
Model completeness and o-minimality of Ran

Martin Bays

January 23, 2018

Notes on the Denef - van den Dries quantifier elimination for Ran and its
consequences, written for a pair of seminars in Muenster, January 2018.

These notes are based in large part on some lecture notes by Alex Wilkie on
the topic, currently available at: http://www.logique.jussieu.fr/modnet/

Publications/Introductory\%20Notes\%20and\%20surveys/Wilkie.pdf

A reader who has stumbled upon these notes and has not read Wilkie’s
notes should stop reading now and seek out Wilkie’s notes instead. In these
notes I attempt to spell out the odd thing left implicit in Wilkie’s notes, but
essentially these notes cover a proper subset of the material covered in Wilkie’s
notes, skip over many details handled nicely there, and indubitably add errors
and imprecisions of their own.

1 Analytic functions

1.1 Formal power series

For R a ring,

R[[X]] := {
∑
i∈N

aiX
i : ai ∈ R}

R[[X]] = R[[X1, . . . , Xn]] = (. . . ((R[[X1]])[[X2]]) . . .)[[Xn]]

If F ∈ R[[X]], we can write

F =
∑
ν∈Nn

aνX
ν

where X
ν

:= Xν1
1 . . . Xνn

n .
|ν| := maxi νi.
F (0) := constant term of F = a0
For R a ring, R∗ := {x ∈ R : ∃y ∈ R. xy = 1} = multiplicative group of

units.

Lemma 1.1. For F ∈ R[[X]], F ∈ R[[X]]∗ iff F (0) ∈ R∗.

Proof. By induction, suffices to show when X = X is a single variable.
If FG = 1 then F (0)G(0) = 1.
If F =

∑
aiX

i If a0b0 = 1, then define recursively for n ≥ 0

bn+1 := −a−10 (a1bn + a2bn−1 + . . . an+1b0).

Then
∑

0≤i≤n+1 aibn+1−i = 0, so (
∑
aiX

i)(
∑
biX

i) = 1.
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1.2 Convergent power series

For F ∈ R[[X]], define

dom(
∑

aνX
ν
) := int({x ∈ Rn :

∑
aνx

ν converges })

= int({x : {aνxν : ν} is bounded })

e.g. dom(
∑
ν X

νY ν) = {(x, y) : xy < 1}.
Let R

〈
X
〉

:= {F : 0 ∈ dom(F )}.

Fact 1.2. R
〈
X
〉

is a subring of R[[X]].

Now F =
∑
aνX

ν ∈ R
〈
X
〉

defines a function F̃ : dom(F ) → R; F̃ (x) :=∑
aνx

ν .

Fact 1.3. F̃ = 0 iff F = 0. F̃ ∈ C∞(dom(F )).

Say f : U → R is analytic at b ∈ U if f(X − b) = F̃ (X) on Ub, some

b ∈ Ub ⊆op U and some F ∈ R
〈
X
〉
.

Fact 1.4. F̃ is analytic at every b ∈ dom(F ).

Idea of proof. show the Taylor series at b,∑
ν

1/((
∑

ν)!)D̃νF (b)Xν

where Dν = Dν1
1 . . . Dνn

n where Di = d/dXi is formal derivation, converges
near b. See [Krantz-Park ”A primer of Real Analytic Functions” Proposition
2.2.7].

Fact 1.5. if f is analytic at b and g is analytic at f(b), then (g ◦ f) is analytic
at b.

Corollary 1.6.
R
〈
X
〉∗

= R[[X]]∗ ∩ R
〈
X
〉

Proof. Suppose F ∈ R
〈
X
〉

has non-zero constant term; WTS F is invertible

in R
〈
X
〉
. Multiplying F by a constant, WMA F (0) = 1. So say F = 1 − G

where G ∈ R[[X]] with G(0) = 0. Let H(X) :=
∑
Xi ∈ R 〈X〉. Then (1 −

X)H(X) = 1, so F (H ◦ G) = F (X)(H(G(X)) = (1 + G(X))(H(G(X))) = 1
and H ◦G ∈ R

〈
X
〉

by the Fact.

1.3 Weierstrass Preparation

Say F ∈ R[[X,Y ]] is regular in Y if some term aY p with p ≥ 0 and a 6= 0
occurs in the power series F , i.e. if “F (0, Y ) 6= 0”.

