Model completeness and o-minimality of \mathbb{R}_{an}

Martin Bays

January 23, 2018

Notes on the Denef - van den Dries quantifier elimination for \mathbb{R}_{an} and its consequences, written for a pair of seminars in Muenster, January 2018.

These notes are based in large part on some lecture notes by Alex Wilkie on the topic, currently available at: http://www.logique.jussieu.fr/modnet/ Publications/Introductory\%20Notes\%20and\%20surveys/Wilkie.pdf

A reader who has stumbled upon these notes and has not read Wilkie's notes should stop reading now and seek out Wilkie's notes instead. In these notes I attempt to spell out the odd thing left implicit in Wilkie's notes, but essentially these notes cover a proper subset of the material covered in Wilkie's notes, skip over many details handled nicely there, and indubitably add errors and imprecisions of their own.

1 Analytic functions

1.1 Formal power series

For R a ring,

$$R[[X]] := \{\sum_{i \in \mathbb{N}} a_i X^i : a_i \in R\}$$
$$R[[\overline{X}]] = R[[X_1, \dots, X_n]] = (\dots ((R[[X_1]])[[X_2]]) \dots)[[X_n]]$$

If $F \in R[[\overline{X}]]$, we can write

$$F = \sum_{\nu \in \mathbb{N}^n} a_{\nu} \overline{X}'$$

where $\overline{X}^{\nu} := X_1^{\nu_1} \dots X_n^{\nu_n}$.

 $|\nu| := \max_i \nu_i.$

 $F(0) := \text{constant term of } F = a_0$

For R a ring, $R^* := \{x \in R : \exists y \in R. xy = 1\}$ = multiplicative group of units.

Lemma 1.1. For $F \in R[[\overline{X}]]$, $F \in R[[\overline{X}]]^*$ iff $F(0) \in R^*$.

Proof. By induction, suffices to show when $\overline{X} = X$ is a single variable. If FG = 1 then F(0)G(0) = 1.

If $F = \sum a_i X^i$ If $a_0 b_0 = 1$, then define recursively for $n \ge 0$

$$b_{n+1} := -a_0^{-1}(a_1b_n + a_2b_{n-1} + \dots + a_{n+1}b_0).$$

Then $\sum_{0 \le i \le n+1} a_i b_{n+1-i} = 0$, so $(\sum a_i X^i) (\sum b_i X^i) = 1$.

1.2 Convergent power series

For $F \in \mathbb{R}[[\overline{X}]]$, define

$$dom(\sum a_{\nu}\overline{X}^{\nu}) := int(\{\overline{x} \in \mathbb{R}^{n} : \sum a_{\nu}\overline{x}^{\nu} \text{ converges }\})$$
$$= int(\{\overline{x} : \{a_{\nu}\overline{x}^{\nu} : \nu\} \text{ is bounded }\})$$

 $\begin{array}{l} \text{e.g. } \operatorname{dom}(\sum_{\nu} X^{\nu}Y^{\nu}) = \{(x,y): xy < 1\}.\\ \text{Let } \mathbb{R}\left\langle \overline{X} \right\rangle := \{F: 0 \in \operatorname{dom}(F)\}. \end{array}$

Fact 1.2. $\mathbb{R}\langle \overline{X} \rangle$ is a subring of $\mathbb{R}[[\overline{X}]]$.

Now $F = \sum a_{\nu} \overline{X}^{\nu} \in \mathbb{R} \langle \overline{X} \rangle$ defines a function $\widetilde{F} : \operatorname{dom}(F) \to \mathbb{R}; \ \widetilde{F}(\overline{x}) := \sum a_{\nu} \overline{x}^{\nu}.$

Fact 1.3. $\widetilde{F} = 0$ iff F = 0. $\widetilde{F} \in C^{\infty}(\operatorname{dom}(F))$.

Say $f: U \to \mathbb{R}$ is **analytic** at $\overline{b} \in U$ if $f(\overline{X} - \overline{b}) = \widetilde{F}(\overline{X})$ on $U_{\overline{b}}$, some $\overline{b} \in U_{\overline{b}} \subseteq_{\text{op}} U$ and some $F \in \mathbb{R} \langle \overline{X} \rangle$.

