> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Torsion in Groups of Finite Morley Rank

Gregory Cherlin

Zilber Geometric Model Theory Conference March 25-28

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

I Connected Groups

- Structure
- **II** Permutation Groups
- Bounds on Rank
- **III Torsion**
 - Centralizers
 - Semisimplicity
 - Sylow Theorem
- Weyl Group

> Gregory Cherlin

Structure Theory

Permutatior Groups

Torsion

Structure Theory

Permutation Groups

3 Torsion

Essential Notions—Generalities

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

- Morley rank (rk (X))
- Connected group

$$[G:H] < \infty \implies G = H.$$

X, Y \subseteq G generic \implies X \cap Y generic

- d(X): definable subgroup generated by X.
- Fubini: Zilber-Lascar-Borovik-Poizat

The Algebraicity Conjecture

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Conjecture (Algebraicity)

G: finite Morley rank, connected. H: maximal connected solvable normal, definable.

$$1
ightarrow H
ightarrow G
ightarrow ar{G}
ightarrow 1$$

 \overline{G} : a central product of algebraic groups.

Equivalently: The simple groups are algebraic.

The Algebraicity Conjecture

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Conjecture (Algebraicity)

G: finite Morley rank, connected. H: maximal connected solvable normal, definable.

$$1
ightarrow H
ightarrow G
ightarrow ar{G}
ightarrow 1$$

 \overline{G} : a central product of algebraic groups.

Equivalently: The simple groups are algebraic.

Theorem (ABC, 2008)

$$I
ightarrow U_2(G)
ightarrow G
ightarrow ar{G}
ightarrow 1$$

 $U_2(G): 1 \rightarrow O_2(G) \rightarrow \prod_i L_i$ (char 2, Altinel's Jugendtraum - and his habilitation - and Wagner's good tori) $\overline{G}:$ Connected 2-Sylow divisible abelian. ("odd type")

Odd Type: Torsion

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Theorem (Degenerate Type)

If there is no nontrivial connected abelian p-subgroup, then there is no p-torsion.

Theorem (Altinel-Burdges)

The centralizer of a divisible torsion subgroup is connected.

Odd Type: Torsion

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Theorem (Degenerate Type)

If there is no nontrivial connected abelian p-subgroup, then there is no p-torsion.

Theorem (Altinel-Burdges)

The centralizer of a divisible torsion subgroup is connected.

Corollary

If there are no p-unipotent subgroups, then any p-element which centralizes a maximal divisible p-subgroup T lies in T.

Odd Type: Torsion

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Theorem (Degenerate Type)

If there is no nontrivial connected abelian p-subgroup, then there is no p-torsion.

Theorem (Altinel-Burdges)

The centralizer of a divisible torsion subgroup is connected.

Corollary

If there are no p-unipotent subgroups, then any p-element which centralizes a maximal divisible p-subgroup T lies in T.

Proof.

T the definable hull of a maximal divisible *p*-subgroup. H = C(T)/T connected. H has no *p*-torsion.

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Structure Theory

Permutation Groups

3 Torsion

MPOSA

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Definably primitive: no nontrivial *G*-invariant definable equivalence relation.

Theorem (BC)

(G, X) definably primitive. Then rk(G) is bounded by a function of rk(X).

MPOSA = Macpherson-Pillay/O'Nan-Scott-Aschbacher A description of the socle of a primitive permutation group, and the stabilizer of a point in that socle.

- Affine: The socle *A* is abelian and can be identified with the set *X* on which *G* acts.
- Non-affine: The socle is a product of copies of one simple group.

Generic multiple transitivity

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Theorem

(G, X) definably primitive. Then rk(G) is bounded by a function of rk(X).

Generic multiple transitivity

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Theorem

(G, X) definably primitive. Then rk(G) is bounded by a function of rk(X).

Generic transitivity: one large orbit. Generic *t*-transitivity: on X^t .

Generic multiple transitivity

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Theorem

(G, X) definably primitive. Then rk(G) is bounded by a function of rk(X).

Generic transitivity: one large orbit. Generic *t*-transitivity: on X^t .

Proposition

(G, X) definably primitive. Then the degree of multiple transitivity of G is bounded by a function of rk(X).

(Special case of the theorem, but sufficient.)

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of rk(X).

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of rk(X).

Strategy: Let *T* be a maximal 2-torus.

- Derive an upper bound on the complexity of T from rk (X);
- Oberive a lower bound on the complexity of T from t.

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of rk(X).

Strategy: Let *T* be a maximal 2-torus.

- Derive an upper bound on the complexity of T from rk (X);
- 2 Derive a lower bound on the complexity of T from t.

The upper bound: $rk(T/T_{\infty}) \leq rk(X)$. This is because the stabilizer of a generic element of *X* is torsion-free.

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of rk(X).

Strategy: Let *T* be a maximal 2-torus.

- Derive an upper bound on the complexity of T from rk (X);
- Oberive a lower bound on the complexity of T from t.

The upper bound: $rk(T/T_{\infty}) \leq rk(X)$. This is because the stabilizer of a generic element of *X* is torsion-free.

But the lower bound requires attention.

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

We want to show that a large degree of generic transitivity (*t* large) blows up $rk(T/T_{\infty})$ for *T* the definable hull of a 2-torus.

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

We want to show that a large degree of generic transitivity (*t* large) blows up $rk(T/T_{\infty})$ for *T* the definable hull of a 2-torus.

