Model theory of exponential maps of Abelian varieties

Martin Bays

March 27, 2010

Exponential Maps of Abelian Varieties

- ► A a complex abelian variety,
 - i.e. a complex connected projective algebraic group
- ► *g* := dim(*A*)
- $\blacktriangleright \Lambda \longrightarrow \mathbb{C}^g \xrightarrow{\pi} A(\mathbb{C})$
- $\Lambda \cong \mathbb{Z}^{2g}$ is a lattice in \mathbb{C}^{g}
- e.g. elliptic curve (g = 1) in Weierstrass form, π = (℘, ℘')
- ► $A_n := \{\gamma \in A(\mathbb{C}) \mid n\gamma = 0\} \cong (\mathbb{Z}/_{n\mathbb{Z}})^{2g}$
- $A_{\infty} := \bigcup_n A_n$
- $\blacktriangleright \mathcal{O} := \{ \theta \in \mathsf{End}_{\mathbb{C}}(\mathbb{C}^g) \mid \theta(\Lambda) \subseteq \Lambda \}$
- Induced maps on A(ℂ) are the algebraic endomorphisms, O ≅ End(A)
- If A simple, i.e. no proper infinite algebraic subgroups, then k_O := Q ⊗ O is a skew field.

Exponential Maps of Abelian Varieties

- ► A a complex abelian variety,
 - i.e. a complex connected projective algebraic group
- ► *g* := dim(*A*)
- $\blacktriangleright \Lambda \longrightarrow \mathbb{C}^g \xrightarrow{\pi} A(\mathbb{C})$
- $\Lambda \cong \mathbb{Z}^{2g}$ is a lattice in \mathbb{C}^{g}
- e.g. elliptic curve (g = 1) in Weierstrass form, π = (℘, ℘')
- ► $A_n := \{\gamma \in A(\mathbb{C}) \mid n\gamma = 0\} \cong (\mathbb{Z}/_{n\mathbb{Z}})^{2g}$
- $A_{\infty} := \bigcup_n A_n$
- $\blacktriangleright \mathcal{O} := \{ \theta \in \mathsf{End}_{\mathbb{C}}(\mathbb{C}^g) \mid \theta(\Lambda) \subseteq \Lambda \}$
- ► Induced maps on A(C) are the algebraic endomorphisms, O ≅ End(A)
- ► If A simple, i.e. no proper infinite algebraic subgroups, then k_O := Q ⊗ O is a skew field.

T_A

Standing assumptions:

- ► A simple
- ► A defined over a number field k₀
- All $\theta \in \text{End}(A)$ defined over k_0
- ► Exists "unfurled curve" C ⊆ A defined over k₀
- Structure Cov_A
 - "Covering sort" V for \mathbb{C}^g as a $k_{\mathcal{O}}$ -vector space
 - "Field sort" *F* for \mathbb{C} as a field with constants for k_0
 - Function $\pi : \mathbb{C}^g \to \mathcal{A}(\mathbb{C})$, \mathcal{A} a definable set in \mathcal{F}
- ► $T_A := \operatorname{Th}(\operatorname{Cov}_A)$
- ► *T_A* has QE and is axiomatised by
 - V is a $k_{\mathcal{O}}$ -vector space
 - \blacktriangleright $F \models ACF^{k_0}$

• $\pi: V \longrightarrow A(F)$ is a surjective map of \mathcal{O} -modules

 \triangleright T_A is superstable

T_A

Standing assumptions:

- ► A simple
- ► A defined over a number field k₀
- All $\theta \in \text{End}(A)$ defined over k_0
- ► Exists "unfurled curve" C ⊆ A defined over k₀
- Structure Cov_A
 - "Covering sort" V for \mathbb{C}^g as a $k_{\mathcal{O}}$ -vector space
 - "Field sort" F for \mathbb{C} as a field with constants for k_0
 - Function $\pi : \mathbb{C}^g \to \mathcal{A}(\mathbb{C})$, \mathcal{A} a definable set in \mathcal{F}
- ► $T_A := \text{Th}(\text{Cov}_A)$
- ► *T_A* has QE and is axiomatised by
 - *V* is a $k_{\mathcal{O}}$ -vector space
 - $F \models ACF^{k_0}$

