A drastically oversimplified partial account of Hrushovski's approach to Manin-Mumford

Martin Bays

2023-05-17

Blockseminar "Model Theory meets Algebraic Geometry" Landhaus Rothenberge, Universität Münster

Contents

1	Torsion	1
2	Manin-Mumford	1
3	Definable endomorphisms and subgroups	1
4	Good reduction	1
5	Modularity	1
6	$V\cap A[p]'$	1
7	$V\cap A[\infty]$	1

Torsion 1

Definition 1. Let A be a commutative algebraic group.

- $A[n] := \{x : nx = 0\} \le A$, the *n*-torsion subgroup
- $A[\infty] := \bigcup_{n \in \mathbb{N}} A[n]$, the torsion subgroup.
- For p prime,

$$A[p]' := \bigcup_{\{n:(n,p)=1\}} A[n],$$

the prime-to-*p*-torsion subgroup.

• Also $A[p^{\infty}] := \bigcup_n A_p^n$.

Fact 1. If A is an abelian variety and n is prime to the characteristic, $A[n] \cong (\mathbb{Z}/n\mathbb{Z})^{2\dim A}.$

$\mathbf{2}$ Manin-Mumford

Theorem ("Manin-Mumford Conjecture"; Raynaud 1983 (A abelian), Hindry 1987). Let A be a commutative algebraic group over a number field K. Let $\Gamma := A[\infty]$ be the torsion subgroup.

Let $X \subseteq A$ be a subvariety. Then $X \cap \Gamma$ is a finite union of cosets of subgroups of A.

Hrushovski gave (1996) a new proof of this theorem. Very briefly, the proof proceeds as follows:

- Consider A as a definable group in a model of ACFA₀.
- Let p be a suitable prime (almost all primes will be suitable).
- We find a finite rank definable subgroup $B \leq A$ containing A[p]'.
- Using the trichotomy for $ACFA_0$, we show that B is a 1-based group.
- Then $X \cap B$ is a boolean combination of cosets.
- Hence $X \cap A[p]'$ is a finite union of cosets.
- Considering two different primes, conclude the same for $X \cap A[\infty]$.

Here, we sketch the broad outlines of the proof of this latter result, with a number of drastic simplifying assumptions

Definition 2. Let *A* be an abelian variety.

- A is simple if it has no infinite proper algebraic (i.e. Zariski closed, equiv. ACF-definable) subgroup.
- End(A) is the ring of algebraic endomorphisms (equiv. ACF-definable endomorphisms). For $n \in \mathbb{Z}$, the multiplication-by-*n* map $[n]: x \to nx$ is an endomorphism, so we consider $\mathbb{Z} \leq \operatorname{End}(A)$ embedded this way. So $\operatorname{End}(A) = \mathbb{Z}$ means there are no other algebraic endomorphisms.

We sketch Hrushovski's strategy in the following special case:

Theorem 3. Let A be a simple abelian variety over \mathbb{Q} with $\operatorname{End}(A) = \mathbb{Z}$. Then for any proper subvariety $X \subsetneq A$, $X \cap A[\infty]$ is finite.

3 Definable endomorphisms and subgroups

Let $(L, \sigma) \models ACFA_0$ be a monster model. Identify A with A(L).

Fact 2. Let G be an algebraic group over L. Any definable subgroup $H \leq G$ is of finite index in a subgroup of the form

 $\{x: (x, \sigma x, \dots, \sigma^{n-1}x) \in S\}$

for some algebraic subgroup

$$S < G \times G^{\sigma} \times \ldots \times G^{\sigma^{n-1}}$$

Using this and the structure of algebraic subgroups of abelian varieties, we can understand definable subgroups of A as follows.

A is over \mathbb{Q} , so $A^{\sigma} = A$,

and σ induces a group automorphism of A.

Hence any Laurent polynomial $f(\sigma) \in \mathbb{Z}[\sigma, \sigma^{-1}]$ induces a group endomorphism of A; e.g. $(\sigma^{-4} + 3 + 2\sigma^2)(x) = \sigma^{-4}(x) + 3x + 2\sigma^2(x)$.

Definition.