Fact 1.4. \widetilde{F} is analytic at every $b \in \text{dom}(F)$.

Idea of proof. show the Taylor series at b,

$$\sum_{\nu} 1/((\sum \nu)!)\widetilde{D^{\nu}F}(b)X^{\nu}$$

where $D^{\nu} = D_1^{\nu_1} \dots D_n^{\nu_n}$ where $D_i = d/dX_i$ is formal derivation, converges near b. See [Krantz-Park "A primer of Real Analytic Functions" Proposition 2.2.7].

Fact 1.5. if f is analytic at b and g is analytic at f(b), then $(g \circ f)$ is analytic at b.

Corollary 1.6.

$$\mathbb{R}\left\langle \overline{X}\right\rangle^* = \mathbb{R}[[\overline{X}]]^* \cap \mathbb{R}\left\langle \overline{X}\right\rangle$$

Proof. Suppose $F \in \mathbb{R}\langle \overline{X} \rangle$ has non-zero constant term; WTS F is invertible in $\mathbb{R}\langle \overline{X} \rangle$. Multiplying F by a constant, WMA F(0) = 1. So say F = 1 - Gwhere $G \in \mathbb{R}[[\overline{X}]]$ with G(0) = 0. Let $H(X) := \sum X^i \in \mathbb{R}\langle X \rangle$. Then (1 - X)H(X) = 1, so $F(H \circ G) = F(\overline{X})(H(G(\overline{X})) = (1 + G(\overline{X}))(H(G(\overline{X}))) = 1$ and $H \circ G \in \mathbb{R}\langle \overline{X} \rangle$ by the Fact.

1.3 Weierstrass Preparation

Say $F \in \mathbb{R}[[\overline{X}, Y]]$ is **regular** in Y if some term aY^p with $p \ge 0$ and $a \ne 0$ occurs in the power series F, i.e. if " $F(0, Y) \ne 0$ ".

Fact 1.7 (Weierstrass Preparation Theorem). If $F \in \mathbb{R} \langle \overline{X}, Y \rangle$ is regular in Y, then exists $Q \in \mathbb{R} \langle \overline{X}, Y \rangle^*$ and $L \in \mathbb{R} \langle \overline{X} \rangle [Y]$, such that F = QL.

2 \mathbb{R}_{AN}

1.4 Denef - van den Dries Preparation

Fact 1.8. $\mathbb{R}\langle \overline{X} \rangle$ is Noetherian; that is, any ideal is finitely generated.

Fact 1.9. The embedding $\mathbb{R}\langle \overline{X} \rangle \leq \mathbb{R}[[X]]$ is faithfully flat.

I omit the definition of faithful flatness, because in fact we need only the following consequence.

Fact 1.10. If $F_i, F \in \mathbb{R}\langle \overline{X} \rangle$ and the linear equation $F_1x_1 + \ldots F_nx_n = F$ has a solution in $\mathbb{R}[[\overline{X}]]$, then it already has a solution in $\mathbb{R}\langle \overline{X} \rangle$.

Corollary 1.11. If $F_i, F \in \mathbb{R} \langle \overline{X} \rangle$ and the linear equation $F_1x_1 + \ldots F_nx_n = F$ has a solution in $\mathbb{R}[[\overline{X}]]^*$, then it already has a solution in $\mathbb{R} \langle \overline{X} \rangle^*$.

Proof. Say $U_i \in \mathbb{R}[[\overline{X}]]^*$ is a solution. Then $\sum_i (F_i)(U_i(0) + \sum_j x_i^j X_j) = F$ has a solution in $\mathbb{R}[[\overline{X}]]$, hence in $\mathbb{R}\langle \overline{X} \rangle$. So since $U_i(0) \neq 0$, the original equation has a solution in $\mathbb{R}\langle \overline{X} \rangle^*$.