• $\pi: V \longrightarrow A(F)$ is a surjective map of \mathcal{O} -modules

• T_A is superstable

Classification theory

Non-elementary classification theory:

- ► "*A* = G_m"
 - $\blacktriangleright \quad 2\pi i\mathbb{Z} \longrightarrow \mathbb{C} \xrightarrow{\exp} \mathbb{C}^{\times}$
 - ► Zilber: Class of models of $T_{\mathbb{G}_m}$ with kernel isomorphic as a group to \mathbb{Z} is Quasi-Minimal Excellent (QME), so has one model in each uncountable cardinality.
- A = E an elliptic curve, $\mathcal{O} \cong \mathbb{Z}$
 - B-Gavrilovich-Zilber: QME
- ► In general:
 - Zilber: "arithmetic" conditions under which we have Almost Quasi-Miminal Excellence, hence uncountable categoricity

Elementary classification theory:

- $\blacktriangleright A = E, \mathcal{O} \cong \mathbb{Z}$
 - ▶ B-Pillay: *T_E* is "classifiable"
 - i.e. has < 2^λ models of cardinality λ for arbitrarily large λ
 - ▶ i.e. has NDOP, is shallow, and has NOTOP / Primary Models Over independent Pairs

Classification theory

Non-elementary classification theory:

- ► "*A* = G_m"
 - $\blacktriangleright \quad 2\pi i\mathbb{Z} \longrightarrow \mathbb{C} \xrightarrow{\exp} \mathbb{C}^{\times}$
 - ► Zilber: Class of models of $T_{\mathbb{G}_m}$ with kernel isomorphic as a group to \mathbb{Z} is Quasi-Minimal Excellent (QME), so has one model in each uncountable cardinality.
- A = E an elliptic curve, $\mathcal{O} \cong \mathbb{Z}$
 - B-Gavrilovich-Zilber: QME
- ► In general:
 - Zilber: "arithmetic" conditions under which we have Almost Quasi-Miminal Excellence, hence uncountable categoricity

Elementary classification theory:

- ► $A = E, \mathcal{O} \cong \mathbb{Z}$
 - ▶ B-Pillay: *T_E* is "classifiable"
 - ► i.e. has < 2^λ models of cardinality λ for arbitrarily large λ
 - i.e. has NDOP, is shallow, and has NOTOP / Primary Models Over independent Pairs

Theorem (B-Gavrilovich-Zilber, B-Pillay)

 $\mathcal{M} \models T_A$ is determined up to isomorphism by

- isomorphism type of ker (π)
- isomorphism type of $im(\pi)$

► (i.e. by trd(F(M)))

Independent systems

Definition

- An *independent* $\mathcal{P}(N)$ -system in ACF is a system $\mathcal{L} = (L_s)_{s \in \mathcal{P}(N)}$ such that
 - ► L_s ⊨ ACF
 - $s \subseteq t \implies L_s \preceq L_t$
 - ► there exists a system of sets (B_s)_{s∈P(N)} such that
 - B_s is an acl-basis of L_s
 - $\bullet \quad B_{s\cap t} = B_s \cap B_t$
- $\blacktriangleright \mathcal{P}^{-}(N) := \mathcal{P}(N) \setminus \{N\}$

► The "A-boundary" of \mathcal{L} is the submodule $\partial_A \mathcal{L} := A_\infty + \sum_{s \in \mathcal{P}^-(N)} A(L_s) \le A(L_N).$ ► $N = 0: \partial_A \mathcal{L} = A_\infty$ ► $N = 1: \partial_A \mathcal{L} = A(L_\emptyset)$

