Model completeness and o-minimality of $\mathbb{R}_{\text {an }}$

Martin Bays

January 23, 2018

Notes on the Denef - van den Dries quantifier elimination for \mathbb{R}_{an} and its consequences, written for a pair of seminars in Muenster, January 2018.

These notes are based in large part on some lecture notes by Alex Wilkie on the topic, currently available at: http://www.logique.jussieu.fr/modnet/ Publications/Introductory $\backslash \% 20$ Notes $\backslash \% 20$ and $\backslash \%$ 20surveys/Wilkie.pdf

A reader who has stumbled upon these notes and has not read Wilkie's notes should stop reading now and seek out Wilkie's notes instead. In these notes I attempt to spell out the odd thing left implicit in Wilkie's notes, but essentially these notes cover a proper subset of the material covered in Wilkie's notes, skip over many details handled nicely there, and indubitably add errors and imprecisions of their own.

1 Analytic functions

1.1 Formal power series

For R a ring,

$$
\begin{gathered}
R[[X]]:=\left\{\sum_{i \in \mathbb{N}} a_{i} X^{i}: a_{i} \in R\right\} \\
R[[\bar{X}]]=R\left[\left[X_{1}, \ldots, X_{n}\right]\right]=\left(\ldots\left(\left(R\left[\left[X_{1}\right]\right]\right)\left[\left[X_{2}\right]\right]\right) \ldots\right)\left[\left[X_{n}\right]\right]
\end{gathered}
$$

If $F \in R[[\bar{X}]]$, we can write

$$
F=\sum_{\nu \in \mathbb{N}^{n}} a_{\nu} \bar{X}^{\nu}
$$

where $\bar{X}^{\nu}:=X_{1}^{\nu_{1}} \ldots X_{n}^{\nu_{n}}$.
$|\nu|:=\max _{i} \nu_{i}$.
$F(0):=$ constant term of $F=a_{0}$
For R a ring, $R^{*}:=\{x \in R: \exists y \in R . x y=1\}=$ multiplicative group of units.

Lemma 1.1. For $F \in R[[\bar{X}]], F \in R[[\bar{X}]]^{*}$ iff $F(0) \in R^{*}$.
Proof. By induction, suffices to show when $\bar{X}=X$ is a single variable.
If $F G=1$ then $F(0) G(0)=1$.
If $F=\sum a_{i} X^{i}$ If $a_{0} b_{0}=1$, then define recursively for $n \geq 0$

$$
b_{n+1}:=-a_{0}^{-1}\left(a_{1} b_{n}+a_{2} b_{n-1}+\ldots a_{n+1} b_{0}\right) .
$$

Then $\sum_{0 \leq i \leq n+1} a_{i} b_{n+1-i}=0$, so $\left(\sum a_{i} X^{i}\right)\left(\sum b_{i} X^{i}\right)=1$.

1.2 Convergent power series

For $F \in \mathbb{R}[[\bar{X}]]$, define

$$
\begin{aligned}
\operatorname{dom}\left(\sum a_{\nu} \bar{X}^{\nu}\right) & :=\operatorname{int}\left(\left\{\bar{x} \in \mathbb{R}^{n}: \sum a_{\nu} \bar{x}^{\nu} \text { converges }\right\}\right) \\
& =\operatorname{int}\left(\left\{\bar{x}:\left\{a_{\nu} \bar{x}^{\nu}: \nu\right\} \text { is bounded }\right\}\right)
\end{aligned}
$$

e.g. $\operatorname{dom}\left(\sum_{\nu} X^{\nu} Y^{\nu}\right)=\{(x, y): x y<1\}$.

Let $\mathbb{R}\langle\bar{X}\rangle:=\{F: 0 \in \operatorname{dom}(F)\}$.
Fact 1.2. $\mathbb{R}\langle\bar{X}\rangle$ is a subring of $\mathbb{R}[[\bar{X}]]$.
Now $F=\sum a_{\nu} \bar{X}^{\nu} \in \mathbb{R}\langle\bar{X}\rangle$ defines a function $\widetilde{F}: \operatorname{dom}(F) \rightarrow \mathbb{R} ; \widetilde{F}(\bar{x}):=$ $\sum a_{\nu} \bar{x}^{\nu}$.

Fact 1.3. $\widetilde{F}=0$ iff $F=0 . \widetilde{F} \in C^{\infty}(\operatorname{dom}(F))$.
Say $f: U \rightarrow \mathbb{R}$ is analytic at $\bar{b} \in U$ if $f(\bar{X}-\bar{b})=\widetilde{F}(\bar{X})$ on $U_{\bar{b}}$, some $\bar{b} \in U_{\bar{b}} \subseteq_{\text {op }} U$ and some $F \in \mathbb{R}\langle\bar{X}\rangle$.

