories

Work in a saturated model of an uncountably categorical theory (countable language, infinite models).

Zilber's Ladder Theorem (1977)

Let M_0 , M be \emptyset -definable sets and M_0 strongly minimal. Then there exists a finite sequence of \emptyset -definable sets M_0, M_1, \ldots, M_k ending in M such that for each i (with $0 \le i < k$) and each M_i -atom $A \subseteq M_{i+1}$, the group $\operatorname{Gal}(A/M_i)$ of M_i -elementary automorphisms of A is definable, together with its action on A, and $\operatorname{Gal}(A/M_i) \subseteq \operatorname{dcl}(M_i)$.

Remarks:

- Taken from Boris' 1993 AMS Monograph.
- *M_i*-atom: *M_i*-definable set not properly containing another non-empty *M_i*-definable set.
- M_{i+1} is covered by these.
- The M_i are in eq.

NOTES:

- (0) Any uncountably categorical structure has a strongly minimal parameter-definable subset.
- (1) Definable groups emerge from a purely model-theoretic hypothesis: the binding group construction.
- (2) Write $A = A(\bar{a})$ and $Gal(A/M_i) = G(\bar{a})$ where \bar{a} varies in some \emptyset -definable subset D_i of M_i .
- (3) $G(\bar{a})$ is transitive on $A(\bar{a})$ and the stabilizer in $G(\bar{a})$ of some finite set of points in $A(\bar{a})$ is the identity.
- (4) Aut (M_{i+1}/M_i) embeds into $\prod_{\bar{a}\in D_i} G(\bar{a})$.
- (5) M_{i+1} is an *affine cover* of M_i ; in case $A(\bar{a})$ and $G(\bar{a})$ are finite, it is a *finite cover*.

The totally categorical case.

Zilber, early 1980's

In the case where the theory is totally categorical, there is a \emptyset -definable strongly minimal set, which can be taken to be a pure set, or a projective space arising from a vector space of infinite dimension over a finite field.

Remarks:

- Only definable groups here are abelian (-by-finite).
- Alternative proof using C of FSG's: Cherlin-Harrington-Lachlan, Mills, ...
- Gives a strong structure theory for totally categorical structures. For example, they are not finitely axiomatizable (Zilber), but are quasi-finite axiomatizability (Ahlbrandt-Ziegler; Cherlin; Hrushovski).

2. Finite Covers

Suppose *L* is a first-order language and *L'* extends *L* by, amongst other things, a single extra sort *C*. Suppose T' is a complete *L'*-theory and *T* is the restriction of this to the *L*-sorts.

Say that *T* is *fully embedded* in *T'* if, whenever *M'* is a model of *T'* with *L*-part *M*:

- the \emptyset -definable subsets of M^n are the same in the L and L'-senses
- the L'-definable subsets of Mⁿ (parameters from M') are the L-definable subsets of Mⁿ (parameters from M).

Suppose *D* is a \emptyset -definable subset in T^{eq} we say that T' is a finite cover of *T* (over *D*) if *T* is fully embedded in *T'* and there is a \emptyset -definable function $\pi : C \to D$ with finite fibres. NOTE:

- By full embeddedness, if *M*′ is saturated then the restriction map Aut(*M*′) → Aut(*M*) is surjective.
- The kernel of this is $\operatorname{Aut}(M'/M) \leq \prod_{d \in D} \operatorname{Aut}(\pi^{-1}(d)/M)$

Basic Problem

Given T and D, say something meaningful about the finite covers T' over D.

Even with T strongly minimal, this is a hard problem.

Sub-problem

Describe the maximal covering expansions T'.

Meaning: T is not fully embedded in any proper expansion of T'.

REMARKS:

- If T'' is an expansion of T' in which T is fully embedded, then Aut(M') = Aut(M'/M)Aut(M'').
- If $\operatorname{Aut}(M''/M) = 1$ here then say that T' splits over T.