The following consequence of these facts is what we will need in the QE proof; I follow Wilkie in naming it as follows.

Theorem 1.12 (Denef - van den Dries Preparation Theorem). If $F \in \mathbb{R} \langle \overline{X}, \overline{Y} \rangle$ then $F(\overline{X}, \overline{Y}) = \sum_{|\nu| < d} a_{\nu}(\overline{X}) \overline{Y}^{\nu} u_{\nu}(\overline{X}, \overline{Y})$ for some $d \in \mathbb{N}$, $a_{\nu} \in \mathbb{R} \langle \overline{X} \rangle$, $u_{\nu} \in \mathbb{R} \langle \overline{X}, \overline{Y} \rangle^*$.

Proof. By induction on the length of \overline{Y} . So suppose for $\mathbb{R}\langle \overline{X}, \overline{Y} \rangle$; we prove it for $\mathbb{R}\langle \overline{X}, \overline{Y}, Z \rangle$. Let $F = \sum_{i \in \mathbb{N}} a_i Z^i \in \mathbb{R}\langle \overline{X}, \overline{Y}, Z \rangle$, $a_i \in \mathbb{R}\langle \overline{X}, \overline{Y} \rangle$. $\mathbb{R}\langle \overline{X}, \overline{Y} \rangle$ is Noetherian, so there exist $d \in \mathbb{N}$ and $b_{i,j} \in \mathbb{R}\langle \overline{X}, \overline{Y} \rangle$ such that $a_{d+i} = \sum_{i < d} b_{i,j} a_i$. So

$$F = \sum_{i < d} a_i Z^i + \sum_{j \ge 0} \sum_{i < d} b_{i,j} a_i Z^{d+j}$$

= $\sum_{i < d} a_i Z^i + \sum_{i < d} a_i Z^i Z^{d-i} \sum_{j \ge 0} b_{i,j} Z^j$
= $\sum_{i < d} (a_i Z^i) (1 + Z^{d-i} \sum_{j \ge 0} b_{i,j} Z^j)$
= $\sum_{i < d} a_i Z^i u_i$

Here we have $u_i \in \mathbb{R}[[\overline{X}, \overline{Y}, Z]]^*$, and then by Corollary 1.11, we can find such $u_i \in \mathbb{R} \langle \overline{X}, \overline{Y}, Z \rangle^*$.

Now apply the inductive hypothesis to the a_i .

 $2 \quad \mathbb{R}_{\mathrm{an}}$

$$\|\overline{x}\| := \max_i |x_i|$$
$$B_{
$$B_{\le r} := \{\overline{x} \in \mathbb{R}^n : \|\overline{x}\| \le r\}$$$$

2 \mathbb{R}_{AN}

For r > 0,

$$\mathbb{R}\{\overline{X}\}_r := \{F \in \mathbb{R}[[\overline{X}]] : B_{\leq r} \subseteq \operatorname{dom}(F)\},\$$

so $\mathbb{R}\left\langle \overline{X} \right\rangle = \bigcap_{r \in \mathbb{R}_{>0}} \mathbb{R}\left\{ \overline{X} \right\}_r$. If $F \in \mathbb{R}\left\{ \overline{X} \right\}_r$,

$$\widetilde{F}\!\upharpoonright_r(\overline{x}) := \begin{cases} \widetilde{F}(\overline{x}) & \text{if } \overline{x} \in B_{< r} \\ 0 & \text{else} \end{cases}$$

"restricted analytic function".

Say (r, F) is acceptable if $r \in \mathbb{R}_{>0}$ and $F \in \mathbb{R}\{X\}_r$.

$$\mathbb{R}_{\mathrm{an}} := \{\mathbb{R}; +, -, \cdot, <, (a)_{a \in \mathbb{R}}, (\widetilde{F} \upharpoonright_{r})_{(r,F)acceptable}\}$$

structure in language $L_{\rm an}$.