Fact 1.4. \widetilde{F} is analytic at every $b \in \operatorname{dom}(F)$.
Idea of proof. show the Taylor series at b,

$$
\sum_{\nu} 1 /\left(\left(\sum \nu\right)!\widetilde{D^{\nu} F}(b) X^{\nu}\right.
$$

where $D^{\nu}=D_{1}^{\nu_{1}} \ldots D_{n}^{\nu_{n}}$ where $D_{i}=d / d X_{i}$ is formal derivation, converges near b. See [Krantz-Park "A primer of Real Analytic Functions" Proposition 2.2.7].

Fact 1.5. if f is analytic at b and g is analytic at $f(b)$, then $(g \circ f)$ is analytic at b.

Corollary 1.6.

$$
\mathbb{R}\langle\bar{X}\rangle^{*}=\mathbb{R}[[\bar{X}]]^{*} \cap \mathbb{R}\langle\bar{X}\rangle
$$

Proof. Suppose $F \in \mathbb{R}\langle\bar{X}\rangle$ has non-zero constant term; WTS F is invertible in $\mathbb{R}\langle\bar{X}\rangle$. Multiplying F by a constant, WMA $F(0)=1$. So say $F=1-G$ where $G \in \mathbb{R}[[\bar{X}]]$ with $G(0)=0$. Let $H(X):=\sum X^{i} \in \mathbb{R}\langle X\rangle$. Then $(1-$ $X) H(X)=1$, so $F(H \circ G)=F(\bar{X})(H(G(\bar{X}))=(1+G(\bar{X}))(H(G(\bar{X})))=1$ and $H \circ G \in \mathbb{R}\langle\bar{X}\rangle$ by the Fact.

1.3 Weierstrass Preparation

Say $F \in \mathbb{R}[[\bar{X}, Y]]$ is regular in Y if some term $a Y^{p}$ with $p \geq 0$ and $a \neq 0$ occurs in the power series F, i.e. if " $F(0, Y) \neq 0$ ".

Fact 1.7 (Weierstrass Preparation Theorem). If $F \in \mathbb{R}\langle\bar{X}, Y\rangle$ is regular in Y, then exists $Q \in \mathbb{R}\langle\bar{X}, Y\rangle^{*}$ and $L \in \mathbb{R}\langle\bar{X}\rangle[Y]$, such that $F=Q L$.

1.4 Denef - van den Dries Preparation

Fact 1.8. $\mathbb{R}\langle\bar{X}\rangle$ is Noetherian; that is, any ideal is finitely generated.
Fact 1.9. The embedding $\mathbb{R}\langle\bar{X}\rangle \leq \mathbb{R}[[X]]$ is faithfully flat.
I omit the definition of faithful flatness, because in fact we need only the following consequence.

Fact 1.10. If $F_{i}, F \in \mathbb{R}\langle\bar{X}\rangle$ and the linear equation $F_{1} x_{1}+\ldots F_{n} x_{n}=F$ has a solution in $\mathbb{R}[[\bar{X}]]$, then it already has a solution in $\mathbb{R}\langle\bar{X}\rangle$.

Corollary 1.11. If $F_{i}, F \in \mathbb{R}\langle\bar{X}\rangle$ and the linear equation $F_{1} x_{1}+\ldots F_{n} x_{n}=F$ has a solution in $\mathbb{R}[[\bar{X}]]^{*}$, then it already has a solution in $\mathbb{R}\langle\bar{X}\rangle^{*}$.

Proof. Say $U_{i} \in \mathbb{R}[[\bar{X}]]^{*}$ is a solution. Then $\sum_{i}\left(F_{i}\right)\left(U_{i}(0)+\sum_{j} x_{i}^{j} X_{j}\right)=F$ has a solution in $\mathbb{R}[[\bar{X}]]$, hence in $\mathbb{R}\langle\bar{X}\rangle$. So since $U_{i}(0) \neq 0$, the original equation has a solution in $\mathbb{R}\langle\bar{X}\rangle^{*}$.

The following consequence of these facts is what we will need in the QE proof; I follow Wilkie in naming it as follows.

Theorem 1.12 (Denef - van den Dries Preparation Theorem). If $F \in \mathbb{R}\langle\bar{X}, \bar{Y}\rangle$ then $F(\bar{X}, \bar{Y})=\sum_{|\nu|<d} a_{\nu}(\bar{X}) \bar{Y}^{\nu} u_{\nu}(\bar{X}, \bar{Y})$ for some $d \in \mathbb{N}, a_{\nu} \in \mathbb{R}\langle\bar{X}\rangle, u_{\nu} \in$ $\mathbb{R}\langle\bar{X}, \bar{Y}\rangle^{*}$.