Independent systems

Definition

- An *independent* $\mathcal{P}(N)$ -system in ACF is a system $\mathcal{L} = (L_s)_{s \in \mathcal{P}(N)}$ such that
 - $L_s \models \mathsf{ACF}$
 - $s \subseteq t \implies L_s \preceq L_t$
 - there exists a system of sets $(B_s)_{s \in \mathcal{P}(N)}$ such that
 - ► B_s is an acl-basis of L_s
 - $\bullet \quad B_{s\cap t} = B_s \cap B_t$
- $\blacktriangleright \mathcal{P}^{-}(N) := \mathcal{P}(N) \setminus \{N\}$

 The "A-boundary" of *L* is the submodule ∂_A*L* := A_∞ + Σ_{s∈P⁻(N)}A(L_s) ≤ A(L_N).
 N = 0: ∂_A*L* = A_∞
 N = 1: ∂_A*L* = A(L_∅) Atomicity

If $\mathcal{M} \models T_A$ and $B \subseteq V(\mathcal{M})$, let $cl(B) \preceq \mathcal{M}$ be the submodel such that

 $\operatorname{ker}(\operatorname{cl}(B)) = \operatorname{ker}(\mathcal{M})$ $F(\operatorname{cl}(B)) = \operatorname{acl}^{F(\mathcal{M})}(\pi(B)).$

Lemma (Atomicity Lemma)

Suppose

- $\blacktriangleright \mathcal{M} \models \mathcal{T}_{\mathcal{A}}$
- $D = \partial_A \mathcal{L}$ an A-boundary
- ► $\overline{\alpha} \in V(\mathcal{M})$
- $\blacktriangleright B := \pi^{-1}(D) \cup \overline{\alpha} \subseteq V(\mathcal{M})$

Then

- ▶ cl(B) is atomic over B
- If trd(F(M)) ≤ ℵ₀, follows that cl(B) is prime and minimal over B.

N-uniqueness

Fact (*N*-uniqueness for *ACF*)

Suppose

- σ_s ∈ Aut(L_s) for s ∈ P[−](N) is a coherent system of automorphisms

• i.e. $t \subseteq s \implies \sigma_s \upharpoonright_{L_t} = \sigma_t$

Then $\bigcup_{s \in \mathcal{P}^{-}(N)} \sigma_s$ is partial elementary (and so extends to $\sigma_N \in \operatorname{Aut}(L_N)$).

Unfurled curves

▶ We assumed:

- ► Exists "unfurled curve" C ⊆ A defined over k₀
- C ⊆ A is "unfurled" iff [n]⁻¹(C) is absolutely irreducible for all n ∈ N
- ► Fact [Gavrilovich]: such exist over Q
- ▶ If $\overline{c} \in C^n$ is generic over $\overline{\mathbb{Q}}$, and $\overline{\alpha}_1, \overline{\alpha}_2 \in \pi^{-1}(\overline{c})$, then $\overline{\alpha}_1 \equiv_{cl(\emptyset)} \overline{\alpha}_2$
 - (By QE, tp(ā_i/cl(∅)) is determined by tp^{field}((π(ā_i/n)n∈ℕ)/ℚ))

Proof of Classification Theorem

- ► Given $\mathcal{M}^1, \mathcal{M}^2$ s.t. $\ker(\mathcal{M}^1) \cong \ker(\mathcal{M}^2)$ and $\operatorname{trd}(F(\mathcal{M}^1)) = \operatorname{trd}(F(\mathcal{M}^2)) =: \lambda$
- Let $\mathcal{M}^i_{\emptyset} := \mathsf{cl}^{\mathcal{M}^i}(\emptyset)$
- ► $\mathcal{M}_{\emptyset}^{i}$ is prime and minimal over ker(\mathcal{M}^{i}), so $\mathcal{M}_{\emptyset}^{1} \cong \mathcal{M}_{\emptyset}^{2}$
- ▶ So assume $\mathcal{M}^1_{\emptyset} = \mathcal{M}^2_{\emptyset} =: \mathcal{M}_{\emptyset}$
- ▶ Take acl-bases $(c_j^i)_{j \in \lambda}$ of $C(\mathcal{M}^i)$
- ▶ By unfurledness, $(c_j^1)_j \equiv_{\mathcal{M}_{\emptyset}} (c_j^2)_j$
- Using N-uniqueness, inductively find a coherent system of isomorphisms