Fact 1.7 (Weierstrass Preparation Theorem). If F ∈ R
〈
X,Y

〉
is regular in Y ,

then exists Q ∈ R
〈
X,Y

〉∗
and L ∈ R

〈
X
〉

[Y ], such that F = QL.



2 RAN 3

1.4 Denef - van den Dries Preparation

Fact 1.8. R
〈
X
〉

is Noetherian; that is, any ideal is finitely generated.

Fact 1.9. The embedding R
〈
X
〉
≤ R[[X]] is faithfully flat.

I omit the definition of faithful flatness, because in fact we need only the
following consequence.

Fact 1.10. If Fi,F ∈ R
〈
X
〉

and the linear equation F1x1 + . . . Fnxn = F has

a solution in R[[X]], then it already has a solution in R
〈
X
〉
.

Corollary 1.11. If Fi,F ∈ R
〈
X
〉

and the linear equation F1x1 + . . . Fnxn = F

has a solution in R[[X]]∗, then it already has a solution in R
〈
X
〉∗

.

Proof. Say Ui ∈ R[[X]]∗ is a solution. Then
∑
i(Fi)(Ui(0) +

∑
j x

j
iXj) = F has

a solution in R[[X]], hence in R
〈
X
〉
. So since Ui(0) 6= 0, the original equation

has a solution in R
〈
X
〉∗

.

The following consequence of these facts is what we will need in the QE
proof; I follow Wilkie in naming it as follows.

Theorem 1.12 (Denef - van den Dries Preparation Theorem). If F ∈ R
〈
X,Y

〉
then F (X,Y ) =

∑
|ν|<d aν(X)Y

ν
uν(X,Y ) for some d ∈ N, aν ∈ R

〈
X
〉
, uν ∈

R
〈
X,Y

〉∗
.

Proof. By induction on the length of Y . So suppose for R
〈
X,Y

〉
; we prove it

for R
〈
X,Y , Z

〉
. Let F =

∑
i∈N aiZ

i ∈ R
〈
X,Y , Z

〉
, ai ∈ R

〈
X,Y

〉
. R

〈
X,Y

〉
is Noetherian, so there exist d ∈ N and bi,j ∈ R

〈
X,Y

〉
such that ad+i =∑

i<d bi,jai. So

F =
∑
i<d

aiZ
i +
∑
j≥0

∑
i<d

bi,jaiZ
d+j

=
∑
i<d

aiZ
i +
∑
i<d

aiZ
iZd−i

∑
j≥0

bi,jZ
j

=
∑
i<d

(aiZ
i)(1 + Zd−i

∑
j≥0

bi,jZ
j)

=
∑
i<d

aiZ
iui

Here we have ui ∈ R[[X,Y , Z]]∗, and then by Corollary 1.11, we can find

such ui ∈ R
〈
X,Y , Z

〉∗
.

Now apply the inductive hypothesis to the ai.

2 Ran

‖x‖ := maxi|xi|

B<r := {x ∈ Rn : ‖x‖ < r}

B≤r := {x ∈ Rn : ‖x‖ ≤ r}
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For r > 0,
R{X}r := {F ∈ R[[X]] : B≤r ⊆ dom(F )},

so R
〈
X
〉

= ∩r∈R>0
R{X}r.

If F ∈ R{X}r,

F̃ �r (x) :=

{
F̃ (x) if x ∈ B<r
0 else

”restricted analytic function”.
Say (r, F ) is acceptable if r ∈ R>0 and F ∈ R{X}r.

Ran := {R; +,−, ·, <, (a)a∈R, (F̃ �r)(r,F )acceptable}

structure in language Lan.
Let LDan := Lan ∪ {D}, and RDan := expansion of Ran interpreting D by

D(x, y) :=

{
x/y if y 6= 0

0 if y = 0

Theorem 2.1 (Denef - van den Dries). TDan := Th(RDan) has QE.

Corollary 2.2. Tan := Th(Ran) is model complete.

Proof. Any qf LDan-formula is equivalent to an existential Lan-formula.
For example, if t1, t2 are terms, then

φ(D(t1(x), t2(x)))⇔ ∃z. (φ(z)∧((t2(x) = 0∧z = 0)∨(t2(x) 6= 0∧z·t2(x) = t1(x)))).