Proof. By induction on the length of \bar{Y}. So suppose for $\mathbb{R}\langle\bar{X}, \bar{Y}\rangle$; we prove it for $\mathbb{R}\langle\bar{X}, \bar{Y}, Z\rangle$. Let $F=\sum_{i \in \mathbb{N}} a_{i} Z^{i} \in \mathbb{R}\langle\bar{X}, \bar{Y}, Z\rangle, a_{i} \in \mathbb{R}\langle\bar{X}, \bar{Y}\rangle . \mathbb{R}\langle\bar{X}, \bar{Y}\rangle$ is Noetherian, so there exist $d \in \mathbb{N}$ and $b_{i, j} \in \mathbb{R}\langle\bar{X}, \bar{Y}\rangle$ such that $a_{d+i}=$ $\sum_{i<d} b_{i, j} a_{i}$. So

$$
\begin{aligned}
F & =\sum_{i<d} a_{i} Z^{i}+\sum_{j \geq 0} \sum_{i<d} b_{i, j} a_{i} Z^{d+j} \\
& =\sum_{i<d} a_{i} Z^{i}+\sum_{i<d} a_{i} Z^{i} Z^{d-i} \sum_{j \geq 0} b_{i, j} Z^{j} \\
& =\sum_{i<d}\left(a_{i} Z^{i}\right)\left(1+Z^{d-i} \sum_{j \geq 0} b_{i, j} Z^{j}\right) \\
& =\sum_{i<d} a_{i} Z^{i} u_{i}
\end{aligned}
$$

Here we have $u_{i} \in \mathbb{R}[[\bar{X}, \bar{Y}, Z]]^{*}$, and then by Corollary 1.11, we can find such $u_{i} \in \mathbb{R}\langle\bar{X}, \bar{Y}, Z\rangle^{*}$.

Now apply the inductive hypothesis to the a_{i}.
$2 \mathbb{R}_{\text {an }}$

$$
\begin{gathered}
\|\bar{x}\|:=\max _{i}\left|x_{i}\right| \\
B_{<r}:=\left\{\bar{x} \in \mathbb{R}^{n}:\|\bar{x}\|<r\right\} \\
B_{\leq r}:=\left\{\bar{x} \in \mathbb{R}^{n}:\|\bar{x}\| \leq r\right\}
\end{gathered}
$$

For $r>0$,

$$
\mathbb{R}\{\bar{X}\}_{r}:=\left\{F \in \mathbb{R}[[\bar{X}]]: B_{\leq r} \subseteq \operatorname{dom}(F)\right\},
$$

so $\mathbb{R}\langle\bar{X}\rangle=\cap_{r \in \mathbb{R}_{>0}} \mathbb{R}\{\bar{X}\}_{r}$.
If $F \in \mathbb{R}\{\bar{X}\}_{r}$,

$$
\widetilde{F} \upharpoonright_{r}(\bar{x}):= \begin{cases}\widetilde{F}(\bar{x}) & \text { if } \bar{x} \in B_{<r} \\ 0 & \text { else }\end{cases}
$$

"restricted analytic function".
Say (r, F) is acceptable if $r \in \mathbb{R}_{>0}$ and $F \in \mathbb{R}\{X\}_{r}$.

$$
\mathbb{R}_{\mathrm{an}}:=\left\{\mathbb{R} ;+,-, \cdot,<,(a)_{a \in \mathbb{R}},\left(\widetilde{F} \upharpoonright_{r}\right)_{(r, F) \text { acceptable }}\right\}
$$

structure in language L_{an}.
Let $L_{\mathrm{an}}^{D}:=L_{\mathrm{an}} \cup\{D\}$, and $\mathbb{R}_{\mathrm{an}}^{D}:=$ expansion of \mathbb{R}_{an} interpreting D by

$$
D(x, y):= \begin{cases}x / y & \text { if } y \neq 0 \\ 0 & \text { if } y=0\end{cases}
$$

Theorem 2.1 (Denef - van den Dries). $T_{\mathrm{an}}^{D}:=T h\left(\mathbb{R}_{\mathrm{an}}^{D}\right)$ has $Q E$.
Corollary 2.2. $T_{\text {an }}:=T h\left(\mathbb{R}_{\mathrm{an}}\right)$ is model complete.
Proof. Any qf L_{an}^{D}-formula is equivalent to an existential L_{an}-formula.
For example, if t_{1}, t_{2} are terms, then
$\phi\left(D\left(t_{1}(x), t_{2}(x)\right)\right) \Leftrightarrow \exists z .\left(\phi(z) \wedge\left(\left(t_{2}(x)=0 \wedge z=0\right) \vee\left(t_{2}(x) \neq 0 \wedge z \cdot t_{2}(x)=t_{1}(x)\right)\right)\right)$.

