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Exponential Maps of Abelian Varieties
I A a complex abelian variety,

I i.e. a complex connected projective algebraic group
I g := dim(A)

I Λ
�
�

// Cg π
// // A(C)

I Λ ∼= Z2g is a lattice in Cg

I e.g. elliptic curve (g = 1) in Weierstrass form,
π = (℘, ℘′)

I An := {γ ∈ A(C) | nγ = 0} ∼=
( Z/nZ

)2g

I A∞ :=
⋃

n An

I O := {θ ∈ EndC(Cg) | θ(Λ) ⊆ Λ}
I Induced maps on A(C) are the algebraic

endomorphisms, O ∼= End(A)

I If A simple, i.e. no proper infinite algebraic
subgroups, then kO := Q⊗O is a skew field.
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TA

I Standing assumptions:
I A simple
I A defined over a number field k0
I All θ ∈ End(A) defined over k0
I Exists “unfurled curve” C ⊆ A defined over k0

I Structure CovA
I “Covering sort” V for Cg as a kO-vector space
I “Field sort” F for C as a field with constants for k0
I Function π : Cg → A(C), A a definable set in F

I TA := Th(CovA)
I TA has QE and is axiomatised by

I V is a kO-vector space
I F |= ACFk0

I π : V // // A(F ) is a surjective map of O-modules
I TA is superstable
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Classification theory
Non-elementary classification theory:

I “A = Gm”
I 2πiZ �

�

// C
exp
// // C×

I Zilber: Class of models of TGm with kernel isomorphic
as a group to Z is Quasi-Minimal Excellent (QME),
so has one model in each uncountable cardinality.

I A = E an elliptic curve, O ∼= Z
I B-Gavrilovich-Zilber: QME

I In general:
I Zilber: “arithmetic” conditions under which we have

Almost Quasi-Miminal Excellence, hence
uncountable categoricity

Elementary classification theory:
I A = E , O ∼= Z

I B-Pillay: TE is “classifiable”
I i.e. has < 2λ models of cardinality λ for arbitrarily

large λ
I i.e. has NDOP, is shallow, and has NOTOP / Primary

Models Over independent Pairs
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Classification

Theorem (B-Gavrilovich-Zilber, B-Pillay)

M |= TA is determined up to isomorphism by
I isomorphism type of ker(π)
I isomorphism type of im(π)

I (i.e. by trd(F (M)))



Independent systems

Definition

I An independent P(N)-system in ACF is a system
L = (Ls)s∈P(N) such that

I Ls |= ACF
I s ⊆ t =⇒ Ls � Lt
I there exists a system of sets (Bs)s∈P(N) such that

I Bs is an acl-basis of Ls
I Bs∩t = Bs ∩ Bt

I P−(N) := P(N) \ {N}
I The “A-boundary” of L is the submodule
∂AL := A∞ + Σs∈P−(N)A(Ls) ≤ A(LN).

I N = 0: ∂AL = A∞
I N = 1: ∂AL = A(L∅)
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Atomicity
IfM |= TA and B ⊆ V (M), let cl(B) �M be the
submodel such that

ker(cl(B)) = ker(M)

F (cl(B)) = aclF (M)(π(B)).

Lemma (Atomicity Lemma)

Suppose
I M |= TA

I D = ∂AL an A-boundary
I α ∈ V (M)

I B := π−1(D) ∪ α ⊆ V (M)

Then
I cl(B) is atomic over B
I If trd(F (M)) ≤ ℵ0, follows that cl(B) is prime and

minimal over B.



N-uniqueness

Fact (N-uniqueness for ACF )

Suppose
I L = (Ls)s∈P(N) is an independent P(N)-system in

ACF
I σs ∈ Aut(Ls) for s ∈ P−(N) is a coherent system of

automorphisms
I i.e. t ⊆ s =⇒ σs�Lt = σt

Then
⋃

s∈P−(N) σs is partial elementary (and so extends
to σN ∈ Aut(LN)).



