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1 Torsion

Definition 1. Let A be a commutative algebraic group.

o A[n] :={z: nx =0} < A, the n-torsion subgroup
o Alo] :=J

nen Aln], the torsion subgroup.

e For p prime,

the prime-to-p-torsion subgroup.
e Also A[p™]:=U, 4}.

Fact 1. If A is an abelian variety and n is prime to the characteristic,
Aln]) = (Z/nz)?dm A,

2 Manin-Mumford

Theorem (“Manin-Mumford Conjecture”; Raynaud 1983 (A abelian), Hindry 1987).

Let A be a commutative algebraic group over a number field K.
Let T' := Aloo] be the torsion subgroup.

Let X C A be a subvariety.

Then X NT is a finite union of cosets of subgroups of A.

Hrushovski gave (1996) a new proof of this theorem.
Very briefly, the proof proceeds as follows:

e Consider A as a definable group in a model of ACFA,.

e Let p be a suitable prime (almost all primes will be suitable).

e We find a finite rank definable subgroup B < A containing A[p]’.

e Using the trichotomy for ACFAq, we show that B is a 1-based group.
e Then X N B is a boolean combination of cosets.

e Hence X N Afp|’ is a finite union of cosets.

e Counsidering two different primes, conclude the same for X N A[oo].

Here, we sketch the broad outlines of the proof of this latter result,
with a number of drastic simplifying assumptions.

Definition 2. Let A be an abelian variety.

e Ais simple if it has no infinite proper algebraic (i.e. Zariski closed, equiv. ACF-definable)
subgroup.

e End(A) is the ring of algebraic endomorphisms (equiv. ACF-definable endomorphisms).
For n € Z, the multiplication-by-n map [n] : * — nz is an endomorphism,
so we consider Z < End(A) embedded this way.
So End(A) = Z means there are no other algebraic endomorphisms.

We sketch Hrushovski’s strategy in the following special case:

Theorem 3. Let A be a simple abelian variety over Q with End(A) = Z.
Then for any proper subvariety X C A,
X N Afoo] is finite.

3 Definable endomorphisms and subgroups

Let (L,o0) F ACFAq be a monster model. Identify A with A(L).

Fact 2. Let G be an algebraic group over L.
Any definable subgroup H < G is of finite index in a subgroup of the form

{z:(2z,0m,...,0" 'x) € S}

for some algebraic subgroup
1

S<GxG7x..xG° .

Using this and the structure of algebraic subgroups of abelian varieties,

we can understand definable subgroups of A as follows.

Aisover Q, so A = A,

and o induces a group automorphism of A.

Hence any Laurent polynomial f(o) € Z[o, 0] induces a group endomorphism of A;
e.g. (07 +3+202)(z) = o~ 4(x) + 3z + 202 ().

Definition.

e Let End*(A) be the ring of definable group endomorphisms of A.
e Let E*(A) := Q® End"(4).

Fact 3.
(I) E*(A) is the Laurent polynomial ring Q[o, o]

(II) Any definable subgroup H < A is a finite index subgroup of the kernel of a definable
endomorphism,
i.e. H <ker(f) and [ker(f): H] < oo for some f € End*(A4).

(ITI) Any proper definable subgroup H < A has finite rank.

(IV) Let f,g € End*(A).
Then ker(f) Nker(g) has finite index in ker(f) iff flg in E*(A)
(and ker(f) < ker(g) iff flg in End*(A)).

4 Good reduction

Definition. f(T') € Z[T] has no cyclotomic factors if no cyclotomic polynomial divides f;
equivalently, no root of unity ¢ € C satisfies f({) = 0.

Proposition 1. For all but finitely many primes p, B
there is f(T) € Z[T| with no cyclotomic factors and o € Aut(Q)
such that A[p]" < ker(f(0)).

Proof. Let p € N be prime, let ¢ : Z — F,, be the reduction map.
Reducing the coefficients of the defining polynomials over Z,

we obtain a reduced variety A, over Iy,

and a reduced “addition” +, : (A,)? — A, (possibly ill-defined).