Remark 2.3. Model completeness of $\mathbb{R}_{\text {an }}$ was previously proven (expressed in different but equivalent terms) by Gabrielov in the 1960s ("theorem of the complement" for subanalytic sets).

2.1 o-minimality of $\mathbb{R}_{\text {an }}$

Lemma 2.4. Suppose $0 \neq F \in \mathbb{R}\langle X\rangle$. Then $F=X^{m} G$ for some unique $m \in \mathbb{N}$ and $G \in F[[X]]^{*}$, and $\operatorname{dom}(G)=\operatorname{dom}(F)$, and for some $\epsilon>0, \widetilde{F}$ has constant non-zero sign on $(0, \epsilon)$.

Proof. Existence and uniqueness of m, G is immediate from the description of $F[[X]]^{*}$. For $\operatorname{dom}(G)=\operatorname{dom}\left(X^{m} G\right)$: given $x \in \mathbb{R},\left\{a_{i} x^{i}\right\}$ is bounded iff $\left\{a_{i} x^{m+i}=x^{m}\left(a_{i} x^{i}\right)\right\}$ is.

Now G has non-zero constant term and \widetilde{G} is continuous, so \widetilde{G} and hence \widetilde{F} has constant non-zero sign on some $(0, \epsilon)$.

Lemma 2.5. Let $t(x)$ be an L_{an}^{D}-term in 1 variable. Exists $\epsilon>0$ s.t. $t(x)=0$ on $(0, \epsilon)$ or $t(x)=\left(x^{m} \widetilde{F}(x)\right)$ on $(0, \epsilon)$ for some $m \in \bar{Z}$ and $F \in \mathbb{R}[[X]]^{*} \cap \mathbb{R}\{X\}_{\epsilon}$. In particular, $t(x)$ has constant sign on $(0, \epsilon)$.

Proof. By induction on terms. Obvious for $t(x)=x$ or $t(x)=b$.
Suppose $t(x)=t_{1}(x)+t_{2}(x)$ and $t_{i}(x)$ are as required. If either $t_{i}(x)=0$ on $\left(0, \epsilon_{i}\right)$, this is clear. Else, say $t_{i}(x)=x^{m_{i}} \widetilde{F}_{i}(x)$ on $\left(0, \epsilon_{i}\right)$ with $F_{i} \in \mathbb{R}[[X]]^{*} \cap$ $\mathbb{R}\{X\}_{\epsilon_{i}}$. Say $m_{1} \leq m_{2}$. then $t_{1}(x)+t_{2}(x)=x^{m_{1}}\left(\widetilde{F}_{1}(x)+x^{m_{2}-m_{1}} \widetilde{F}_{2}(x)\right)$; but by Lemma 2.4, $F_{1}(X)+X^{m_{2}-m_{1}} F_{2}(X)=X^{k} G(X)$ say, and then $t_{1}(x)+t_{2}(x)=$ $x^{m_{1}+k} \widetilde{G}(x)$ is as required with $\epsilon:=\min _{i} \epsilon_{i}$.

Similarly for - . Similarly for $*$ and D, since the product or ratio of two units is a unit.

Finally, suppose (F, r) is acceptable and $t(x)=\widetilde{F} \upharpoonright_{r}\left(t_{1}(x), \ldots, t_{n}(x)\right)$ Pick common ϵ for the t_{i}. If $t_{i}=0$ on $(0, \epsilon)$, replace F with $F\left(x_{1}, \ldots, 0, \ldots, x_{n}\right)$. So WMA $t_{i}(x)=f_{i}(x)$ on $(0, \epsilon)$, where $f_{i}(x)=x_{i}^{m_{i}} \widetilde{F}_{i}(x)$ for some $F_{i} \in \mathbb{R}[[X]] * \cap$ $\mathbb{R}\{X\}_{\epsilon}$. If any $m_{i}<0$, then $t(x)=0$ near 0 so done. Reducing ϵ further, WMA $r-\left|f_{i}(x)\right|$ has constant sign on $(0, \epsilon)$ by Lemma 2.4. If any such sign is not positive, again $F=0$ so done. Else, $\left|f_{i}(0)\right| \leq r$, so $\left(f_{1}(0), \ldots, f_{n}(0)\right) \in$ $B_{\leq r} \subseteq \operatorname{dom}(F)$. Then $f(x):=\widetilde{F}\left(f_{1}(x), \ldots, f_{n}(x)\right)$ is analytic at 0 , so done by Lemma 2.4.

