Torsion in Groups of Finite Morley Rank

Gregory Cherlin

Zilber Geometric Model Theory Conference
March 25-28
I Connected Groups
- Structure

II Permutation Groups
- Bounds on Rank

III Torsion
- Centralizers
- Semisimplicity
- Sylow Theorem
- Weyl Group
1 Structure Theory

2 Permutation Groups

3 Torsion
Essential Notions—Generalities

- Morley rank \((\text{rk}(X))\)
- Connected group
 \[
 [G : H] < \infty \implies G = H.
 \]
 \[
 X, Y \subseteq G \text{ generic} \implies X \cap Y \text{ generic}
 \]
- \(d(X)\): definable subgroup generated by \(X\).
- **Fubini:** Zilber-Lascar-Borovik-Poizat
The Algebraicity Conjecture

Conjecture (Algebraicity)

\[G: \text{finite Morley rank, connected.} \]
\[H: \text{maximal connected solvable normal, definable.} \]

\[1 \rightarrow H \rightarrow G \rightarrow \tilde{G} \rightarrow 1 \]

\(\tilde{G} \): *a central product of algebraic groups.*

Equivalently: The simple groups are algebraic.
Conjecture (Algebraicity)

\[G: \text{finite Morley rank, connected.} \]
\[H: \text{maximal connected solvable normal, definable.} \]

\[1 \to H \to G \to \bar{G} \to 1 \]

\(\bar{G} \): a central product of algebraic groups.

Equivalently: The simple groups are algebraic.

Theorem (ABC, 2008)

\[1 \to U_2(G) \to G \to \bar{G} \to 1 \]

\(U_2(G) \): \[1 \to O_2(G) \to \prod_i L_i \] (char 2, Altınel’s Jugendtraum - and his habilitation - and Wagner’s good tori)

\(\bar{G} \): Connected 2-Sylow divisible abelian. (“odd type”)
Odd Type: Torsion

Theorem (Degenerate Type)
If there is no nontrivial connected abelian p-subgroup, then there is no p-torsion.

Theorem (Altınel-Burdges)
The centralizer of a divisible torsion subgroup is connected.
Odd Type: Torsion

Theorem (Degenerate Type)

If there is no nontrivial connected abelian p-subgroup, then there is no p-torsion.

Theorem (Altınel-Burdges)

The centralizer of a divisible torsion subgroup is connected.

Corollary

*If there are no p-unipotent subgroups, then any p-element which centralizes a maximal divisible p-subgroup T lies in T.***
Odd Type: Torsion

Theorem (Degenerate Type)

If there is no nontrivial connected abelian \(p \)-subgroup, then there is no \(p \)-torsion.

Theorem (Altınel-Burdges)

The centralizer of a divisible torsion subgroup is connected.

Corollary

If there are no \(p \)-unipotent subgroups, then any \(p \)-element which centralizes a maximal divisible \(p \)-subgroup \(T \) lies in \(T \).

Proof.

\(T \) the definable hull of a maximal divisible \(p \)-subgroup.
\(H = C(T)/T \) connected.
\(H \) has no \(p \)-torsion.
1. Structure Theory
2. Permutation Groups
3. Torsion
Definably primitive: no nontrivial G-invariant definable equivalence relation.

Theorem (BC)\((G, X)\) definably primitive. Then $\text{rk} (G)$ is bounded by a function of $\text{rk} (X)$.

MPOSA = Macpherson-Pillay/O’Nan-Scott-Aschbacher
A description of the socle of a primitive permutation group, and the stabilizer of a point in that socle.

- **Affine**: The socle A is abelian and can be identified with the set X on which G acts.
- **Non-affine**: The socle is a product of copies of one simple group.
Generic multiple transitivity

Theorem

\((G, X)\) definably primitive. Then \(rk(G)\) is bounded by a function of \(rk(X)\).
Generic multiple transitivity

Theorem

\((G, X)\) definably primitive. Then \(rk\ (G)\) is bounded by a function of \(rk\ (X)\).

Generic transitivity: one large orbit.

Generic \(t\)-transitivity: on \(X^t\).
Theorem

\((G, X)\) definably primitive. Then \(rk(G)\) is bounded by a function of \(rk(X)\).

Generic transitivity: one large orbit.

Generic \(t\)-transitivity: on \(X^t\).

Proposition

\((G, X)\) definably primitive. Then the degree of multiple transitivity of \(G\) is bounded by a function of \(rk(X)\).

(Special case of the theorem, but sufficient.)
Bounds on t

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of $rk(X)$.
Bounds on t

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of $rk(X)$.

Strategy: Let T be a maximal 2-torus.

1. Derive an upper bound on the complexity of T from $rk(X)$;
2. Derive a lower bound on the complexity of T from t.
Bounds on t

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of $\text{rk}(X)$.

Strategy: Let T be a maximal 2-torus.

1. Derive an upper bound on the complexity of T from $\text{rk}(X)$;
2. Derive a lower bound on the complexity of T from t.

The upper bound: $\text{rk}(T/T_\infty) \leq \text{rk}(X)$. This is because the stabilizer of a generic element of X is torsion-free.
Bounds on t

Proposition

(G, X) definably primitive, generically t-transitive. Then t is bounded by a function of $\text{rk} (X)$.

Strategy: Let T be a maximal 2-torus.

1. Derive an upper bound on the complexity of T from $\text{rk} (X)$;
2. Derive a lower bound on the complexity of T from t.

The upper bound: $\text{rk} (T/T_\infty) \leq \text{rk} (X)$. This is because the stabilizer of a generic element of X is torsion-free.