Let $L_{an}^D := L_{an} \cup \{D\}$, and $\mathbb{R}_{an}^D :=$ expansion of \mathbb{R}_{an} interpreting D by

$$D(x,y) := \begin{cases} x/y & \text{if } y \neq 0\\ 0 & \text{if } y = 0 \end{cases}$$

Theorem 2.1 (Denef - van den Dries). $T_{an}^D := Th(\mathbb{R}^D_{an})$ has QE.

Corollary 2.2. $T_{an} := Th(\mathbb{R}_{an})$ is model complete.

Proof. Any qf L_{an}^D -formula is equivalent to an existential L_{an} -formula. For example, if t_1, t_2 are terms, then

$$\phi(D(t_1(x), t_2(x))) \Leftrightarrow \exists z. \ (\phi(z) \land ((t_2(x) = 0 \land z = 0) \lor (t_2(x) \neq 0 \land z \cdot t_2(x) = t_1(x))))$$

Remark 2.3. Model completeness of \mathbb{R}_{an} was previously proven (expressed in different but equivalent terms) by Gabrielov in the 1960s ("theorem of the complement" for subanalytic sets).

2.1 o-minimality of \mathbb{R}_{an}

Lemma 2.4. Suppose $0 \neq F \in \mathbb{R} \langle X \rangle$. Then $F = X^m G$ for some unique $m \in \mathbb{N}$ and $G \in F[[X]]^*$, and dom(G) = dom(F), and for some $\epsilon > 0$, \widetilde{F} has constant non-zero sign on $(0, \epsilon)$.

Proof. Existence and uniqueness of m, G is immediate from the description of $F[[X]]^*$. For dom $(G) = \text{dom}(X^m G)$: given $x \in \mathbb{R}$, $\{a_i x^i\}$ is bounded iff $\{a_i x^{m+i} = x^m (a_i x^i)\}$ is.

Now G has non-zero constant term and \widetilde{G} is continuous, so \widetilde{G} and hence \widetilde{F} has constant non-zero sign on some $(0, \epsilon)$.

Lemma 2.5. Let t(x) be an L^{D}_{an} -term in 1 variable. Exists $\epsilon > 0$ s.t. t(x) = 0on $(0, \epsilon)$ or $t(x) = (x^m \widetilde{F}(x))$ on $(0, \epsilon)$ for some $m \in \overline{Z}$ and $F \in \mathbb{R}[[X]]^* \cap \mathbb{R}\{X\}_{\epsilon}$. In particular, t(x) has constant sign on $(0, \epsilon)$.

3 PROOF OF QE

Proof. By induction on terms. Obvious for t(x) = x or t(x) = b.

Suppose $t(x) = t_1(x) + t_2(x)$ and $t_i(x)$ are as required. If either $t_i(x) = 0$ on $(0, \epsilon_i)$, this is clear. Else, say $t_i(x) = x^{m_i} \widetilde{F}_i(x)$ on $(0, \epsilon_i)$ with $F_i \in \mathbb{R}[[X]]^* \cap \mathbb{R}\{X\}_{\epsilon_i}$. Say $m_1 \leq m_2$. then $t_1(x) + t_2(x) = x^{m_1}(\widetilde{F}_1(x) + x^{m_2 - m_1}\widetilde{F}_2(x))$; but by Lemma 2.4, $F_1(X) + X^{m_2 - m_1}F_2(X) = X^k G(X)$ say, and then $t_1(x) + t_2(x) = x^{m_1 + k} \widetilde{G}(x)$ is as required with $\epsilon := \min_i \epsilon_i$.

Similarly for -. Similarly for * and D, since the product or ratio of two units is a unit.