$$\sigma_{\boldsymbol{s}}: \operatorname{cl}^{M_1}((\boldsymbol{c}_j^1)_{j\in \boldsymbol{s}}) \to \operatorname{cl}^{M_2}((\boldsymbol{c}_j^2)_{j\in \boldsymbol{s}})$$

for $\boldsymbol{s} \subseteq_{\mathsf{fin}} \lambda$

► Take limit $\sigma := \bigcup_{s \subseteq_{fin} \lambda} \sigma_s : \mathcal{M}^1 \to \mathcal{M}^2.$

Proof of Classification Theorem

- ► Given $\mathcal{M}^1, \mathcal{M}^2$ s.t. $\ker(\mathcal{M}^1) \cong \ker(\mathcal{M}^2)$ and $\operatorname{trd}(F(\mathcal{M}^1)) = \operatorname{trd}(F(\mathcal{M}^2)) =: \lambda$
- Let $\mathcal{M}^i_{\emptyset} := \mathsf{cl}^{\mathcal{M}^i}(\emptyset)$
- ► $\mathcal{M}_{\emptyset}^{i}$ is prime and minimal over ker(\mathcal{M}^{i}), so $\mathcal{M}_{\emptyset}^{1} \cong \mathcal{M}_{\emptyset}^{2}$
- ▶ So assume $\mathcal{M}^1_{\emptyset} = \mathcal{M}^2_{\emptyset} =: \mathcal{M}_{\emptyset}$
- ► Take acl-bases $(c_j^i)_{j \in \lambda}$ of $C(\mathcal{M}^i)$
- ► By unfurledness, $(c_j^1)_j \equiv_{\mathcal{M}_{\emptyset}} (c_j^2)_j$
- Using N-uniqueness, inductively find a coherent system of isomorphisms

$$\sigma_{\boldsymbol{s}}: \mathsf{Cl}^{M_1}((\boldsymbol{c}_j^1)_{j\in \boldsymbol{s}}) \to \mathsf{Cl}^{M_2}((\boldsymbol{c}_j^2)_{j\in \boldsymbol{s}})$$

for $\boldsymbol{s} \subseteq_{\mathsf{fin}} \lambda$

• Take limit $\sigma := \bigcup_{s \subseteq_{\text{fin}} \lambda} \sigma_s : \mathcal{M}^1 \to \mathcal{M}^2$.

Kummer Pairings

Definition

- ► For *I* prime, we have the Tate module $T_I := \lim_{l \to \infty} A_{l^n} \cong \mathbb{Z}_l^{2g}$
- and their product $T_{\infty} := \lim_{m \to \infty} A_m \cong \prod_I T_I \cong \hat{\mathbb{Z}}^{2g}$.
- Let $k \ge k_0$ and let $k_{\infty} := k(A_{\infty})$.
- Define bilinear maps:

$$\langle \cdot, \cdot \rangle_n : \operatorname{Gal}(\overline{k}/k_\infty) \times A(k_\infty) \to A_n$$

 $\langle \sigma, a \rangle_n = \sigma b - b$

for any *b* such that nb = a.