Corollary 2.6 (Corollary of QE). $T_{\text {an }}$ is o-minimal.
Proof. Any qf formula in $\mathbb{R}_{\mathrm{an}}^{D}$ is equivalent to a boolean combination of $\{t(x)>$ $0\}$ for t an $L_{\text {an }}^{D}$-term in one variable, so STS for any such t there is a partition of \mathbb{R} into finitely many points and intervals such that $\operatorname{sign}(t(x))$ is constant on each.

Applying Lemma 2.5 to $t(D(1, x))$ and $t(-D(1, x)), t(x)$ has constant sign on some $(-\infty, a)$ and (b, ∞). Then for $c \in[a, b]$, by Lemma 2.5 applied to $t(x-c)$ and $t(x-(-c))$, for some $\epsilon>0, t(x)$ has constant sign on $(c-\epsilon, c),\{c\}$, and $(c, c+\epsilon)$

We conclude by compactness of $[a, b]$.

3 Proof of QE

3.1 QE criterion

Fact 3.1. T has $Q E$ iff: if $M_{1}, M_{2} \vDash T$ are ω-saturated with a common f.g. substructure A, and if $b \in M_{1}$, then there exists an embedding $\langle A b\rangle^{M_{1}} \longleftrightarrow M_{2}$ extending id_{A}.

So let $M_{1}, M_{2} \vDash T_{\mathrm{an}}^{D}$ be ω-saturated with a common f.g. substructure K, and $b \in M_{1}$. Note $K \leq M_{1}$ is a subfield and $\mathbb{R}_{\mathrm{an}}^{D}$ is a substructure of K.

Lemma 3.2. If there exists an embedding $\langle K b\rangle^{M_{1}} \hookrightarrow M_{2}^{\prime} \succ M_{2}$ extending id_{K}, then there exists an embedding $\langle K b\rangle^{M_{1}} \longleftrightarrow M_{2}$ extending id_{K}.

Proof. Say $b \mapsto b^{\prime} \in M_{2}^{\prime}$. Then realise $\operatorname{tp}\left(b^{\prime} / K\right)$ in M_{2} by ω-saturation.
So we may freely replace M_{2} with an elementary extension.

3.2 I: local \rightarrow global

For $M \vDash T_{\text {an }}$, let $\mu(M):=\left\{\eta \in M:|\eta|<r\right.$ for all $\left.r \in \mathbb{R}_{>0}\right\}$. For $\alpha \in M$, there is at most one $s \in \mathbb{R}$ s.t. $\alpha \in s+\mu(M)$. Let $\operatorname{st}(\alpha):=s$ if such s exists, else $\operatorname{st}(\alpha):=\infty$.

Remark 3.3. for $\alpha \neq 0, \operatorname{st}(\alpha)=\infty$ iff $1 / \alpha \in \mu$.
Remark 3.4. If $\bar{a} \in \mu^{n}$ and $F \in \mathbb{R}\langle\bar{X}\rangle$, then $\widetilde{F} \upharpoonright_{r}(\bar{a})$ is independent of the choice of r. We write $\widetilde{F}(\bar{a})$ for the common value. Note $\widetilde{F}(\bar{a}) \in \mu$, by continuity.

Definition 3.5. If $A \subseteq \mu\left(M_{1}\right)$, a map $e: A \rightarrow \mu\left(M_{2}\right)$ is a partial $T_{\text {an }}-\mu$ embedding if for $\bar{a} \in A^{<\omega}$ and $F \in \mathbb{R}\langle\bar{X}\rangle$,

$$
\widetilde{F}(\bar{a})>0 \Leftrightarrow \widetilde{F}(e(\bar{a}))>0 .
$$

Lemma 3.6. Any partial $T_{\text {an }}-\mu$-embedding $e:\langle K b\rangle \cap \mu\left(M_{1}\right) \rightarrow \mu\left(M_{2}\right)$ extends to an L_{an}^{D}-embedding $e^{\prime}:\langle K b\rangle \longleftrightarrow M_{2}$.