Finally, suppose (F, r) is acceptable and $t(x) = \widetilde{F} \upharpoonright_r (t_1(x), \dots, t_n(x))$ Pick common ϵ for the t_i . If $t_i = 0$ on $(0, \epsilon)$, replace F with $F(x_1, \dots, 0, \dots, x_n)$. So WMA $t_i(x) = f_i(x)$ on $(0, \epsilon)$, where $f_i(x) = x_i^{m_i} \widetilde{F}_i(x)$ for some $F_i \in \mathbb{R}[[X]]^* \cap \mathbb{R}\{X\}_{\epsilon}$. If any $m_i < 0$, then t(x) = 0 near 0 so done. Reducing ϵ further, WMA $r - |f_i(x)|$ has constant sign on $(0, \epsilon)$ by Lemma 2.4. If any such sign is not positive, again F = 0 so done. Else, $|f_i(0)| \leq r$, so $(f_1(0), \dots, f_n(0)) \in B_{\leq r} \subseteq \operatorname{dom}(F)$. Then $f(x) := \widetilde{F}(f_1(x), \dots, f_n(x))$ is analytic at 0, so done by Lemma 2.4.

Corollary 2.6 (Corollary of QE). $T_{\rm an}$ is o-minimal.

Proof. Any qf formula in \mathbb{R}^{D}_{an} is equivalent to a boolean combination of $\{t(x) > 0\}$ for t an L^{D}_{an} -term in one variable, so STS for any such t there is a partition of \mathbb{R} into finitely many points and intervals such that $\operatorname{sign}(t(x))$ is constant on each.

Applying Lemma 2.5 to t(D(1, x)) and t(-D(1, x)), t(x) has constant sign on some $(-\infty, a)$ and (b, ∞) . Then for $c \in [a, b]$, by Lemma 2.5 applied to t(x-c) and t(x-(-c)), for some $\epsilon > 0$, t(x) has constant sign on $(c-\epsilon, c)$, $\{c\}$, and $(c, c+\epsilon)$.

We conclude by compactness of [a, b].

3 Proof of QE

3.1 QE criterion

Fact 3.1. T has QE iff: if $M_1, M_2 \models T$ are ω -saturated with a common f.g. substructure A, and if $b \in M_1$, then there exists an embedding $\langle Ab \rangle^{M_1} \hookrightarrow M_2$ extending id_A .

So let $M_1, M_2 \models T_{\text{an}}^D$ be ω -saturated with a common f.g. substructure K, and $b \in M_1$. Note $K \leq M_1$ is a subfield and \mathbb{R}^D_{an} is a substructure of K.

Lemma 3.2. If there exists an embedding $\langle Kb \rangle^{M_1} \hookrightarrow M'_2 \succ M_2$ extending id_K , then there exists an embedding $\langle Kb \rangle^{M_1} \hookrightarrow M_2$ extending id_K .

Proof. Say $b \mapsto b' \in M'_2$. Then realise $\operatorname{tp}(b'/K)$ in M_2 by ω -saturation.

So we may freely replace M_2 with an elementary extension.

3.2 I: local \rightarrow global

For $M \vDash T_{\text{an}}$, let $\mu(M) := \{\eta \in M : |\eta| < r \text{ for all } r \in \mathbb{R}_{>0}\}$. For $\alpha \in M$, there is at most one $s \in \mathbb{R}$ s.t. $\alpha \in s + \mu(M)$. Let $\operatorname{st}(\alpha) := s$ if such s exists, else $\operatorname{st}(\alpha) := \infty$.

Remark 3.3. for $\alpha \neq 0$, $\operatorname{st}(\alpha) = \infty$ iff $1/\alpha \in \mu$.

Remark 3.4. If $\overline{a} \in \mu^n$ and $F \in \mathbb{R} \langle \overline{X} \rangle$, then $\widetilde{F} \upharpoonright_r (\overline{a})$ is independent of the choice of r. We write $\widetilde{F}(\overline{a})$ for the common value. Note $\widetilde{F}(\overline{a}) \in \mu$, by continuity.

Definition 3.5. If $A \subseteq \mu(M_1)$, a map $e : A \to \mu(M_2)$ is a **partial** T_{an} - μ -**embedding** if for $\overline{a} \in A^{<\omega}$ and $F \in \mathbb{R} \langle \overline{X} \rangle$,

$$\widetilde{F}(\overline{a}) > 0 \Leftrightarrow \widetilde{F}(e(\overline{a})) > 0.$$

Lemma 3.6. Any partial T_{an} - μ -embedding $e : \langle Kb \rangle \cap \mu(M_1) \to \mu(M_2)$ extends to an L_{an}^D -embedding $e' : \langle Kb \rangle \longrightarrow M_2$.