► Taking limits, we have

$$\langle \cdot, \cdot \rangle_{I^{\infty}} : \operatorname{Gal}(\bar{k}/k_{\infty}) \times A(k_{\infty}) \to T_{I}$$

 $\langle \cdot, \cdot \rangle_{\infty} : \operatorname{Gal}(\bar{k}/k_{\infty}) \times A(k_{\infty}) \to T_{\infty}$

Thumbtack Lemma

The Atomicity Lemma reduces to:

Lemma (Thumbtack Lemma)

Let

- D be an A-boundary
- ▶ $\overline{\gamma} \in A$ be an n-tuple \mathcal{O} -linearly independent over D
- ► $k := k_0(D, \overline{\gamma})$

Then $M_{\infty} := \langle \operatorname{Gal}(\overline{k}/k), \overline{\gamma} \rangle_{\infty}$ is of finite index in T_{∞}^{n} .

Kummer Theory

Theorem (Bashmakov-Ribet, Bogomolov-Serre, Faltings) *Let*

• $k \ge k_0$ a number field

▶ $\overline{\gamma} \in A(k)$ an O-linearly independent n-tuple

$$\blacktriangleright k_{\infty} := k(A_{\infty})$$

Then $M_{\infty} := \left\langle \operatorname{Gal}(\overline{k}/k_{\infty}), \overline{\gamma} \right\rangle_{\infty}$ is of finite index in T_{∞}^{n} .

Kummer Theory: sketch proof

Let / prime

- Let $M_l := \langle \operatorname{Gal}(\bar{k}/k_\infty), \overline{\gamma} \rangle_l \leq A_l^n$
- Let $G_l := \upharpoonright_{A_l} \operatorname{Gal}(\overline{k}/k)$
- M_l is G_l -invariant: if $G_l \ni \tau = \upharpoonright_{A_l} \tau'$ and $\sigma \in \operatorname{Gal}(\bar{k}/k_{\infty})$, then

$$\begin{split} \tau \left\langle \sigma, \overline{\gamma} \right\rangle_{I} &= \tau (\sigma \overline{\beta} - \overline{\beta}) \qquad (I \overline{\beta} = \overline{\gamma}) \\ &= \tau' \sigma \overline{\beta} - \tau' \overline{\beta} \\ &= (\tau' \sigma \tau'^{-1}) (\tau' \overline{\beta}) - \tau' \overline{\beta} \\ &= \left\langle \tau' \sigma \tau'^{-1}, \overline{\gamma} \right\rangle_{I} \qquad (I \tau' \overline{\beta} = \tau' \overline{\gamma} = \overline{\gamma}), \end{split}$$

and $\tau' \sigma \tau'^{-1} \in \text{Gal}(\bar{k}/k_{\infty}).$

► So M_l is a $\mathbb{Z}[G_l]$ -submodule of A_l^n

Kummer Theory: sketch proof

For cofinitely many *I*,

- ► we have:
 - (a) A_l is semisimple as a $\mathbb{Z}[G_l]$ -module (Faltings)
 - (b) $End_{G_{l}}(A_{l}) = \frac{\mathcal{O}}{I\mathcal{O}}$ (Faltings)
 - (c) $\overline{\gamma}$ is $\mathcal{O}/_{IO}$ -linearly independent in $A(k)/_{IA(k)}$ (Mordell-Weil)

(d) $H_1(\text{Gal}(k_{\infty}/k), A_l) = 0$ (Bogomolov-Serre)

- Suppose $M_l \neq A_l^n$
- ▶ By (a) and (b), M_l is annihilated by some $\overline{\eta} \in O^n \setminus IO^n$
- So $\forall \sigma$. $\langle \sigma, \Sigma \eta_i a_i \rangle_I = 0$
- So $\Sigma \eta_i a_i \in IA(k_\infty)$
- ► By (d), $\Sigma \eta_i a_i \in IA(k)$
- ▶ By (c), $\eta_i \in IO$ contradiction.
- So $M_l = A_l^n$

It follows that $M_{I^{\infty}} := \langle \text{Gal}(\bar{k}/k_{\infty}), \bar{\gamma} \rangle_{I^{\infty}} \leq T_{I}^{n}$ is the whole of T_{I}^{n} .

