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Exponential Maps of Abelian Varieties
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A a complex abelian variety,
» i.e. a complex connected projective algebraic group

g :=dim(A)

A ——C9 —"» A(C)

A = 729 is a lattice in C9

e.g. elliptic curve (g = 1) in Weierstrass form,
™= (p,0')

An:={y € AC) | ny=0} 2 (%)%

Ax =, An

O := {6 € End¢(C9) | 6(A) C A}

Induced maps on A(C) are the algebraic
endomorphisms, O = End(A)

If A simple, i.e. no proper infinite algebraic
subgroups, then ko := Q ® O is a skew field.



Exponential Maps of Abelian Varieties

» A acomplex abelian variety,
» i.e. a complex connected projective algebraic group

g :=dim(A)
A —— C9 —"» A(C)

A = 729 is a lattice in CY

\4

\{

v

» e.g. elliptic curve (g = 1) in Weierstrass form,
T = (p, ')
An:={y € AC) | ny=0} 2 (%)%
Ax =, An

O := {0 € Endc(C9) | (A) C A}
Induced maps on A(C) are the algebraic
endomorphisms, O = End(A)

If A simple, i.e. no proper infinite algebraic
subgroups, then ko := Q ® O is a skew field.

vV vVv.v Vv

v



» Standing assumptions:
» Asimple
» A defined over a number field kg
» All € End(A) defined over ky
» Exists “unfurled curve” C C A defined over ky
» Structure Covy
» “Covering sort” V for C9 as a kp-vector space
» “Field sort” F for C as a field with constants for kg
» Function 7 : C9 — A(C), A a definable setin F
> Ta:=Th(Covp)
T, has QE and is axiomatised by
V is a ko-vector space
F = ACF’
7w V—>» A(F) is a surjective map of O-modules
T, is superstable
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» Standing assumptions:

» Asimple

» A defined over a number field kg

» All € End(A) defined over ky

» Exists “unfurled curve” C C A defined over kg
» Structure Covy

» “Covering sort” V for C9 as a kp-vector space
» “Field sort” F for C as a field with constants for kg
» Function 7 : C9 — A(C), A a definable setin F

» Tp:=Th(Covp)
» T4 has QE and is axiomatised by

» Vs a kp-vector space
> F = ACF®
» 71:V—>»A(F) is a surjective map of O-modules

» T, is superstable



Classification theory

Non-elementary classification theory:
> “‘A=Gp’

> 2miZ s C —25 ¢
» Zilber: Class of models of Tg,, with kernel isomorphic
as a group to Z is Quasi-Minimal Excellent (QME),
so has one model in each uncountable cardinality.
» A= E an elliptic curve, O = Z
» B-Gauvrilovich-Zilber: QME
» In general:
» Zilber: “arithmetic” conditions under which we have
Almost Quasi-Miminal Excellence, hence
uncountable categoricity

Elementary classification theory:
A=E 027
B-Pillay: Tg is “classifiable”
i.e. has < 2* models of cardinality X for arbitrarily
large A

i.e. has NDORP, is shallow, and has NOTOP / Primary
Models Over independent Pairs
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Classification

Theorem (B-Gavrilovich-Zilber, B-Pillay)

M = T, is determined up to isomorphism by
» isomorphism type of ker(r)
» isomorphism type of im(r)
> (i.e. bytrd(F(M)))



Independent systems

Definition

» An independent P(N)-system in ACF is a system
L = (Ls)sep(ny such that
» Ls = ACF
» SCt —= L=< L
» there exists a system of sets (Bs)scp(n) such that
» Bs is an acl-basis of Ls
> Bsnt = BsN B;
P~(N) :=P(N) \ {N}
The “A-boundary” of £ is the submodule
oaLl = A + Zse’P*(N)A(LS) < A(LN)
N = 0: 9aL = Ao
N =1:0aL = A(Lm)
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Atomicity
If M |= Tpand B C V(M), let cl(B) < M be the
submodel such that
ker(cl(B)) = ker(M)
F(cl(B)) = aclf™)(x(B)).

Lemma (Atomicity Lemma)

Suppose
> M= T
» D = 0pL an A-boundary
> ae V(M)
» B:=r""(D)ua C V(M)
Then
» cl(B) is atomic over B

» Iftrd(F(M)) < Ny, follows that cl(B) is prime and
minimal over B.