Proof.

$$e'(\alpha) := \begin{cases} \operatorname{st}(\alpha) + e(\alpha - \operatorname{st}(\alpha)) & \text{if } \operatorname{st}(\alpha) \in \mathbb{R} \\ 1/e(1/\alpha) & \text{if } \operatorname{st}(\alpha) = \infty \end{cases}$$

Claim 3.7. e' is an ordered field embedding.

Proof: First we show that e' is order-preserving. STS e is order-preserving. Consider $F := X - Y \in \mathbb{R}\{X, Y\}_1$.

$$T_{\mathrm{an}} \vDash \forall x, y. \ (|x| < 1 \land |y| < 1 \to \widetilde{F} \upharpoonright_1 (x, y) = x - y),$$

so for $\eta, \eta' \in \langle Kb \rangle \cap \mu$,

$$\begin{split} \eta &> \eta' \\ \Leftrightarrow \widetilde{F}(\eta, \eta') &> 0 \\ \Leftrightarrow \widetilde{F}(e(\eta), e(\eta')) &> 0 \\ \Leftrightarrow e(\eta) &> e(\eta'). \end{split}$$

Now if $f(X,Y), g(X,Y) \in \mathbb{R}[X,Y]$ and $\eta, \eta', \eta'' \in \langle Kb \rangle \cap \mu$ and $g(\eta, \eta') \neq 0$ and $\eta'' = f(\eta, \eta')/g(\eta, \eta')$, then by considering $F := Zg(X,Y) - f(X,Y), e(\eta'') = f(e(\eta), e(\eta'))/g(e(\eta), e(\eta')).$

Preservation by e' of +, * follows.

For example, suppose $\eta, \eta' \in \langle Kb \rangle \cap \mu$, we claim $e'(1/\eta + 1/\eta') = e'(1/\eta) + e'(1/\eta')$. Let $s := \operatorname{st}((1/\eta + 1/\eta')) \in \mathbb{R} \cup \infty$. If $s = \infty$, then

$$\eta'' := 1/(1/\eta + 1/\eta') \in \langle Kb \rangle \cap \mu.$$

Then by the above applied to the rational function 1/(1/X + 1/Y),

$$e(\eta'') = 1/(1/e(\eta) + 1/e(\eta')).$$

So

$$e'(1/\eta + 1/\eta') = 1/e(\eta'')$$

= 1/(1/(1/e(\eta) + 1/e(\eta')))
= e'(1/\eta) + e'(1/\eta').

If $s \in \mathbb{R}$, then

$$\eta''' := (1/\eta + 1/\eta') - s \in \langle Kb \rangle \cap \mu.$$

Then

$$\begin{aligned} e'(1/\eta + 1/\eta') &= s + e(\eta''') \\ &= s + ((1/e(\eta) + 1/e(\eta')) - s) \\ &= e'(1/\eta) + e'(1/\eta'). \end{aligned}$$

The other cases (e.g. $e'((s+\eta)(1/\eta')))$ can be handled similarly.

It remains to see that for acceptable (r, F), and $\overline{\alpha} \in \langle Kb \rangle^n$, $e'(\widetilde{F} \upharpoonright_r (\overline{\alpha})) = \widetilde{F} \upharpoonright_r (e'(\overline{\alpha}))$.