・ロン ・四 ・ ・ ヨン ・ ヨン

3. An Example

Take:

- *M* a pure set; $n \ge 2$
- D ⊆ M^{eq}: n-tuples of distinct elements of M modulo the equivalence relation x̄ ~ ȳ iff x̄ is an even permutation of ȳ.
- For w ∈ [M]ⁿ denote the two elements of D corresponding to enumerations of w as w⁺ and w⁻.

Define a finite cover M_n of M over D by adding:

- An extra sort $C = \{w_0, w_1, w_2, w_3 : w \in [M]^n\}$
- A projection map $\pi : C \to D$ with $\pi(w_0) = \pi(w_2) = w^+$ and $\pi(w_1) = \pi(w_3) = w^-$.
- A 2-ary relation R on C with $R(w_i, w_{i+1}) \pmod{4}$ (for $w \in [M]^n$) So M_n is obtained by freely adjoining a copy of a finite structure $\{w, w^+, w^-, w_0, w_1, w_2, w_3\}$ over each $\{w, w^+, w^-\}$ in M.

OBSERVATIONS:

- Aut $(M_n/M) = \prod_{w \in [M]^n} Z_2 = Z_2^{[M]^n}$
- M_n is non-split over M: Suppose $Aut(M_n) = Aut(M_n/M)Aut(M'')$. Then for $w \in [M]^n$ we have:
 - Aut (M_n/w) is transitive on $\{w_0, w_1, w_2, w_3\}$ and
 - Aut (M_n/M) stabilizes $\{w_0, w_2\}$ and $\{w_1, w_3\}$, so
 - Aut(M''/w) induces Z_4 on $\{w_0, w_1, w_2, w_3\}$. In particular,
 - $\operatorname{Aut}(M'') \to \operatorname{Aut}(M)$ is not an isomorphism, because
 - $\operatorname{Aut}(M/w) = \operatorname{Sym}(w) \times \operatorname{Sym}(M \setminus w).$

A (10) A (10)

Theorem (DE + Elisabetta Pastori, 2009)

- *M*₂ has no proper covering expansion.
- The covering expansions of M_n over M (for n ≥ 3) can be described. In particular, there is a unique maximal covering expansion (up to interdefinability over M).

The proof is heavily group-theoretic.

A (1) > A (2) > A

4. Group-theoretic methods

REMINDER: Any permutation group can be considered as a topological group in which pointwise stabilizers of finite sets form a base of open neighbourhoods of the identity. A subgroup of the group of all permutations of a set is closed iff it is the automorphism group of some structure on the set.

THE AHLBRANDT-ZIEGLER APPROACH (EARLY 1990'S):

• Treat the problem of determining the (finite) covers *M*' of *M* as a question about topological group extensions:

 $1 \to \operatorname{Aut}(M'/M) \to \operatorname{Aut}(M') \xrightarrow{\rho} \operatorname{Aut}(M) \to 1.$

- If K₀ = Aut(M'/M) is abelian, conjugation in Aut(M') makes it a continuous (profinite) G-module, where G = Aut(M).
- Use tools from representation theory and group cohomology to study this.
- If *M*' splits over *M*, then H¹_c(G, K₀/K) classifies covering expansions *M*'' of *M*' with Aut(*M*''/*M*) = K.

Higher cohomology groups (DE + Paul Hewitt, 2006)

- For profinite G-modules K, there is a reasonably nice technology of higher cohomology groups Hⁿ_c(G, K) (obey a long exact sequence, Shapiro's Lemma ...).
- *H*²_c(*G*, *K*) parametrizes extensions 1 → *K* → Γ₁ → *G* → 1 arising from permutation groups (and is trivial iff these all split).