Say p is of good reduction for A if (A,,+,) is an abelian variety of the same dimension as A.

Fact. All but finitely many p are of good reduction.

Proof. Write above conditions as an L,ing-sentence which holds in ACFy,
and hence by compactness in ACF,, for all large enough p. O

Fact (Weil). Let p be of good reduction.
Let ¢, € Aut(Fa'8) be Frobenius x — a?.
Then there is f(T) € Z[T] with no cyclotomic factors such that f(¢,) vanishes on Ap.

Sketch proof. Let | # p be prime.
Let 7y :=lim A, [I"] as a Z;-module (the l-adic Tate module).
Let V; := Q; ®z, 11, a finite-dimensional Q;-vector space.

Then ¢, acts on T and hence on V; as a linear endomorphism.

Let f(T) := det(TI — ¢,|v;) be the characteristic polynomial of this action.
A priori f(T) € Q;[T], but it turns out that f(T) € Z[T].

Now if ¢ is an nth root of unity and f({) =0,

then ( is an eigenvalue of ¢p|y;,

and hence 1 is an eigenvalue of ¢Z|Vl.

Then ¢} has infinitely many fixed points in A, [oc],

contradicting the fact that the fixed field of ¢ is the finite field Fpn.

Finally, f(¢p|v,) = 0 (Cayley-Hamilton),
so f(¢p) is zero on A,[1>°],
and hence on A,, since (Fact) Ap[I°°] is Zariski dense in A,.

Now by some valuation theory we’ll omit:
o ¢, lifts to an automorphism o of Q.
e If m is coprime to p, any m-torsion point of A, lifts to an m-torsion point of A.

Now .
|Alm]| = m* ™4 = | A, [m]|

for m coprime to p,
so the homomorphism

b Alpl" — Aplp]’
is an isomorphism.

Claim 1. A[p]’ < ker(f(0)).

Proof. Let £ € Alp]’. Then
S0

O

DP'roposition

Now embed (Q, s) into a monster model (L, o) F ACFA.
From now on, we work in (L, ), and identify A with A(L).

Let B :=ker(f(0)) < A, a definable subgroup of A.
We have
Alp]' < B < A.

5 Modularity

Proposition 2. B < A(L) is modular:
if a,b € B<¥ are tuples, then Cb(a/b) C acl(a).

Proof. Assume for now that f is irreducible in E*(A).

B is infinite since A[p]’ is,

so there exists an SU-rank 1 type p(x) containing = € B.
Suppose p is not modular.

By trichotomy, for some C,

replacing p with a non-forking extension to C,
p(L) C acl(C, k) where k = Fix(o).

Fact (Zilber indecomposability theorem). For some n, B’ := (p(L)p(L)~")" is a subgroup.
Hence B’ C acl(C, k).
Fact. B’ is the intersection of a countable chain of definable subgroups of B.

Lemma. Any definable infinite subgroup H of B has finite index in B.

Proof. By Fact II,IV):

H has finite index in ker(g) say,

and so ker(g) Nker(f) has finite index in ker(g),

so g|f in E*(A), so by irreducibility of f also f|g,

so ker(g) Nker(f) has finite index in ker(f) = B,

hence so does H. O

So B/B’ is profinite, of cardinality < 2%o.
Hence, enlarging C' by representatives of the cosets of B’, we have B C acl(C, k).

Fact. It follows that for some finite normal K < B,

B/K C dcl(C, k).

So, since k eliminate imaginaries and is stably embedded,
B/K is definably isomorphic over C to a definable group in the pseudofinite field k.

A virtual isogeny between groups G and H is a homomorphism h : G’ — H’ where

e (G’ is a finite index subgroup of G,
e H’ is a finite index subgroup of H,
e ker(h) is finite.

Fact (Hrushovski-Pillay). Any definable group in k is definably virtually isogenous with a group
H(k) where H is an algebraic group over k.

Let H (k1) be minimal such that:

e ki >k is a finite extension of k,

e H is an algebraic group over kq, and

o there is a definable virtual isogeny h of B with a subgroup of H (k).
Fact. H is an abelian variety.