Remark 2.3. Model completeness of Ran was previously proven (expressed in
different but equivalent terms) by Gabrielov in the 1960s (”theorem of the com-
plement” for subanalytic sets).

2.1 o-minimality of Ran

Lemma 2.4. Suppose 0 6= F ∈ R 〈X〉. Then F = XmG for some unique m ∈ N
and G ∈ F [[X]]∗, and dom(G) = dom(F ), and for some ε > 0, F̃ has constant
non-zero sign on (0, ε).

Proof. Existence and uniqueness of m,G is immediate from the description
of F [[X]]∗. For dom(G) = dom(XmG): given x ∈ R, {aixi} is bounded iff
{aixm+i = xm(aix

i)} is.

Now G has non-zero constant term and G̃ is continuous, so G̃ and hence F̃
has constant non-zero sign on some (0, ε).

Lemma 2.5. Let t(x) be an LDan-term in 1 variable. Exists ε > 0 s.t. t(x) = 0

on (0, ε) or t(x) = (xmF̃ (x)) on (0, ε) for some m ∈ Z and F ∈ R[[X]]∗∩R{X}ε.
In particular, t(x) has constant sign on (0, ε).
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Proof. By induction on terms. Obvious for t(x) = x or t(x) = b.
Suppose t(x) = t1(x) + t2(x) and ti(x) are as required. If either ti(x) = 0

on (0, εi), this is clear. Else, say ti(x) = xmi F̃i(x) on (0, εi) with Fi ∈ R[[X]]∗ ∩
R{X}εi . Say m1 ≤ m2. then t1(x)+t2(x) = xm1(F̃1(x)+xm2−m1 F̃2(x)); but by
Lemma 2.4, F1(X) +Xm2−m1F2(X) = XkG(X) say, and then t1(x) + t2(x) =

xm1+kG̃(x) is as required with ε := mini εi.
Similarly for −. Similarly for ∗ and D, since the product or ratio of two

units is a unit.
Finally, suppose (F, r) is acceptable and t(x) = F̃ �r (t1(x), . . . , tn(x)) Pick

common ε for the ti. If ti = 0 on (0, ε), replace F with F (x1, . . . , 0, . . . , xn). So

WMA ti(x) = fi(x) on (0, ε), where fi(x) = xmi
i F̃i(x) for some Fi ∈ R[[X]]∗ ∩

R{X}ε. If any mi < 0, then t(x) = 0 near 0 so done. Reducing ε further,
WMA r − |fi(x)| has constant sign on (0, ε) by Lemma 2.4. If any such sign
is not positive, again F = 0 so done. Else, |fi(0)| ≤ r, so (f1(0), . . . , fn(0)) ∈
B≤r ⊆ dom(F ). Then f(x) := F̃ (f1(x), . . . , fn(x)) is analytic at 0, so done by
Lemma 2.4.

Corollary 2.6 (Corollary of QE). Tan is o-minimal.

Proof. Any qf formula in RDan is equivalent to a boolean combination of {t(x) >
0} for t an LDan-term in one variable, so STS for any such t there is a partition
of R into finitely many points and intervals such that sign(t(x)) is constant on
each.

Applying Lemma 2.5 to t(D(1, x)) and t(−D(1, x)), t(x) has constant sign
on some (−∞, a) and (b,∞). Then for c ∈ [a, b], by Lemma 2.5 applied to
t(x− c) and t(x− (−c)), for some ε > 0, t(x) has constant sign on (c− ε, c), {c},
and (c, c+ ε).

We conclude by compactness of [a, b].

3 Proof of QE

3.1 QE criterion

Fact 3.1. T has QE iff: if M1,M2 � T are ω-saturated with a common f.g.
substructure A, and if b ∈ M1, then there exists an embedding 〈Ab〉M1 ↪−→ M2

extending idA.

So let M1,M2 � TDan be ω-saturated with a common f.g. substructure K,
and b ∈M1. Note K ≤M1 is a subfield and RDan is a substructure of K.

Lemma 3.2. If there exists an embedding 〈Kb〉M1 ↪−→ M ′2 � M2 extending

idK , then there exists an embedding 〈Kb〉M1 ↪−→M2 extending idK .

Proof. Say b 7→ b′ ∈M ′2. Then realise tp(b′/K) in M2 by ω-saturation.