Proof.

$$
e^{\prime}(\alpha):= \begin{cases}\operatorname{st}(\alpha)+e(\alpha-\operatorname{st}(\alpha)) & \text { if } \operatorname{st}(\alpha) \in \mathbb{R} \\ 1 / e(1 / \alpha) & \text { if } \operatorname{st}(\alpha)=\infty\end{cases}
$$

Claim 3.7. e^{\prime} is an ordered field embedding.
Proof: First we show that e^{\prime} is order-preserving. STS e is order-preserving. Consider $F:=X-Y \in \mathbb{R}\{X, Y\}_{1}$

$$
T_{\mathrm{an}} \vDash \forall x, y .\left(|x|<1 \wedge|y|<1 \rightarrow \widetilde{F} \upharpoonright_{1}(x, y)=x-y\right),
$$

so for $\eta, \eta^{\prime} \in\langle K b\rangle \cap \mu$,

$$
\begin{aligned}
\eta & >\eta^{\prime} \\
& \Leftrightarrow \widetilde{F}\left(\eta, \eta^{\prime}\right)>0 \\
& \Leftrightarrow \widetilde{F}\left(e(\eta), e\left(\eta^{\prime}\right)\right)>0 \\
& \Leftrightarrow e(\eta)>e\left(\eta^{\prime}\right) .
\end{aligned}
$$

Now if $f(X, Y), g(X, Y) \in \mathbb{R}[X, Y]$ and $\eta, \eta^{\prime}, \eta^{\prime \prime} \in\langle K b\rangle \cap \mu$ and $g\left(\eta, \eta^{\prime}\right) \neq$ 0 and $\eta^{\prime \prime}=f\left(\eta, \eta^{\prime}\right) / g\left(\eta, \eta^{\prime}\right)$, then by considering $F:=Z g(X, Y)-f(X, Y)$, $e\left(\eta^{\prime \prime}\right)=f\left(e(\eta), e\left(\eta^{\prime}\right)\right) / g\left(e(\eta), e\left(\eta^{\prime}\right)\right)$.

Preservation by e^{\prime} of,$+ *$ follows.
For example, suppose $\eta, \eta^{\prime} \in\langle K b\rangle \cap \mu$, we claim $e^{\prime}\left(1 / \eta+1 / \eta^{\prime}\right)=e^{\prime}(1 / \eta)+$ $e^{\prime}\left(1 / \eta^{\prime}\right)$. Let $s:=\operatorname{st}\left(\left(1 / \eta+1 / \eta^{\prime}\right)\right) \in \mathbb{R} \cup \infty$.

If $s=\infty$, then

$$
\eta^{\prime \prime}:=1 /\left(1 / \eta+1 / \eta^{\prime}\right) \in\langle K b\rangle \cap \mu .
$$

Then by the above applied to the rational function $1 /(1 / X+1 / Y)$,

$$
e\left(\eta^{\prime \prime}\right)=1 /\left(1 / e(\eta)+1 / e\left(\eta^{\prime}\right)\right)
$$

So

$$
\begin{aligned}
e^{\prime}\left(1 / \eta+1 / \eta^{\prime}\right) & =1 / e\left(\eta^{\prime \prime}\right) \\
& =1 /\left(1 /\left(1 / e(\eta)+1 / e\left(\eta^{\prime}\right)\right)\right) \\
& =e^{\prime}(1 / \eta)+e^{\prime}\left(1 / \eta^{\prime}\right)
\end{aligned}
$$

If $s \in \mathbb{R}$, then

$$
\eta^{\prime \prime \prime}:=\left(1 / \eta+1 / \eta^{\prime}\right)-s \in\langle K b\rangle \cap \mu .
$$

Then

$$
\begin{aligned}
e^{\prime}\left(1 / \eta+1 / \eta^{\prime}\right) & =s+e\left(\eta^{\prime \prime \prime}\right) \\
& =s+\left(\left(1 / e(\eta)+1 / e\left(\eta^{\prime}\right)\right)-s\right) \\
& =e^{\prime}(1 / \eta)+e^{\prime}\left(1 / \eta^{\prime}\right)
\end{aligned}
$$

The other cases (e.g. $\left.e^{\prime}\left((s+\eta)\left(1 / \eta^{\prime}\right)\right)\right)$ can be handled similarly.

It remains to see that for acceptable (r, F), and $\bar{\alpha} \in\langle K b\rangle^{n}, e^{\prime}\left(\widetilde{F} \upharpoonright_{r}(\bar{\alpha})\right)=$ $\widetilde{F} \upharpoonright_{r}\left(e^{\prime}(\bar{\alpha})\right)$.