Now the graph of A is a definable subgroup of A x H.

Lemma. An abelian variety over L has only countably many definable subgroups.

Proof. An abelian variety has only countably many algebraic subgroups.

So by Fact [2, every definable subgroup has finite index in one of countably many definable
subgroups.

So STS: a definable subgroup H has only finitely many subgroups H’ of index n.

But indeed, [n] : H — H has finite kernel, so SU(nH) = SU(H),

so [H : nH] < 0.

But nH < H' since n(H/H') =0,

so H' is a union of cosets of nH. O

Hence h has only finitely many conjugates over k.
So say 7 := o' is a power of ¢ such that h” = h and k; C Fix(7).
Then for x € B,

SO

Now ker h is finite and preserved by T,
so say N is such that TN\kcrh = id,
and say M ker h = 0.

Then for « € dom(h),

"M (p) —x = Z 7 2) — 7(z) = Z T(C) =M Z 7(¢) = 0.
i<NM i<NM i<N
Let n:=tNM.
Then dom(h) < ker(f(o)) Nker(c™ — 1),
so ker(f (o)) Nker(c™ — 1) has finite index in ker(f (o)) = B,
so by Fact B(IV), f(o)|(c™ — 1) in E*(A),
contradicting f having no cyclotomic factors.
So X is modular.
Hence B’ = (XX )" is modular.
Hence also B is modular.
Indeed: let C' be representatives of the cosets of B’ in B;
adding parameters for C, any a € B"™ is interalgebraic with some a+c € (B’)™, so B is modular,
hence B is modular also without C,
since (as in Addick’s talk) modularity is preserved by “deleting parameters”.
This concludes the case that f is irreducible.
The general case proceeds roughly as follows:
If f = gh, then h(c) induces a short exact sequence

0 — ker(h(o)) — ker(f(o)) — ker(g(o)) — 0.

Now the CBP can be read as saying:

a finite-rank set B is modular iff it is orthogonal to k,

ie. b \LEC for any b € B, ¢ € k, and small E.

So if ker(f (o)) is non-modular,

then ker(f (o)) is non-orthogonal to k,

hence either ker(h(o)) or ker(g(c)) is non-orthogonal to k& and hence non-modular.
So we conclude inductively from the irreducible case.

DProposition @

6 VAl

By an argument analagous to the case of stable 1-based groups [Cha00, Proposition 4.7],
gf-definable subsets of B are boolean combinations of cosets of definable subgroups.

(In fact, by the trichotomy result of Chatzidakis-Hrushovski, B is stable stably embedded,
so any definable subset is a boolean combination of cosets of acl®!())-definable subgroups.
But I don’t know how to obtain this from the jet spaces approach.)

Now let V' C A be a proper subvariety.

We want to show that V' N Afp]’ is finite.

Fact. The Zariski closure of a boolean combination of cosets of subgroups of A is a finite union
of cosets.

————Zar

Let V' :=V N Ap)
Then V' =V'nN B is, by the above, a finite union of cosets of algebraic subgroups.

Since A is simple, those algebraic subgroups are finite,
so V' and hence V N A[p/] is finite.

7 VN Ao

Finally, we sketch how to deduce that V N A[oo] is finite,
following an approach of Pillay.

e We may assume that V N A[oo] is dense in V,
hence V is over a number field K.

e Now Afoc] = Alp] + A[p™>].
o Let D:={(V —¢t)NA[p] :t € A[p>]}.

e Then D is finite:
By compactness we obtain a uniform in = bound on |(V —z) N BY,
hence on |(V —t) N Alp]'],
hence on the degree over K(A[p>]) of elements of D,
hence (Fact) on the order of elements of D,
hence on |D].

e By considering another prime p’ # p of good reduction,
(V—2)nA[p>] C(V —z)n A]p']’ is finite for any = € A.

o Ift+¢ €V N Afoo] where t € A[p™] and t' € Ap]’,
then ¢’ € D,
and sot € B :=J,cp(V —s) N A[p™],
which is finite.

e So VN A[co] C D+ E is finite.
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