N-uniqueness

Fact (N-uniqueness for ACF)

Suppose
> L = (Ls)sep(n) is an independent P(N)-system in
ACF

> o5 € Aut(Ls) for s € P~(N) is a coherent system of
automorphisms

» ie.tCs = ogl,= ot
Then Uscp-(n) o is partial elementary (and so extends
toon € Aut(Ly)).



Unfurled curves

» We assumed:
» Exists “unfurled curve” C C A defined over kg
» C C Ais “unfurled” iff [n]~1(C) is absolutely
irreducible for all n € N
» Fact [Gavrilovich]: such exist over Q
» If ¢ € C"is generic over Q, and @y, a, € 7~ '(€), then
a1 =c|(p) 02
» (By QE, tp(ai/ cl(0)) is determined by
o™ ((w(%/n)nen)/Q) )



Proof of Classification Theorem

» Given M', M? s.t. ker(M') = ker(M?) and
trd(F(M')) = trd(F(M?2)) =: A

> Let M| = M ()

> Mé) is prime and minimal over ker(M'), so
M = M3

» So assume M} = Mz =: M,
Take acl-bases (cj)jex of C(M')
By unfurledness, (c}); =, (¢7);

j
Using N-uniqueness, inductively find a coherent

system of isomorphisms

o : clM ((Cj1 )jes) — ClMZ((Cje)jes)

for s Giin A
Take limit o := g, 05 : M — M2,



Proof of Classification Theorem

» Given M', M2 s.t. ker(M') = ker(M?) and
trd(F(M')) = trd(F(M?)) =: A

> Let M) = M ()

> Mb is prime and minimal over ker(M'), so
M = M

> So assume Mj = M3 =: M,

> Take acl-bases ()jex of C(M')

> By unfurledness, (c/); =, (¢7);

» Using N-uniqueness, inductively find a coherent
system of isomorphisms

os - M ((¢])jes) — ™ ((¢F)jes)

for s Ciin A
> Take limit o := (Jgc, ) 0s: M — M2



Kummer Pairings
Definition
» For / prime, we have the Tate module
T) = lim App = 7

» and their product T, := lim An,

=

> Let k > ky and let ko = k(Ax).
» Define bilinear maps:

12

nT =729,

12

(), : Gal(k/ks) x A(Kso) — An
(0,8),=0b—b
for any b such that nb = a.
» Taking limits, we have
(-, Yoo Gal(K/Koo) X A(Kso) — T
(Yoo : Gal(k/kso) X A(Kso) — Too



Thumbtack Lemma

The Atomicity Lemma reduces to:

Lemma (Thumbtack Lemma)

Let
» D be an A-boundary
» 7 € A be an n-tuple O-linearly independent over D
» k:= ko(D,7)

Then M, = (Gal(k/k),7)__ is of finite index in T..



Kummer Theory

Theorem (Bashmakov-Ribet, Bogomolov-Serre, Faltings)

Let
» Kk > kg a number field
» 7 € A(k) an O-linearly independent n-tuple
> Koo = K(Ax)
Then M, := (Gal(k/k), ) is of finite index in T.



Kummer Theory: sketch proof

Let / prime
> Let M, .= <Gal(l_</koo)ﬁ>, <A/
> Let G =4 Gal(k/k)

> M,is Ginvariant: if G; > 7 =[4, 7' and
o € Gal(k/kx), then

{0, 7); =7(08 - B) (IB=7)
=708 78
= (o N'B) -8
= (v'or,7), (B =1"7=7),

and 7’07’1 € Gal(k/kx).
» So M, is a Z[Gj]-submodule of A}



Kummer Theory: sketch proof
For cofinitely many /,

» we have:
(a) A, is semisimple as a Z[Gj]-module (Faltings)
(b) Endg,(A)) = 9/ 0 (Faltings)
(c) 7is 9/jo-linearly independent in A%/

(Mordell-Weil)

(d) Hi(Gal(ks/k),A)) = 0 (Bogomolov-Serre)

» Suppose M, # A

» By (a) and (b), M, is annihilated by some 77 € O"\ /10"

» So Vo. (U, Zn;a/>/ =0

» So Xn;a; € IA(Kkx)

» By (d), Xn;a; € IA(k)

» By (c), n; € IO - contradiction.