If $\|\overline{\alpha}\| \geq r$ then also $\|e'(\overline{\alpha})\| \geq r$, so the equality is clear. Else, $\overline{s} := \operatorname{st}(\overline{\alpha}) \in \operatorname{dom}(F)$, so \widetilde{F} is analytic at \overline{s} . Let $s' := \widetilde{F}(\overline{s})$, and say (ϵ, G) is acceptable s.t. $\widetilde{F} \in \mathbb{R}\{\overline{X}\}_{r+\epsilon}$ and $\widetilde{G}(\overline{x}) = \widetilde{F}(\overline{s} + \overline{x}) - s'$ for $\overline{x} \in \mathbb{R}^n$, $\|\overline{x}\| < \epsilon$. Then

$$T^{D}_{\mathrm{an}} \vDash \forall \overline{x}. \ (\|\overline{x}\| < \epsilon \to \widetilde{G}\!\upharpoonright_{\epsilon} (\overline{x}) = \widetilde{F}\!\upharpoonright_{r+\epsilon} (\overline{s} + \overline{x}) - s').$$

 So

$$\begin{split} \widetilde{F} \upharpoonright_{r} (e'(\overline{\alpha})) &= s' + \widetilde{F} \upharpoonright_{r+\epsilon} (\overline{s} + e(\overline{\eta})) - s' \text{ (where } \overline{\eta} := \overline{\alpha} - \overline{s}) \\ &= s' + \widetilde{G}(e(\overline{\eta})) \\ &= s' + e(\widetilde{G}(\overline{\eta})) \text{ (considering } Y - G(X)) \\ &= s' + e(\widetilde{F} \upharpoonright_{r+\epsilon} (\overline{s} + \overline{\eta}) - s') \\ &= e'(\widetilde{F} \upharpoonright_{r+\epsilon} (\overline{\alpha})) \\ &= e'(\widetilde{F} \upharpoonright_{r+\epsilon} (\overline{\alpha})) \text{ (since } \|\overline{\alpha}\| < r) \end{split}$$

as required.

3.3 II: finding a T_{an} - μ -embedding

It remains to show that such an e exists.

Since we may replace M_2 by an elementary extension, it suffices to show that the corresponding (long) type over $K \cap \mu$ is consistent, as follows:

Lemma 3.8. Let $m,n \in \mathbb{N}$, $\overline{X} = (X_1, \ldots, X_m)$, $\overline{Y} = (Y_1, \ldots, Y_n)$, and $S \subseteq \mathbb{R} \langle \overline{X}, \overline{Y} \rangle$ finite, and $\overline{c} \in (K \cap \mu)^m$, and $\overline{b} \in \mu(M_1)^n$. Then exists $\overline{b}' \in \mu(M_2)^n$ s.t. for $F \in S$,

$$M_1 \vDash \widetilde{F}(\overline{c}, \overline{b}) > 0 \Leftrightarrow M_2 \vDash \widetilde{F}(\overline{c}, \overline{b}') > 0.$$

Proof. By induction on n, the n = 0 case being trivial.

First we show how to handle a single F. So suppose $S = \{F\}$. WMA $F \neq 0$. By Denef - van den Dries Preparation,

$$F(\overline{X}, \overline{Y}) = \sum_{|\nu| < d} a_{\nu}(\overline{X}) \overline{Y}^{\nu} u_{\nu}(\overline{X}, \overline{Y})$$

for some $d \in \mathbb{N}$, $a_{\nu} \in \mathbb{R} \langle \overline{X} \rangle$, $u_{\nu} \in \mathbb{R} \langle \overline{X}, \overline{Y} \rangle^*$.

3 PROOF OF QE

Let ν_0 s.t. $M := |a_{\nu_0}(\overline{c})| \ge |a_{\nu}(\overline{c})| \forall \nu$. Define

$$s_{\nu} := \operatorname{st}(a_{\nu}(\overline{c})/M) \in \mathbb{R}$$

 $k_{\nu} := a_{\nu}(\overline{c})/M - s_{\nu} \in K$

(Remark: here it is crucial that K is a L^D_{an} -substructure, and hence a subfield, rather than merely a L_{an} -substructure.)