So we may freely replace M2 with an elementary extension.

3.2 I: local → global

For M � Tan, let µ(M) := {η ∈M : |η| < r for all r ∈ R>0}. For α ∈M , there
is at most one s ∈ R s.t. α ∈ s + µ(M). Let st(α) := s if such s exists, else
st(α) :=∞.



3 PROOF OF QE 6

Remark 3.3. for α 6= 0, st(α) =∞ iff 1/α ∈ µ.

Remark 3.4. If a ∈ µn and F ∈ R
〈
X
〉
, then F̃ �r (a) is independent of the choice

of r. We write F̃ (a) for the common value. Note F̃ (a) ∈ µ, by continuity.

Definition 3.5. If A ⊆ µ(M1), a map e : A → µ(M2) is a partial Tan-µ-
embedding if for a ∈ A<ω and F ∈ R

〈
X
〉
,

F̃ (a) > 0⇔ F̃ (e(a)) > 0.

Lemma 3.6. Any partial Tan-µ-embedding e : 〈Kb〉 ∩ µ(M1)→ µ(M2) extends
to an LDan-embedding e′ : 〈Kb〉 ↪−→M2.

Proof.

e′(α) :=

{
st(α) + e(α− st(α)) if st(α) ∈ R
1/e(1/α) if st(α) =∞

Claim 3.7. e′ is an ordered field embedding.

Proof: First we show that e′ is order-preserving. STS e is order-preserving.
Consider F := X − Y ∈ R{X,Y }1.

Tan � ∀x, y. (|x| < 1 ∧ |y| < 1→ F̃ �1 (x, y) = x− y),

so for η, η′ ∈ 〈Kb〉 ∩ µ,

η > η′

⇔ F̃ (η, η′) > 0

⇔ F̃ (e(η), e(η′)) > 0

⇔ e(η) > e(η′).

Now if f(X,Y ), g(X,Y ) ∈ R[X,Y ] and η, η′, η′′ ∈ 〈Kb〉 ∩ µ and g(η, η′) 6=
0 and η′′ = f(η, η′)/g(η, η′), then by considering F := Zg(X,Y ) − f(X,Y ),
e(η′′) = f(e(η), e(η′))/g(e(η), e(η′)).

Preservation by e′ of +, ∗ follows.
For example, suppose η, η′ ∈ 〈Kb〉 ∩ µ, we claim e′(1/η + 1/η′) = e′(1/η) +

e′(1/η′). Let s := st((1/η + 1/η′)) ∈ R ∪∞.
If s =∞, then

η′′ := 1/(1/η + 1/η′) ∈ 〈Kb〉 ∩ µ.

Then by the above applied to the rational function 1/(1/X + 1/Y ),

e(η′′) = 1/(1/e(η) + 1/e(η′)).

So

e′(1/η + 1/η′) = 1/e(η′′)

= 1/(1/(1/e(η) + 1/e(η′)))

= e′(1/η) + e′(1/η′).

If s ∈ R, then
η′′′ := (1/η + 1/η′)− s ∈ 〈Kb〉 ∩ µ.
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Then

e′(1/η + 1/η′) = s+ e(η′′′)

= s+ ((1/e(η) + 1/e(η′))− s)
= e′(1/η) + e′(1/η′).

The other cases (e.g. e′((s+ η)(1/η′))) can be handled similarly.

It remains to see that for acceptable (r, F ), and α ∈ 〈Kb〉n, e′(F̃ �r (α)) =

F̃ �r (e′(α)).
If ‖α‖ ≥ r then also ‖e′(α)‖ ≥ r, so the equality is clear. Else, s := st(α) ∈

dom(F ), so F̃ is analytic at s. Let s′ := F̃ (s), and say (ε,G) is acceptable s.t.

F̃ ∈ R{X}r+ε and G̃(x) = F̃ (s+ x)− s′ for x ∈ Rn, ‖x‖ < ε. Then

TDan � ∀x. (‖x‖ < ε→ G̃�ε (x) = F̃ �r+ε (s+ x)− s′).

So

F̃ �r (e′(α)) = s′ + F̃ �r+ε (s+ e(η))− s′ (where η := α− s)

= s′ + G̃(e(η))

= s′ + e(G̃(η)) (considering Y −G(X))

= s′ + e(F̃ �r+ε (s+ η)− s′)

= e′(F̃ �r+ε (α))

= e′(F̃ �r (α)) (since ‖α‖ < r)

as required.