If $\|\bar{\alpha}\| \geq r$ then also $\left\|e^{\prime}(\bar{\alpha})\right\| \geq r$, so the equality is clear. Else, $\bar{s}:=\operatorname{st}(\bar{\alpha}) \in$ $\operatorname{dom}(F)$, so \widetilde{F} is analytic at \bar{s}. Let $s^{\prime}:=\widetilde{F}(\bar{s})$, and say (ϵ, G) is acceptable s.t. $\widetilde{F} \in \mathbb{R}\{\bar{X}\}_{r+\epsilon}$ and $\widetilde{G}(\bar{x})=\widetilde{F}(\bar{s}+\bar{x})-s^{\prime}$ for $\bar{x} \in \mathbb{R}^{n},\|\bar{x}\|<\epsilon$. Then

$$
T_{\mathrm{an}}^{D} \vDash \forall \bar{x} .\left(\|\bar{x}\|<\epsilon \rightarrow \widetilde{G} \upharpoonright_{\epsilon}(\bar{x})=\widetilde{F} \upharpoonright_{r+\epsilon}(\bar{s}+\bar{x})-s^{\prime}\right) .
$$

So

$$
\begin{aligned}
\widetilde{F} \upharpoonright_{r}\left(e^{\prime}(\bar{\alpha})\right) & =s^{\prime}+\widetilde{F} \upharpoonright_{r+\epsilon}(\bar{s}+e(\bar{\eta}))-s^{\prime}(\text { where } \bar{\eta}:=\bar{\alpha}-\bar{s}) \\
& =s^{\prime}+\widetilde{G}(e(\bar{\eta})) \\
& =s^{\prime}+e(\widetilde{G}(\bar{\eta}))(\text { considering } Y-G(X)) \\
& =s^{\prime}+e\left(\widetilde{F} \upharpoonright_{r+\epsilon}(\bar{s}+\bar{\eta})-s^{\prime}\right) \\
& =e^{\prime}\left(\widetilde{F} \upharpoonright_{r+\epsilon}(\bar{\alpha})\right) \\
& =e^{\prime}\left(\widetilde{F} \upharpoonright_{r}(\bar{\alpha})\right)(\text { since }\|\bar{\alpha}\|<r)
\end{aligned}
$$

as required.

3.3 II: finding a T_{an} - μ-embedding

It remains to show that such an e exists.
Since we may replace M_{2} by an elementary extension, it suffices to show that the corresponding (long) type over $K \cap \mu$ is consistent, as follows:

Lemma 3.8. Let $m, n \in \mathbb{N}, \bar{X}=\left(X_{1}, \ldots, X_{m}\right), \bar{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$, and $S \subseteq$ $\mathbb{R}\langle\bar{X}, \bar{Y}\rangle$ finite, and $\bar{c} \in(K \cap \mu)^{m}$, and $\bar{b} \in \mu\left(M_{1}\right)^{n}$.

Then exists $\bar{b}^{\prime} \in \mu\left(M_{2}\right)^{n}$ s.t. for $F \in S$,

$$
M_{1} \vDash \widetilde{F}(\bar{c}, \bar{b})>0 \Leftrightarrow M_{2} \vDash \widetilde{F}\left(\bar{c},,^{\prime}\right)>0 .
$$

Proof. By induction on n, the $n=0$ case being trivial.
First we show how to handle a single F. So suppose $S=\{F\}$. WMA $F \neq 0$.
By Denef - van den Dries Preparation,

$$
F(\bar{X}, \bar{Y})=\sum_{|\nu|<d} a_{\nu}(\bar{X}) \bar{Y}^{\nu} u_{\nu}(\bar{X}, \bar{Y})
$$

for some $d \in \mathbb{N}, a_{\nu} \in \mathbb{R}\langle\bar{X}\rangle, u_{\nu} \in \mathbb{R}\langle\bar{X}, \bar{Y}\rangle^{*}$.

Let ν_{0} s.t. $M:=\left|a_{\nu_{0}}(\bar{c})\right| \geq\left|a_{\nu}(\bar{c})\right| \forall \nu$. Define

$$
\begin{aligned}
s_{\nu} & :=\operatorname{st}\left(a_{\nu}(\bar{c}) / M\right) \in \mathbb{R} \\
k_{\nu} & :=a_{\nu}(\bar{c}) / M-s_{\nu} \in K
\end{aligned}
$$

(Remark: here it is crucial that K is a L_{an}^{D}-substructure, and hence a subfield, rather than merely a $L_{\text {an }}$-substructure.)