But the lower bound requires attention.
We want to show that a large degree of generic transitivity (t large) blows up $\text{rk} \left(\frac{T}{T_{\infty}} \right)$ for T the definable hull of a 2-torus.
We want to show that a large degree of generic transitivity (\(t\) large) blows up \(rk\left(T/T_\infty\right)\) for \(T\) the definable hull of a 2-torus.

The group \(G\) will induce the action of \(Sym_t\) on any \(t\) independent generic points.

Trading \(T\) in for a smaller torus, and trading \(t\) in for a smaller value as well (but not too small) we can set this up so that we have:

- a finite group \(\Sigma\) operating on \(T\), covering \(Sym_t\),
- — and sitting inside a connected group \(H\) —
- such that \(T\) is the definable hull of a maximal 2-torus in \(H\).

Let us simplify considerably.
We want to show that a large degree of generic transitivity (\(t \) large) blows up \(rk \left(\frac{T}{T_\infty} \right) \) for \(T \) the definable hull of a 2-torus.

We can set this up so that we have:

- a finite group \(\Sigma \) operating on \(T \), covering \(Sym_t \),
- and sitting inside a connected group \(H \) —
- such that \(T \) is the definable hull of a maximal 2-torus in \(H \).

Imagine the simplest case: \(Sym_t \) sits inside \(G \) and acts on \(T \), the definable hull of a maximal 2-torus.
We want to show that a large degree of generic transitivity (\(t\) large) blows up \(rk(T/T_\infty)\) for \(T\) the definable hull of a 2-torus.

We can set this up so that we have:

- a finite group \(\Sigma\) operating on \(T\), covering \(\text{Sym}_t\),
- and sitting inside a connected group \(H\) —
- such that \(T\) is the definable hull of a maximal 2-torus in \(H\).

Imagine the simplest case: \(\text{Sym}_t\) sits inside \(G\) and acts on \(T\), the definable hull of a maximal 2-torus. It seems reasonable that this action can be exploited to blow up \(T\), and also \(T/T_\infty\).
We want to show that a large degree of generic transitivity (t large) blows up $\text{rk} (T / T_\infty)$ for T the definable hull of a 2-torus.

We can set this up so that we have:

- a finite group Σ operating on T, covering Sym_t,
- and sitting inside a connected group H —
- such that T is the definable hull of a maximal 2-torus in H.

Imagine the simplest case: Sym_t sits inside G and acts on T, the definable hull of a maximal 2-torus. It seems reasonable that this action can be exploited to blow up T, and also T / T_∞.

There is a glaring hole in this argument.
Plugging a hole

The Setup

T inside G, G connected, Sym_t acts on T, t large, and T is the definable hull of a maximal 2-torus.

The problem:
The Setup

T inside G,
G connected,
Sym_t acts on T,
t large,
and T is the definable hull of a maximal 2-torus.
The problem: if Sym_t acts trivially on T, then this says nothing.
The Setup

T inside G,

G connected,

Sym_t acts on T,

t large,

and T is the definable hull of a maximal 2-torus.

The problem: if Sym_t acts trivially on T, then this says nothing.

But since this configuration is in a connected subgroup of G, and T is a maximal 2-torus, the 2-elements of Sym_t act nontrivially on T, and the action of Alt_t is faithful.
The Setup

T inside \(G \),
\(G \) connected,
\(Sym_t \) acts on \(T \),
t large,
and \(T \) is the definable hull of a maximal 2-torus.
The problem: if \(Sym_t \) acts trivially on \(T \), then this says nothing.

But since this configuration is in a connected subgroup of \(G \),
and \(T \) is a maximal 2-torus, the 2-elements of \(Sym_t \) act nontrivially on \(T \), and the action of \(Alt_t \) is faithful.

So we are done.
Torsion in Groups of Finite Morley Rank

Gregory Cherlin

1. Structure Theory
2. Permutation Groups
3. Torsion
More results on torsion

Assume no p-unipotents.
Assume no p-unipotents.

- **Semisimplicity**
 If G is connected, then every p-element is in a torus.

- **Sylow theory**
 For all primes p

- **Weyl groups $N(T)/T$.**
 If the Weyl group is nontrivial, it contains an involution.
 (Burdges-Deloro) If the group is minimal simple, the Weyl group is cyclic
Applications

1. Permutation Groups
2. Classification in odd type and low 2-rank
3. Bounds on 2-rank revisited?
Other aspects

1. The Borovik Program: Signalizer functor theory, strong embedding, black box group theory . . .
2. Burdges unipotence theory and the Bender method
3. Generix strikes back [Nesin, Jaligot]
4. Conjugacy of Carter subgroups [Frécon]
5. Quasithin methods
 1. Amalgam method, representation theory (even type)
 2. Component analysis (odd type) [Borovik, Altseimer, Burdges]
Other aspects

1. The Borovik Program: Signalizer functor theory, strong embedding, black box group theory . . .
2. Burdges unipotence theory and the Bender method
3. Generix strikes back [Nesin, Jaligot]
4. Conjugacy of Carter subgroups [Frécon]
5. Quasithin methods
 1. Amalgam method, representation theory (even type)
 2. Component analysis (odd type) [Borovik, Altseimer, Burdges]

Desiderata

L^*-group theory in odd type (absolute bounds on 2-rank)
Control of actions of 2-tori on degenerate type groups. and
Other aspects

1. The Borovik Program: Signalizer functor theory, strong embedding, black box group theory . . .
2. Burdges unipotence theory and the Bender method
3. Generix strikes back [Nesin, Jaligot]
4. Conjugacy of Carter subgroups [Frécon]
5. Quasithin methods
 1. Amalgam method, representation theory (even type)
 2. Component analysis (odd type) [Borovik, Altseimer, Burdges]

Desiderata

L^*-group theory in odd type (absolute bounds on 2-rank)
Control of actions of 2-tori on degenerate type groups. and
Bad groups and non-commutative geometry . . . ?