Unfurled curves

I We assumed:
I Exists “unfurled curve” C ⊆ A defined over k0

I C ⊆ A is “unfurled” iff [n]−1(C) is absolutely
irreducible for all n ∈ N

I Fact [Gavrilovich]: such exist over Q̄
I If c ∈ Cn is generic over Q̄, and α1, α2 ∈ π−1(c), then
α1 ≡cl(∅) α2

I ( By QE, tp(αi/ cl(∅)) is determined by
tpfield ((π( αi/n)n∈N)/Q̄) )



Proof of Classification Theorem
I GivenM1,M2 s.t. ker(M1) ∼= ker(M2) and

trd(F (M1)) = trd(F (M2)) =: λ

I LetMi
∅ := clM

i
(∅)

I Mi
∅ is prime and minimal over ker(Mi), so

M1
∅
∼=M2

∅
I So assumeM1

∅ =M2
∅ =:M∅

I Take acl-bases (c i
j )j∈λ of C(Mi)

I By unfurledness, (c1
j )j ≡M∅ (c2

j )j

I Using N-uniqueness, inductively find a coherent
system of isomorphisms

σs : clM1((c1
j )j∈s)→ clM2((c2

j )j∈s)

for s ⊆fin λ

I Take limit σ :=
⋃

s⊆finλ
σs :M1 →M2.
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Kummer Pairings
Definition

I For l prime, we have the Tate module
Tl := lim←−Aln

∼= Z2g
l

I and their product T∞ := lim←−Am ∼= ΠlTl
∼= Ẑ2g .

I Let k ≥ k0 and let k∞ := k(A∞).
I Define bilinear maps:

〈·, ·〉n : Gal(k̄/k∞)× A(k∞)→ An

〈σ, a〉n = σb − b

for any b such that nb = a.
I Taking limits, we have

〈·, ·〉l∞ : Gal(k̄/k∞)× A(k∞)→ Tl

〈·, ·〉∞ : Gal(k̄/k∞)× A(k∞)→ T∞



Thumbtack Lemma

The Atomicity Lemma reduces to:

Lemma (Thumbtack Lemma)

Let
I D be an A-boundary
I γ ∈ A be an n-tuple O-linearly independent over D
I k := k0(D, γ)

Then M∞ :=
〈
Gal(k̄/k), γ

〉
∞ is of finite index in T n

∞.



Kummer Theory

Theorem (Bashmakov-Ribet, Bogomolov-Serre, Faltings)

Let
I k ≥ k0 a number field
I γ ∈ A(k) an O-linearly independent n-tuple
I k∞ := k(A∞)

Then M∞ :=
〈
Gal(k̄/k∞), γ

〉
∞ is of finite index in T n

∞.



Kummer Theory: sketch proof

Let l prime
I Let Ml :=

〈
Gal(k̄/k∞), γ

〉
l ≤ An

l

I Let Gl :=�Al Gal(k̄/k)

I Ml is Gl -invariant: if Gl 3 τ =�Al τ
′ and

σ ∈ Gal(k̄/k∞), then

τ 〈σ, γ〉l = τ(σβ − β) (lβ = γ)

= τ ′σβ − τ ′β
= (τ ′στ ′−1)(τ ′β)− τ ′β

=
〈
τ ′στ ′−1, γ

〉
l

(lτ ′β = τ ′γ = γ),

and τ ′στ ′−1 ∈ Gal(k̄/k∞).
I So Ml is a Z[Gl ]-submodule of An

l



Kummer Theory: sketch proof
For cofinitely many l ,

I we have:
(a) Al is semisimple as a Z[Gl ]-module (Faltings)
(b) EndGl (Al ) = O/lO (Faltings)
(c) γ is O/lO-linearly independent in A(k)/lA(k)

(Mordell-Weil)
(d) H1(Gal(k∞/k),Al ) = 0 (Bogomolov-Serre)

I Suppose Ml 6= An
l

I By (a) and (b), Ml is annihilated by some η ∈ On \ lOn

I So ∀σ. 〈σ,Σηiai〉l = 0
I So Σηiai ∈ lA(k∞)
I By (d), Σηiai ∈ lA(k)
I By (c), ηi ∈ lO - contradiction.
I So Ml = An

l
It follows that Ml∞ :=

〈
Gal(k̄/k∞), γ

〉
l∞ ≤ T n

l is the whole
of T n

l .
For the finitely many remaining primes, similar but l-adic
argument shows Ml∞ is finite index in T n

l .



Proving the Thumbtack Lemma

Lemma (Thumbtack Lemma)

Let
I D be an a A-boundary
I γ ∈ A be an n-tuple O-linearly independent over D
I k := k0(D, γ)

Then M∞ :=
〈
Gal(k̄/k), γ

〉
∞ is of finite index in T n

∞.