The group *G* will induce the action of Sym_t on any *t* independent generic points.

Trading T in for a smaller torus, and trading t in for a smaller value as well (but not too small) we can set this up so that we have:

- a finite group Σ operating on *T*, covering Sym_t ,
- — and sitting inside a connected group H —
- such that *T* is the definable hull of a maximal 2-torus in *H*.

Let us simplify considerably.

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

We want to show that a large degree of generic transitivity (*t* large) blows up $rk(T/T_{\infty})$ for *T* the definable hull of a 2-torus.

We can set this up so that we have:

- a finite group Σ operating on *T*, covering Sym_t ,
- — and sitting inside a connected group H —
- such that *T* is the definable hull of a maximal 2-torus in *H*.

Imagine the simplest case: Sym_t sits inside *G* and acts on *T*, the definable hull of a maximal 2-torus.

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

We want to show that a large degree of generic transitivity (*t* large) blows up $rk(T/T_{\infty})$ for *T* the definable hull of a 2-torus.

We can set this up so that we have:

- a finite group Σ operating on *T*, covering Sym_t ,
- — and sitting inside a connected group H —
- such that *T* is the definable hull of a maximal 2-torus in *H*.

Imagine the simplest case: Sym_t sits inside *G* and acts on *T*, the definable hull of a maximal 2-torus. It seems reasonable that this action can be exploited to blow

up T, and also T/T_{∞} .

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

We want to show that a large degree of generic transitivity (*t* large) blows up $rk(T/T_{\infty})$ for *T* the definable hull of a 2-torus.

We can set this up so that we have:

- a finite group Σ operating on *T*, covering Sym_t ,
- — and sitting inside a connected group H —
- such that *T* is the definable hull of a maximal 2-torus in *H*.

Imagine the simplest case: Sym_t sits inside *G* and acts on *T*, the definable hull of a maximal 2-torus.

It seems reasonable that this action can be exploited to blow up *T*, and also T/T_{∞} .

There is a glaring hole in this argument.

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

The Setup *T* inside *G*, *G* connected, *Sym_t* acts on *T*, *t* large, and *T* is the definable hull of a maximal 2-torus. The problem:

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

The Setup *T* inside *G*, *G* connected, *Sym_t* acts on *T*, *t* large, and *T* is the definable hull of a maximal 2-torus. The problem: if Sym_t acts trivially on *T*, then this says nothing.

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

The Setup *T* inside *G*, *G* connected, *Sym_t* acts on *T*, *t* large, and *T* is the definable hull of a maximal 2-torus. The problem: if Sym_t acts trivially on *T*, then this says nothing. But since this configuration is in a connected subgroup of *G*, and *T* is a maximal 2-torus, the 2-elements of Sym_t act

nontrivially on T, and the action of Alt_t is faithful.

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

The Setup T inside G. G connected. Sym_t acts on T, t large, and T is the definable hull of a maximal 2-torus. The problem: if Sym_t acts trivially on T, then this says nothing. But since this configuration is in a connected subgroup of G. and T is a maximal 2-torus, the 2-elements of Sym_t act

nontrivially on T, and the action of Alt_t is faithful.

So we are done.

> Gregory Cherlin

Structure Theory

Permutatior Groups

Torsion

Structure Theory

Permutation Groups

More results on torsion

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Assume no *p*-unipotents.

More results on torsion

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

Assume no *p*-unipotents.

Semisimplicity

If *G* is connected, then every *p*-element is in a torus.

- Sylow theory
 - For all primes p
- Weyl groups N(T)/T.

If the Weyl group is nontrivial, it contains an involution. (Burdges-Deloro) If the group is minimal simple, the Weyl group is cyclic

Applications

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutatior Groups

Torsion

Permutation Groups

- Classification in odd type and low 2-rank
- Bounds on 2-rank revisited?

Other aspects

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

- The Borovik Program: Signalizer functor theory, strong embedding, black box group theory ...
- Burdges unipotence theory and the Bender method
- Generix strikes back [Nesin, Jaligot]
- Onjugacy of Carter subgroups [Frécon]
- Quasithin methods
 - Amalgam method, representation theory (even type)
 - Component analysis (odd type) [Borovik, Altseimer, Burdges]

Other aspects

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

- The Borovik Program: Signalizer functor theory, strong embedding, black box group theory ...
- Burdges unipotence theory and the Bender method
- Generix strikes back [Nesin, Jaligot]
- Onjugacy of Carter subgroups [Frécon]
- Quasithin methods
 - Amalgam method, representation theory (even type)
 - Component analysis (odd type) [Borovik, Altseimer, Burdges]

Desiderata

*L**-group theory in odd type (absolute bounds on 2-rank)

Control of actions of 2-tori on degenerate type groups. and

Other aspects

Torsion in Groups of Finite Morley Rank

> Gregory Cherlin

Structure Theory

Permutation Groups

Torsion

- The Borovik Program: Signalizer functor theory, strong embedding, black box group theory ...
- Burdges unipotence theory and the Bender method
- Generix strikes back [Nesin, Jaligot]
- Conjugacy of Carter subgroups [Frécon]
- Quasithin methods
 - Amalgam method, representation theory (even type)
 - Component analysis (odd type) [Borovik, Altseimer, Burdges]

Desiderata

*L**-group theory in odd type (absolute bounds on 2-rank)

Control of actions of 2-tori on degenerate type groups. and

Bad groups and non-commutative geometry ...?