3.3 II: finding a Tan-µ-embedding

It remains to show that such an e exists.
Since we may replace M2 by an elementary extension, it suffices to show

that the corresponding (long) type over K ∩ µ is consistent, as follows:

Lemma 3.8. Let m,n ∈ N, X = (X1, . . . , Xm), Y = (Y1, . . . , Yn), and S ⊆
R
〈
X,Y

〉
finite, and c ∈ (K ∩ µ)m, and b ∈ µ(M1)n.

Then exists b
′ ∈ µ(M2)n s.t. for F ∈ S,

M1 � F̃ (c, b) > 0⇔M2 � F̃ (c, b
′
) > 0.

Proof. By induction on n, the n = 0 case being trivial.
First we show how to handle a single F . So suppose S = {F}. WMA F 6= 0.
By Denef - van den Dries Preparation,

F (X,Y ) =
∑
|ν|<d

aν(X)Y
ν
uν(X,Y )

for some d ∈ N, aν ∈ R
〈
X
〉
, uν ∈ R

〈
X,Y

〉∗
.
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Let ν0 s.t. M := |aν0(c)| ≥ |aν(c)|∀ν. Define

sν := st(aν(c)/M) ∈ R

kν := aν(c)/M − sν ∈ K

(Remark: here it is crucial thatK is a LDan-substructure, and hence a subfield,
rather than merely a Lan-substructure.)

Let Z = (Zν)|ν|<d, and define

G(X,Z, Y ) :=
∑
|ν|<d

(Zν + sν)Y
ν
uν(X,Y ).

Then G ∈ R
〈
X,Z, Y

〉
, and F̃ (c, y) = MG̃(c, k, y) for y ∈ µn.

Define Λ : µn → µn;

y 7→ (y1 + yd
n−1

n , y2 + yd
n−2

n , . . . , yn−1 + ydn, yn).

Let H(X,Z, Y ) := G(X,Z,Λ(Y )) ∈ R
〈
X,Z, Y

〉
(considering Λ as a tuple

of (polynomial) formal power series).

Claim 3.9. H is regular in Yn.

Proof.

H(0, 0, 0, Yn) =
∑
|ν|<d

sνΛ(0, Yn)νuν(0,Λ(0, Yn))

=
∑
|ν|<d

sνY
∑
νid

n−i

n uν(0,Λ(0, Yn))

Now for ν with |ν| < d, the exponents
∑
νid

n−i are distinct for distinct ν,
and are ordered according to the lexicographic order on the ν. So taking ν
lexicographically minimal s.t. sν 6= 0, which exists since sν0 = 1, witnesses
regularity of H.

So by Weierstrass preparation,

F̃ (c,Λ(y)) = MG̃(c, k, y) = MQ̃(c, k, y)L̃(c, k, y)

whereQ ∈ R
〈
X,Z, Y

〉∗
and L ∈ R

〈
X,Z, Y <n

〉
[Yn], where Y <n := (Y1, . . . , Yn−1).

WLOG Q(0) > 0.
Say L(X,Z, Y ) =

∑p
i=0 Li(X,Z, Y <n)Y in with Li ∈ R

〈
X,Z, Y <n

〉
.

By QE for RCF, for ε ∈ R>0,

∃yn ∈ (−ε, ε).
p∑
i=0

wiy
i
n > 0

is equivalent modulo RCF to a qf ordered ring formula ψε(w), which is a boolean
combination of atomic formulae f(w) > 0 where f is a polynomial over Z. So

by the inductive hypothesis, and since R
〈
X,Z, Y <n

〉
is a ring, there exists b

′′
ε

in µ(M2)n−1 s.t.

� ψε(L̃i(c, k, b
′′
ε ))
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So by ω-saturation, exists b
′′

in µ(M2)n s.t. L̃(c, k, b
′′
) > 0. Hence F̃ (c,Λ(b

′′
)) >

0, so b
′

:= Λ(b
′′
) is as required.

For general finite S, we may take a d common to all F ∈ S, proceed as
above (so using the same Λ for all F ), and apply RCF QE to the corresponding
conjunction of inequalities.