Theorem (DE + P Hewitt, 2006)

Suppose M is saturated and there is a (global) type p definable over \emptyset with the property that for every finite p-Morley sequence \bar{a} and finite tuple c in M, there is a finite p-Morley sequence extending \bar{a} with c in its definable closure. Let $G = \operatorname{Aut}(M)$ and let A be a finite abelian group, considered as a trivial G-module. Then for $n \ge 1$

$$H_c^n(G,A)=\{0\}.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Back to the example

NOTATION: Let $G = \operatorname{Aut}(M) = \operatorname{Sym}(M)$ and $\Gamma_n = \operatorname{Aut}(M_n)$ and $K_n = \operatorname{Aut}(M_n/M) = Z_2^{[M]^n}$ (write additively). So K_n is a continuous *G*-module and we have a non-split ses:

$$0 \to K_n \to \Gamma_n \xrightarrow{\rho} G \to 1. \tag{1}$$

We are interested in closed subgroups $\Gamma \leq \Gamma_n$ with $\rho(\Gamma) = G$. These are automorphism groups of covering expansions of M_n : call them full subgroups of Γ_n . BASIC METHOD:

A. Work out the closed G-submodules K of K_n

B. For $K \leq K_n$, decide whether there is a full $\Gamma \leq \Gamma_n$ with $\Gamma \cap K_n = K$.

For (B), if there is such a Γ then the (non-zero) cohomology class corresponding to the extension (1) is in the image of $H^2_c(G, K) \to H^2_c(G, K_n)$. So if $H^2_c(G, K) = 0$, this cannot happen.

Details

For $0 \le \ell \le n$ there exists a continuous *G*-homomorphism $\alpha_{\ell,k} : K_{\ell} \to K_n$ given by, for $w \in [M]^n$ and $f \in Z_2^{[M]^{\ell}}$:

$$\alpha_{\ell,n}(f)(w) = \sum_{v \in [w]^{\ell}} f(v).$$

Moreover, any closed *G*-submodule *K* of K_n is a sum of submodules $im(\alpha_{\ell,n})$. (D Gray, 1997)

Theorem

- 1. If $K < K_2$ then $H^2_c(G, K) = 0$.
- 2. For $2 \le n$ there exists a continuous homomorphism $\gamma_{2,n} : \Gamma_2 \to \Gamma_n$ which extends $\alpha_{2,n}$ (and commutes with the ρ -maps).
- 3. Any full subgroup of Γ_n contains a Γ_n -conjugate of the image of $\gamma_{2,n}$.

The proof of (3) also uses computation of $H^1_c(G, K_n/K)$ for various $K \le K_n$ (E. + Gray, 1998).

Zilber meeting ()

5. Coda

Summary:

- Zilber's Ladder Theorem...
- ... as motivation for studying finite covers
- Group-theoretic methods for analysing these...
- ... most useful in ω -categorical case.

The group-theoretic methods give a reasonably nice general theory for finite covers (M', M) with Aut(M'/M) finite. In this case, M' is internal to M.

Hrushovski (2006): General description of internality in terms of definable groupoid actions.

DEFINITION: Suppose *L* is a first-order language and *L'* extends *L* by, amongst other things, a single extra sort *C*. Suppose *T'* is a complete *L'*-theory and *T* is the restriction of this to the *L*-sorts and *T* is fully embedded in *T'*. Suppose that for every $M' \models T'$ with *T*-part *M*, there is a finite tuple *c* in *M'* with $M' \subseteq dcl(M, c)$. Then we say that *T'* is an internal cover of *T*.

EXAMPLE: M' is a finite cover of M and Aut(M'/M) is finite.

Theorem (Ehud Hrushovski, 2006)

There is a correspondence between:

- internal covers of T, and
- connected Ø-definable concrete groupoids in T.

The groupoid $\mathcal{G} = (Ob\mathcal{G}, Mor\mathcal{G})$ corresponding to an internal cover (M', M) has $\operatorname{Aut}(M'/M)$ isomorphic to $Mor\mathcal{G}(a, a)$ (for all $a \in Ob\mathcal{G}$).

Note that the correspondence applies to finite covers (M', M) with Aut(M'/M) finite. The group-theoretic machinery works best in this case.

QUESTIONS:

- Do other finite covers of *M* correspond to some sort of definable object in *M*?
- Can what is being done by use of group cohomology of automorphism groups be replaced by arguments involving definable sets in the structure?

A (10) A (10)