For the finitely many remaining primes, similar but *I*-adic argument shows $M_{I^{\infty}}$ is finite index in $T_{I^{n}}^{n}$.

Proving the Thumbtack Lemma

Lemma (Thumbtack Lemma)

Let

- ▶ D be an a A-boundary
- ▶ $\overline{\gamma} \in A$ be an n-tuple \mathcal{O} -linearly independent over D
- ► $k := k_0(D, \overline{\gamma})$

Then $M_{\infty} := \langle \operatorname{Gal}(\overline{k}/k), \overline{\gamma} \rangle_{\infty}$ is of finite index in T_{∞}^{n} .

- Would like to apply Faltings
- M_{∞} is *G*-invariant where

$$G := \restriction_{\mathcal{A}_{\infty}} (N_{\operatorname{Aut}(\overline{k}/k_0(\overline{\gamma}))}(\operatorname{Aut}(\overline{k}/k_0(D))))$$

- ▶ Want that G is "large"
- Specifically, want G ≥↾_{A∞} (Gal(Q̄/k₁)) for some number field k₁

Canonical bases over Independent Systems

 $G = \upharpoonright_{A_{\infty}} (N_{\operatorname{Aut}(\bar{k}/k_{0}(\bar{\gamma}))} (\operatorname{Aut}(\bar{k}/k_{0}(D))))$ = $\upharpoonright_{A_{\infty}} (\{ \sigma \in \operatorname{Aut}(\bar{k}/k_{0}(\bar{\gamma})) \mid \sigma(k_{0}(D)) = k_{0}(D) \})$ = $\upharpoonright_{A_{\infty}} (\operatorname{Aut}(k_{0}(D) / k_{0}(\operatorname{Cb}(\bar{\gamma}/k_{0}(D)))))),$

where $Cb(\overline{\gamma}/k_0(D))$ is a canonical parameter for $locus(\overline{\gamma}/k_0(D))$ (i.e. the minimal field of definition).

- ► Suppose *N* = 3
- ► so $k_0(D) = k_0(A(L_{12}) + A(L_{23}) + A(L_{31})) = L_{12}L_{23}L_{31}$
- ► Say $Cb(\overline{\gamma}/k_0(D)) = dcl(\overline{b}_{12}\overline{b}_{23}\overline{b}_{31})$ where $\overline{b}_{ij} \in L_{ij}$
- ▶ Let $\overline{b}_i \in L_i$ such that $Cb(\overline{b}_{ij}/L_iL_j) \subseteq dcl(\overline{b}_i\overline{b}_j)$
- ► Let $\overline{b}_{\emptyset} := \operatorname{Cb}(\overline{b}_1 \overline{b}_2 \overline{b}_3 / L_{\emptyset})$, and let $k_1 := k_0(\operatorname{Cb}(\overline{b}_{\emptyset} / \overline{\mathbb{Q}}))$
- ▶ Then any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/k_1)$ extends to $\sigma_{\emptyset} \in \text{Aut}(L_{\emptyset}/\overline{b}_{\emptyset})$
 - which extends to $\sigma_i \in \operatorname{Aut}(L_i/\overline{b}_i)$
 - ▶ 2-uniqueness gives $\sigma'_{ij} \in \operatorname{Aut}(L_i L_j / \overline{b}_i \overline{b}_j)$
 - σ'_{ij} extends to $\sigma_{ij} \in Aut(L_{ij}/\overline{b}_{ij})$
 - ► 3-uniqueness gives $\sigma_3 \in \operatorname{Aut}(k_0(D)/\operatorname{Cb}(\overline{\gamma}/k_0(D)))$

Local Freeness

- Remains to obtain the analogue of Mordell-Weil
- ► i.e. we want "bounded divisibility" in $A(k_0(D\overline{\gamma}))$ of $\langle \overline{\gamma} \rangle_{\mathcal{O}}$ for $\overline{\gamma} \in A$ linearly independent over D
- ► i.e. we want