Let $\overline{Z} = (Z_{\nu})_{|\nu| < d}$, and define

$$G(\overline{X}, \overline{Z}, \overline{Y}) := \sum_{|\nu| < d} (Z_{\nu} + s_{\nu}) \overline{Y}^{\nu} u_{\nu}(\overline{X}, \overline{Y}).$$

Then $G \in \mathbb{R} \left\langle \overline{X}, \overline{Z}, \overline{Y} \right\rangle$, and $\widetilde{F}(\overline{c}, \overline{y}) = M \widetilde{G}(\overline{c}, \overline{k}, \overline{y})$ for $\overline{y} \in \mu^n$. Define $\Lambda : \mu^n \to \mu^n$;

$$\overline{y} \mapsto (y_1 + y_n^{d^{n-1}}, y_2 + y_n^{d^{n-2}}, \dots, y_{n-1} + y_n^d, y_n)$$

Let $H(\overline{X}, \overline{Z}, \overline{Y}) := G(\overline{X}, \overline{Z}, \Lambda(\overline{Y})) \in \mathbb{R} \langle \overline{X}, \overline{Z}, \overline{Y} \rangle$ (considering Λ as a tuple of (polynomial) formal power series).

Claim 3.9. H is regular in Y_n .

Proof.

$$H(0,0,0,Y_n) = \sum_{|\nu| < d} s_{\nu} \Lambda(0,Y_n)^{\nu} u_{\nu}(0,\Lambda(0,Y_n))$$
$$= \sum_{|\nu| < d} s_{\nu} Y_n^{\sum \nu_i d^{n-i}} u_{\nu}(0,\Lambda(0,Y_n))$$

Now for ν with $|\nu| < d$, the exponents $\sum \nu_i d^{n-i}$ are distinct for distinct ν , and are ordered according to the lexicographic order on the ν . So taking ν lexicographically minimal s.t. $s_{\nu} \neq 0$, which exists since $s_{\nu_0} = 1$, witnesses regularity of H.

So by Weierstrass preparation,

$$\widetilde{F}(\overline{c},\Lambda(\overline{y})) = M\widetilde{G}(\overline{c},\overline{k},\overline{y}) = M\widetilde{Q}(\overline{c},\overline{k},\overline{y})\widetilde{L}(\overline{c},\overline{k},\overline{y})$$

where $Q \in \mathbb{R} \langle \overline{X}, \overline{Z}, \overline{Y} \rangle^*$ and $L \in \mathbb{R} \langle \overline{X}, \overline{Z}, \overline{Y}_{< n} \rangle$ $[Y_n]$, where $\overline{Y}_{< n} := (Y_1, \dots, Y_{n-1})$. WLOG Q(0) > 0.

Say $L(\overline{X}, \overline{Z}, \overline{Y}) = \sum_{i=0}^{p} L_i(\overline{X}, \overline{Z}, \overline{Y}_{< n}) Y_n^i$ with $L_i \in \mathbb{R} \langle \overline{X}, \overline{Z}, \overline{Y}_{< n} \rangle$. By QE for RCF, for $\epsilon \in \mathbb{R}_{>0}$,

$$\exists y_n \in (-\epsilon, \epsilon). \sum_{i=0}^p w_i y_n^i > 0$$

is equivalent modulo RCF to a qf ordered ring formula $\psi_{\epsilon}(\overline{w})$, which is a boolean combination of atomic formulae $f(\overline{w}) > 0$ where f is a polynomial over \mathbb{Z} . So by the inductive hypothesis, and since $\mathbb{R} \langle \overline{X}, \overline{Z}, \overline{Y}_{< n} \rangle$ is a ring, there exists \overline{b}'_{ϵ} in $\mu(M_2)^{n-1}$ s.t.

$$\models \psi_{\epsilon}(\widetilde{L}_i(\overline{c}, \overline{k}, \overline{b}_{\epsilon}''))$$

3 PROOF OF QE

So by ω -saturation, exists \overline{b}'' in $\mu(M_2)^n$ s.t. $\widetilde{L}(\overline{c}, \overline{k}, \overline{b}'') > 0$. Hence $\widetilde{F}(\overline{c}, \Lambda(\overline{b}'')) > 0$, so $\overline{b}' := \Lambda(\overline{b}'')$ is as required.

For general finite S, we may take a d common to all $F \in S$, proceed as above (so using the same Λ for all F), and apply RCF QE to the corresponding conjunction of inequalities.