- Let $\operatorname{End}^*(A)$ be the ring of definable group endomorphisms of A.
- Let $E^*(A) := \mathbb{Q} \otimes \operatorname{End}^*(A)$.

Fact 3.

- (I) $E^*(A)$ is the Laurent polynomial ring $\mathbb{Q}[\sigma, \sigma^{-1}]$.
- (II) Any definable subgroup $H \leq A$ is a finite index subgroup of the kernel of a definable endomorphism, *i.e.* $H \leq \ker(f)$ and $[\ker(f) : H] < \infty$ for some $f \in \operatorname{End}^*(A)$.
- (III) Any proper definable subgroup H < A has finite rank.
- (IV) Let $f, g \in \text{End}^*(A)$. Then $\ker(f) \cap \ker(g)$ has finite index in $\ker(f)$ iff f|g in $E^*(A)$ $(and \ker(f) \le \ker(g) \text{ iff } f|g \text{ in } \operatorname{End}^*(A)).$

Good reduction $\mathbf{4}$

Definition. $f(T) \in \mathbb{Z}[T]$ has no cyclotomic factors if no cyclotomic polynomial divides f; equivalently, no root of unity $\zeta \in \mathbb{C}$ satisfies $f(\zeta) = 0$.

Proposition 1. For all but finitely many primes p, there is $f(T) \in \mathbb{Z}[T]$ with no cyclotomic factors and $\sigma \in \operatorname{Aut}(\mathbb{Q})$ such that $A[p]' \leq \ker(f(\sigma))$.

Proof. Let $p \in \mathbb{N}$ be prime, let $\psi : \mathbb{Z} \to \mathbb{F}_p$ be the reduction map. Reducing the coefficients of the defining polynomials over \mathbb{Z} , we obtain a reduced variety A_p over \mathbb{F}_p , and a reduced "addition" $+_p : (A_p)^2 \to A_p$ (possibly ill-defined). Say p is of good reduction for A if $(A_p, +_p)$ is an abelian variety of the same dimension as A. Fact. All but finitely many p are of good reduction.

Proof. Write above conditions as an \mathcal{L}_{ring} -sentence which holds in ACF₀,

and hence by compactness in ACF_p for all large enough p.

Fact (Weil). Let p be of good reduction. Let $\phi_p \in \operatorname{Aut}(\mathbb{F}_p^{\operatorname{alg}})$ be Frobenius $x \mapsto x^p$. Then there is $f(T) \in \mathbb{Z}[T]$ with no cyclotomic factors such that $f(\phi_p)$ vanishes on A_p . Sketch proof. Let $l \neq p$ be prime.

Let $T_l := \lim_{n \to \infty} A_p[l^n]$ as a \mathbb{Z}_l -module (the *l*-adic Tate module). Let $V_l := \mathbb{Q}_l \otimes_{\mathbb{Z}_l} T_l$, a finite-dimensional \mathbb{Q}_l -vector space. Then ϕ_p acts on T_l and hence on V_l as a linear endomorphism. Let $f(T) := \det(TI - \phi_p|_{V_l})$ be the characteristic polynomial of this action. A priori $f(T) \in \mathbb{Q}_l[T]$, but it turns out that $f(T) \in \mathbb{Z}[T]$. Now if ζ is an *n*th root of unity and $f(\zeta) = 0$, then ζ is an eigenvalue of $\phi_p|_{V_l}$, and hence 1 is an eigenvalue of $\phi_p^n|_{V_l}$. Then ϕ_p^n has infinitely many fixed points in $A_p[\infty]$, contradicting the fact that the fixed field of ϕ_p^n is the finite field \mathbb{F}_{p^n} . Finally, $f(\phi_p|_{V_l}) = 0$ (Cayley-Hamilton), so $f(\phi_p)$ is zero on $A_p[l^{\infty}]$, and hence on A_p , since (Fact) $A_p[l^{\infty}]$ is Zariski dense in A_p .

Now by some valuation theory we'll omit:

- ϕ_p lifts to an automorphism σ of \mathbb{Q} .
- If m is coprime to p, any m-torsion point of A_p lifts to an m-torsion point of A.