 $A(k_0(D\overline{\gamma}))/D$ is locally free

- ► Locally free (AKA ℵ₁-free):
 - countable subgroups are free abelian
 - equivalently: finite rank subgroups are free abelian

Local Freeness

► N=0, i.e. $D = A_\infty$:

M. Larsen, 2005: If k is a finite extension of k₀(A_∞), then A(k)/A_∞ is free abelian

▶ N=1, i.e. D = A(L), $L = \operatorname{acl}(L)$:

- ► by Lang-Néron's function field version of Mordell-Weil, ^{A(L(¬))}/_{A(L)} is finitely generated hence free
- ► N>1, i.e. $D = \sum_{s \in \mathcal{P}^-(N)} A(L_s)$:
 - inductive argument, involving specialising horns down to the missing simplex...
 - Another story.

Local Freeness

▶ N=0, i.e. $D = A_\infty$:

M. Larsen, 2005: If k is a finite extension of k₀(A_∞), then A(k)/A_∞ is free abelian

▶ N=1, i.e. D = A(L), $L = \operatorname{acl}(L)$:

- ▶ by Lang-Néron's function field version of Mordell-Weil, ^{A(L(¬))}/_{A(L)} is finitely generated hence free
- ► N>1, i.e. $D = \sum_{s \in \mathcal{P}^-(N)} A(L_s)$:
 - inductive argument, involving specialising horns down to the missing simplex...
 - Another story.

Sketch Proof of E(k)/G locally free

Let $G := \exp(H)$. Proceed by induction on *N*. N = 1: By Lang-Néron, $E^{(k)}/_G$ is even finitely generated. Consider case N = 3. We have the independent system of algebraically closed fields:

and $k = L_{\{0,1\}}L_{\{1,2\}}L_{\{0,2\}}(\overline{\beta})$ say. We may assume $\overline{\beta} \in L_3$. Let $\overline{b} \in E(k)^n$.

Lemma

There exists $k_1 \ge_{fin} L_{\{0,1\}}L_{\{0,2\}}(\overline{\beta}, \overline{b})$ and a place $\pi : L_3 \to_{L_{\{1,2\}}} L_{\{1,2\}}$ such that $\blacktriangleright \pi k_1 \subseteq k_1$ $\blacktriangleright \pi(L_{\{0,1\}}L_{\{0,2\}}) = L_{\{1\}}L_{\{2\}}$

Sketch Proof of E(k)/G locally free cont^d

Lemma

pureHull_{*E*(*k*)}(*E*(*k*₁)) = pureHull_{*E*(*k*₁)+*E*(*L*_{1,2})(*E*(*k*₁)).}

$$pureHull_{E(k)/G}(\langle \overline{b}/G \rangle) = \frac{pureHull_{E(k)}(\langle \overline{b} \rangle)}{G}$$
$$= \frac{pureHull_{E(k_1)+E(L_{\{1,2\}})}(\langle \overline{b} \rangle)}{G}$$
$$\leq \frac{pureHull_{E(k_1)}(\langle \overline{b},\pi(\overline{b}) \rangle)}{G}$$

(since if $m(\alpha_{k_1} + \alpha_{L_{\{1,2\}}}) \in \langle \overline{b} \rangle$, then $\gamma := (\alpha_{k_1} + \alpha_{L_{\{1,2\}}}) - \pi(\alpha_{k_1} + \alpha_{L_{\{1,2\}}}) = \alpha_{k_1} - \pi\alpha_{k_1} \in$ pureHull_{$E(k_1)$}($\langle \overline{b}, \pi \overline{b} \rangle$), and $\gamma = \alpha_{k_1} + \alpha_{L_{\{1,2\}}} \mod G$. So subgroup of quotient of ^{pureHull}_{$E(k_1)$}($\langle \overline{b}, \pi \overline{b} \rangle$)/ $E(L_{\{1\}}) + E(L_{\{2\}})$, which is f.g. by induction, so f.g.