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Essential Notions—Generalities

Morley rank (rk (X))
Connected group

[G : H] <∞ =⇒ G = H.
X ,Y ⊆ G generic =⇒ X ∩ Y generic

d(X ): definable subgroup generated by X .
Fubini: Zilber-Lascar-Borovik-Poizat



Torsion in
Groups of

Finite Morley
Rank

Gregory
Cherlin

Structure
Theory

Permutation
Groups

Torsion

The Algebraicity Conjecture

Conjecture (Algebraicity)

G: finite Morley rank, connected.
H: maximal connected solvable normal, definable.

1→ H → G→ Ḡ→ 1

Ḡ: a central product of algebraic groups.

Equivalently: The simple groups are algebraic.

Theorem (ABC, 2008)

1→ U2(G)→ G→ Ḡ→ 1

U2(G): 1→ O2(G)→
∏

i Li (char 2, Altınel’s Jugendtraum -
and his habilitation - and Wagner’s good tori)
Ḡ: Connected 2-Sylow divisible abelian. (“odd type”)
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Odd Type: Torsion

Theorem (Degenerate Type)
If there is no nontrivial connected abelian p-subgroup, then
there is no p-torsion.

Theorem (Altınel-Burdges)
The centralizer of a divisible torsion subgroup is connected.

Corollary
If there are no p-unipotent subgroups, then any p-element
which centralizes a maximal divisible p-subgroup T lies in T .

Proof.
T the definable hull of a maximal divisible p-subgroup.
H = C(T )/T connected.
H has no p-torsion.
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MPOSA

Definably primitive: no nontrivial G-invariant definable
equivalence relation.

Theorem (BC)

(G,X ) definably primitive. Then rk (G) is bounded by a
function of rk (X ).

MPOSA = Macpherson-Pillay/O’Nan-Scott-Aschbacher
A description of the socle of a primitive permutation group,
and the stabilizer of a point in that socle.

Affine: The socle A is abelian and can be identified with
the set X on which G acts.
Non-affine: The socle is a product of copies of one
simple group.
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Generic multiple transitivity

Theorem
(G,X ) definably primitive. Then rk (G) is bounded by a
function of rk (X ).

Generic transitivity: one large orbit.
Generic t-transitivity: on X t .

Proposition

(G,X ) definably primitive. Then the degree of multiple
transitivity of G is bounded by a function of rk (X ).

(Special case of the theorem, but sufficient.)
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Bounds on t

Proposition

(G,X ) definably primitive, generically t-transitive. Then t is
bounded by a function of rk (X ).

Strategy: Let T be a maximal 2-torus.
1 Derive an upper bound on the complexity of T from

rk (X );
2 Derive a lower bound on the complexity of T from t .

The upper bound: rk (T/T∞) ≤ rk (X ). This is because the
stabilizer of a generic element of X is torsion-free.
But the lower bound requires attention.
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t and T

We want to show that a large degree of generic transitivity (t
large) blows up rk (T/T∞) for T the definable hull of a
2-torus.

e can set this up so that we have:

a finite group Σ operating on T , covering Symt ,
— and sitting inside a connected group H —
such that T is the definable hull of a maximal 2-torus in
H.

Let us simplify considerably.
Imagine the simplest case: Symt sits inside G and acts on
T , the definable hull of a maximal 2-torus.
It seems reasonable that this action can be exploited to blow
up T , and also T/T∞.
There is a glaring hole in this argument.
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Plugging a hole

The Setup
T inside G,
G connected,
Symt acts on T ,
t large,
and T is the definable hull of a maximal 2-torus.
The problem:

if Symt acts trivially on T , then this says
nothing.
But since this configuration is in a connected subgroup of G,
and T is a maximal 2-torus, the 2-elements of Symt act
nontrivially on T , and the action of Alt t is faithful.

So we are done.
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More results on torsion

Assume no p-unipotents.

• Semisimplicity
If G is connected, then every p-element is in a torus.
• Sylow theory

For all primes p
• Weyl groups N(T )/T .

If the Weyl group is nontrivial, it contains an involution.
(Burdges-Deloro) If the group is minimal simple, the
Weyl group is cyclic
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Applications

1 Permutation Groups
2 Classification in odd type and low 2-rank
3 Bounds on 2-rank revisited?
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Other aspects

1 The Borovik Program: Signalizer functor theory, strong
embedding, black box group theory . . .

2 Burdges unipotence theory and the Bender method
3 Generix strikes back [Nesin, Jaligot]
4 Conjugacy of Carter subgroups [Frécon]
5 Quasithin methods

1 Amalgam method, representation theory (even type)
2 Component analysis (odd type) [Borovik, Altseimer,

Burdges]

Desiderata

L∗-group theory in odd type (absolute bounds on
2-rank)
Control of actions of 2-tori on degenerate type groups.
and
Bad groups and non-commutative geometry . . . ?
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