Now

$$A[m]| = m^{2\dim A} = |A_p[m]|$$

for m coprime to p, so the homomorphism

 $\psi: A[p]' \to A_p[p]'$

$$\varphi: A[p] \to A_p[p]$$

Claim 1. $A[p]' \leq \ker(f(\sigma))$.

Proof. Let $\xi \in A[p]'$. Then

 \mathbf{SO}

$$\psi(f(\sigma)(\xi)) = f(\phi_p)(\psi(\xi)) = 0$$

$$f(\sigma)(\xi) = 0$$

 $\square_{Proposition 1}$

Now embed $(\overline{\mathbb{Q}}, \sigma)$ into a monster model $(L, \sigma) \vDash ACFA$. From now on, we work in (L, σ) , and identify A with A(L). Let $B := \ker(f(\sigma)) \leq A$, a definable subgroup of A. We have

$$A[p]' \le B \le A.$$

$\mathbf{5}$ Modularity

Proposition 2. $B \leq A(L)$ is modular: if $a, b \in B^{<\omega}$ are tuples, then $Cb(a/b) \subseteq acl(a)$.

Proof. Assume for now that f is irreducible in $E^*(A)$. B is infinite since A[p]' is, so there exists an SU-rank 1 type p(x) containing $x \in B$. Suppose p is not modular. By trichotomy, for some C, replacing p with a non-forking extension to C, $p(L) \subseteq \operatorname{acl}(C, k)$ where $k = \operatorname{Fix}(\sigma)$.

Fact (Zilber indecomposability theorem). For some $n, B' := (p(L)p(L)^{-1})^n$ is a subgroup.

Hence $B' \subseteq \operatorname{acl}(C, k)$.

Fact. B' is the intersection of a countable chain of definable subgroups of B.

Lemma. Any definable infinite subgroup H of B has finite index in B.

Proof. By Fact 3(II,IV): H has finite index in ker(g) say, and so $\ker(g) \cap \ker(f)$ has finite index in $\ker(g)$, so g|f in $E^*(A)$, so by irreducibility of f also f|g, so $\ker(g) \cap \ker(f)$ has finite index in $\ker(f) = B$, hence so does H.

So B/B' is profinite, of cardinality $\leq 2^{\aleph_0}$. Hence, enlarging C by representatives of the cosets of B', we have $B \subseteq \operatorname{acl}(C, k)$.

Fact. It follows that for some finite normal $K \leq B$,

$$B/K \subseteq \operatorname{dcl}(C,k).$$

So, since k eliminate imaginaries and is stably embedded, B/K is definably isomorphic over C to a definable group in the pseudofinite field k. A virtual isogeny between groups G and H is a homomorphism $h: G' \to H'$ where

- G' is a finite index subgroup of G,
- H' is a finite index subgroup of H,
- $\ker(h)$ is finite.

Fact (Hrushovski-Pillay). Any definable group in k is definably virtually isogenous with a group H(k) where H is an algebraic group over k.

Let $H(k_1)$ be minimal such that:

- $k_1 \ge k$ is a finite extension of k,
- H is an algebraic group over k_1 , and
- there is a definable virtual isogeny h of B with a subgroup of $H(k_1)$.

Fact. H is an abelian variety.

Now the graph of h is a definable subgroup of $A \times H$.

Lemma. An abelian variety over L has only countably many definable subgroups.

Proof. An abelian variety has only countably many algebraic subgroups.

So by Fact 2, every definable subgroup has finite index in one of countably many definable subgroups.

So STS: a definable subgroup H has only finitely many subgroups H' of index n. But indeed, $[n]: H \to H$ has finite kernel, so SU(nH) = SU(H), so $[H:nH] < \infty$. But $nH \leq H'$ since n(H/H') = 0, so H' is a union of cosets of nH.

Hence h has only finitely many conjugates over k_1 . So say $\tau := \sigma^t$ is a power of σ such that $h^{\tau} = h$ and $k_1 \subseteq \operatorname{Fix}(\tau)$. Then for $x \in B$,

Now ker h is finite and preserved by τ , so say N is such that $\tau^N|_{\ker h} = id$, and say $M \ker h = 0$. Then for $x \in \text{dom}(h)$,

$$\tau^{NM}(x) - x = \sum_{i < NM} \tau^{i+1}(x) - \tau(x) = \sum_{i < NM} \tau^{i}(\zeta_x) = M \sum_{i < N} \tau^{i}(\zeta_x) = 0.$$

Let n := tNM.