Let $\bar{Z}=\left(Z_{\nu}\right)_{|\nu|<d}$, and define

$$
G(\bar{X}, \bar{Z}, \bar{Y}):=\sum_{|\nu|<d}\left(Z_{\nu}+s_{\nu}\right) \bar{Y}^{\nu} u_{\nu}(\bar{X}, \bar{Y}) .
$$

Then $G \in \mathbb{R}\langle\bar{X}, \bar{Z}, \bar{Y}\rangle$, and $\widetilde{F}(\bar{c}, \bar{y})=M \widetilde{G}(\bar{c}, \bar{k}, \bar{y})$ for $\bar{y} \in \mu^{n}$.
Define $\Lambda: \mu^{n} \rightarrow \mu^{n}$;

$$
\bar{y} \mapsto\left(y_{1}+y_{n}^{d^{n-1}}, y_{2}+y_{n}^{d^{n-2}}, \ldots, y_{n-1}+y_{n}^{d}, y_{n}\right)
$$

Let $H(\bar{X}, \bar{Z}, \bar{Y}):=G(\bar{X}, \bar{Z}, \Lambda(\bar{Y})) \in \mathbb{R}\langle\bar{X}, \bar{Z}, \bar{Y}\rangle$ (considering Λ as a tuple of (polynomial) formal power series).
Claim 3.9. H is regular in Y_{n}.
Proof.

$$
\begin{aligned}
H\left(0,0,0, Y_{n}\right) & =\sum_{|\nu|<d} s_{\nu} \Lambda\left(0, Y_{n}\right)^{\nu} u_{\nu}\left(0, \Lambda\left(0, Y_{n}\right)\right) \\
& =\sum_{|\nu|<d} s_{\nu} Y_{n}^{\sum \nu_{i} d^{n-i}} u_{\nu}\left(0, \Lambda\left(0, Y_{n}\right)\right)
\end{aligned}
$$

Now for ν with $|\nu|<d$, the exponents $\sum \nu_{i} d^{n-i}$ are distinct for distinct ν, and are ordered according to the lexicographic order on the ν. So taking ν lexicographically minimal s.t. $s_{\nu} \neq 0$, which exists since $s_{\nu_{0}}=1$, witnesses regularity of H.

So by Weierstrass preparation,

$$
\widetilde{F}(\bar{c}, \Lambda(\bar{y}))=M \widetilde{G}(\bar{c}, \bar{k}, \bar{y})=M \widetilde{Q}(\bar{c}, \bar{k}, \bar{y}) \widetilde{L}(\bar{c}, \bar{k}, \bar{y})
$$

where $Q \in \mathbb{R}\langle\bar{X}, \bar{Z}, \bar{Y}\rangle^{*}$ and $L \in \mathbb{R}\left\langle\bar{X}, \bar{Z}, \bar{Y}_{<n}\right\rangle\left[Y_{n}\right]$, where $\bar{Y}_{<n}:=\left(Y_{1}, \ldots, Y_{n-1}\right)$. WLOG $Q(0)>0$.

Say $L(\bar{X}, \bar{Z}, \bar{Y})=\sum_{i=0}^{p} L_{i}\left(\bar{X}, \bar{Z}, \bar{Y}_{<n}\right) Y_{n}^{i}$ with $L_{i} \in \mathbb{R}\left\langle\bar{X}, \bar{Z}, \bar{Y}_{<n}\right\rangle$.
By QE for RCF, for $\epsilon \in \mathbb{R}_{>0}$,

$$
\exists y_{n} \in(-\epsilon, \epsilon) \cdot \sum_{i=0}^{p} w_{i} y_{n}^{i}>0
$$

is equivalent modulo RCF to a qf ordered ring formula $\psi_{\epsilon}(\bar{w})$, which is a boolean combination of atomic formulae $f(\bar{w})>0$ where f is a polynomial over \mathbb{Z}. So by the inductive hypothesis, and since $\mathbb{R}\left\langle\bar{X}, \bar{Z}, \bar{Y}_{<n}\right\rangle$ is a ring, there exists $\bar{b}_{\epsilon}^{\prime \prime}$ in $\mu\left(M_{2}\right)^{n-1}$ s.t.

$$
\vDash \psi_{\epsilon}\left(\widetilde{L}_{i}\left(\bar{c}, \bar{k}, \bar{b}_{\epsilon}^{\prime \prime}\right)\right)
$$

So by ω-saturation, exists $\bar{b}^{\prime \prime}$ in $\mu\left(M_{2}\right)^{n}$ s.t. $\widetilde{L}\left(\bar{c}, \bar{k},,^{\prime \prime}\right)>0$. Hence $\widetilde{F}\left(\bar{c}, \Lambda\left(\bar{b}^{\prime \prime}\right)\right)>$ 0 , so $\bar{b}^{\prime}:=\Lambda\left(\bar{b}^{\prime \prime}\right)$ is as required.

For general finite S, we may take a d common to all $F \in S$, proceed as above (so using the same Λ for all F), and apply RCF QE to the corresponding conjunction of inequalities.