I Would like to apply Faltings
I M∞ is G-invariant where

G :=�A∞ (NAut(k̄/k0(γ))(Aut(k̄/k0(D)))

I Want that G is “large”
I Specifically, want G ≥�A∞ (Gal(Q̄/k1)) for some

number field k1



Canonical bases over Independent Systems

G =�A∞ ( NAut(k̄/k0(γ))( Aut(k̄/k0(D) ) )

=�A∞ ( { σ ∈ Aut(k̄/k0(γ)) | σ(k0(D)) = k0(D) } )

=�A∞ ( Aut( k0(D) / k0(Cb(γ/k0(D))) ) ),

where Cb(γ/k0(D)) is a canonical parameter for
locus(γ/k0(D)) (i.e. the minimal field of definition).

I Suppose N = 3
I so k0(D) = k0(A(L12) + A(L23) + A(L31)) = L12L23L31
I Say Cb(γ/k0(D)) = dcl(b12b23b31) where bij ∈ Lij
I Let bi ∈ Li such that Cb(bij/LiLj) ⊆ dcl(bibj)

I Let b∅ := Cb(b1b2b3/L∅), and let k1 := k0(Cb(b∅/Q̄))
I Then any σ ∈ Gal(Q̄/k1) extends to σ∅ ∈ Aut(L∅/b∅)

I which extends to σi ∈ Aut(Li/bi )
I 2-uniqueness gives σ′ij ∈ Aut(LiLj/bibj )

I σ′ij extends to σij ∈ Aut(Lij/bij )
I 3-uniqueness gives σ3 ∈ Aut(k0(D)/Cb(γ/k0(D))



Local Freeness

I Remains to obtain the analogue of Mordell-Weil
I i.e. we want “bounded divisibility” in A(k0(Dγ)) of
〈γ〉O for γ ∈ A linearly independent over D

I i.e. we want

A(k0(Dγ))/D is locally free

I Locally free (AKA ℵ1-free):
I countable subgroups are free abelian
I equivalently: finite rank subgroups are free abelian



Local Freeness

I N=0, i.e. D = A∞:
I M. Larsen, 2005: If k is a finite extension of k0(A∞),

then A(k)/A∞ is free abelian
I N=1, i.e. D = A(L), L = acl(L):

I by Lang-Néron’s function field version of
Mordell-Weil, A(L(γ))/A(L) is finitely generated hence
free

I N>1, i.e. D = Σs∈P−(N)A(Ls):
I inductive argument, involving specialising horns

down to the missing simplex. . .
I Another story.
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Sketch Proof of E(k)/G locally free
Let G := exp(H). Proceed by induction on N. N = 1: By
Lang-Néron, E(k)/G is even finitely generated.
Consider case N = 3. We have the independent system
of algebraically closed fields:

L{0}

L{0,2}

55
55

55
55

55
55

5

L3

L{1}

L{0,1}

													

L{1,2}
L{2}

and k = L{0,1}L{1,2}L{0,2}(β) say. We
may assume β ∈ L3.
Let b ∈ E(k)n.

Lemma

There exists k1 ≥fin L{0,1}L{0,2}(β,b) and a place
π : L3 →L{1,2} L{1,2} such that

I πk1 ⊆ k1

I π(L{0,1}L{0,2}) = L{1}L{2}



Sketch Proof of E(k)/G locally free contd

Lemma

pureHullE(k)(E(k1)) = pureHullE(k1)+E(L{1,2})(E(k1)).

pureHull E(k)/G
(
〈

b/G

〉
) = pureHullE(k)(〈b〉)/G

=
pureHullE(k1)+E(L{1,2})(〈b〉)

/G

≤ pureHullE(k1)(〈b,π(b)〉)/G

(since if m(αk1 + αL{1,2}) ∈
〈
b
〉
, then

γ := (αk1 + αL{1,2})− π(αk1 + αL{1,2}) = αk1 − παk1 ∈
pureHullE(k1)(

〈
b, πb

〉
), and γ = αk1 + αL{1,2} mod G.

So subgroup of quotient of
pureHullE(k1)(〈b,πb〉)/E(L{1})+E(L{2}), which is f.g. by induction,
so f.g.