Then dom $(h) \leq \ker(f(\sigma)) \cap \ker(\sigma^n - 1),$ so $\ker(f(\sigma)) \cap \ker(\sigma^n - 1)$ has finite index in $\ker(f(\sigma)) = B$, so by Fact 3(IV), $f(\sigma)|(\sigma^n - 1)$ in $E^*(A)$, contradicting f having no cyclotomic factors. So X is modular. Hence $B' = (XX^{-1})^n$ is modular. Hence also B is modular. Indeed: let C be representatives of the cosets of B' in B; adding parameters for C, any $a \in B^n$ is interalgebraic with some $a + c \in (B')^n$, so B is modular, hence B is modular also without C, since (as in Addick's talk) modularity is preserved by "deleting parameters". This concludes the case that f is irreducible. The general case proceeds roughly as follows: If f = gh, then $h(\sigma)$ induces a short exact sequence

$$0 \to \ker(h(\sigma)) \to \ker(f(\sigma)) \to \ker(g(\sigma)) \to 0.$$

Now the CBP can be read as saying:

a finite-rank set B is modular iff it is orthogonal to k,

i.e. $b
int_E c$ for any $b \in B$, $c \in k$, and small E.

So if $\ker(f(\sigma))$ is non-modular,

then $\ker(f(\sigma))$ is non-orthogonal to k,

hence either ker $(h(\sigma))$ or ker $(g(\sigma))$ is non-orthogonal to k and hence non-modular. So we conclude inductively from the irreducible case.

 $\Box_{Proposition 2}$

$V \cap A[p]'$ 6

By an argument analogous to the case of stable 1-based groups [Cha00, Proposition 4.7], qf-definable subsets of B are boolean combinations of cosets of definable subgroups. (In fact, by the trichotomy result of Chatzidakis-Hrushovski, B is stable stably embedded, so any definable subset is a boolean combination of cosets of $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$ -definable subgroups. But I don't know how to obtain this from the jet spaces approach.) Now let $V \subseteq A$ be a proper subvariety.

We want to show that $V \cap A[p]'$ is finite.

Fact. The Zariski closure of a boolean combination of cosets of subgroups of A is a finite union of cosets.

Let $V' := \overline{V \cap A[p]'}^{\text{Zar}}$. Then $V' = \overline{V' \cap B}^{\text{Zar}}$ is, by the above, a finite union of cosets of algebraic subgroups. Since A is simple, those algebraic subgroups are finite, so V' and hence $V \cap A[p']$ is finite.

$V \cap A[\infty]$ $\mathbf{7}$

Finally, we sketch how to deduce that $V \cap A[\infty]$ is finite, following an approach of Pillay.

- We may assume that $V \cap A[\infty]$ is dense in V, hence V is over a number field K.
- Now $A[\infty] = A[p]' + A[p^{\infty}].$
- Let $D := \bigcup \{ (V-t) \cap A[p]' : t \in A[p^{\infty}] \}.$
- Then *D* is finite: By compactness we obtain a uniform in x bound on $|(V - x) \cap B|$, hence on $|(V-t) \cap A[p]'|$, hence on the degree over $K(A[p^{\infty}])$ of elements of D, hence (Fact) on the order of elements of D, hence on |D|.
- By considering another prime $p' \neq p$ of good reduction, $(V-x) \cap A[p^{\infty}] \subseteq (V-x) \cap A[p']'$ is finite for any $x \in A$.
- If $t + t' \in V \cap A[\infty]$ where $t \in A[p^{\infty}]$ and $t' \in A[p]'$, then $t' \in D$, and so $t \in E := \bigcup_{s \in D} (V - s) \cap A[p^{\infty}],$ which is finite.
- So $V \cap A[\infty] \subset D + E$ is finite.

References

[Cha00] Zoe Chatzidakis. A survey on the model theory of difference fields. MSRI Publications, 2000.