» So M, = A}
It follows that M := (Gal(k/kx), 7). < T/ is the whole
of T/.

For the finitely many remaining primes, similar but /-adic
argument shows M is finite index in T;". O



Proving the Thumbtack Lemma

Lemma (Thumbtack Lemma)

Let
» D be an a A-boundary
» 7 € A be an n-tuple O-linearly independent over D
» k= ko(D,7)

Then M, = (Gal(k/k),7)__ is of finite index in T..

» Would like to apply Faltings
» M, is G-invariant where

G =4 (Nay(k /i (7)) (AUt(K/ ko (D)))

» Want that G is “large”

> Specifically, want G > (Gal(Q/k1)) for some
number field kq



Canonical bases over Independent Systems

G =TA ( Natk/ko7))( Aut(k/ko(D) ) )
=l ({0 €Aut(k/ko(7)) | o(ko(D)) = ko(D) } )
=wa (Aut( ko(D) / ko(Cb(7/ko(D))) ) )

where Cb(7/ky(D)) is a canonical parameter for
locus(7/ko(D)) (i.e. the minimal field of definition).

» Suppose N =3

> SO ko(D) = ko(A(L12) + é(l.ge,)j— A(L31)) iL12L23L31
> Say Cb(ﬁ/ko(D)) = dCl(b12b23b31) where b,’j S L,'j

» Let b; € L; such that Cb(b;/L;L;) C dcl(b;b;)

> Let b@ = Cb(B1Bng/L@) and let ky := ko(Cb(B@/@))
» Then any o € Gal(Q/k;) extends to oy € Aut(Ly/by)
which extends to o; € Aut( Li/bi)

2-uniqueness gives oj; € Aut(L; L;/b;b;)

oj; extends to o € Aut( i/ bi)

3-uniqueness gives o3 € Aut(ko(D)/ Cb(7/ko(D))
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Local Freeness

» Remains to obtain the analogue of Mordell-Weil

» i.e. we want “bounded divisibility” in A(ko(D7)) of
(7)o for ¥ € Alinearly independent over D

» i.e. we want

Alko(D7))/ 5 is locally free

» Locally free (AKA R;-free):

» countable subgroups are free abelian
» equivalently: finite rank subgroups are free abelian



Local Freeness

» N=0,i.e. D=Ay:

» M. Larsen, 2005: If k is a finite extension of ky(Ax),

then AK)/,_is free abelian
» N=1,i.e. D= A(L), L =acl(L):

» by Lang-Néron’s function field version of
Mordell-Weil, AL/, is finitely generated hence
free

» N>1,i.e. D= ZSGP—(N)A(LS):

» inductive argument, involving specialising horns
down to the missing simplex. . .

Another story.
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Sketch Proof of £(%)/ 5 locally free

Let G := exp(H). Proceed by induction on N. N = 1: By
Lang-Néron, E()/ 5 is even finitely generated.
Consider case N = 3. We have the independent system

of algebraically closed fields:
Lioy

L{O,1} L{0,2} and k = L{071}7L{172}L{072}(B) SEEVA We
L3 may assume (3 € Ls.
Let b € E(k)".
Ly ——— L
Li12y

Lemma

There exists ki >, L{071}L{0’2} (B, B) and a place
T L3 —>L{1’2} L{172} such that

> ki C ki
> m(Lo13Li0,2y) = LiyLyzy



Sketch Proof of £(X)/; locally free cont?

Lemma
pureHuIIE(k)(E(k1)) = pureHuIIE(k1)+E(L{1’2})(E(k1)).

pureHull E(k)/G(<B/G>) = purele (B)))

_ pureHuIIE(k1HE(LU’Z})((B))/

G
pureHull g, )(<B,7T(E)>)/G

IA

(since if m(cu, +ar,, ,,) € (b), then

A = (Ozk1 + aL{1,2}) = 7T(Oék1 + O‘L{Lz}) = Qg — Oy, €
pureHullg(y((b, 7b)), and v = ax, + ar, ,, mod G.

So subgroup of quotient of

pur?HU"aku(@ﬂrb))/ E(Le1,)+E(Lgzy) Which is f.g. by induction,
so f.g.



