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1 Torsion

Definition 1. Let A be a commutative algebraic group.

• A[n] := {x : nx = 0} ≤ A, the n-torsion subgroup

• A[∞] :=
⋃
n∈NA[n], the torsion subgroup.

• For p prime,

A[p]′ :=
⋃

{n:(n,p)=1}

A[n],

the prime-to-p-torsion subgroup.

• Also A[p∞] :=
⋃
nA

n
p .

Fact 1. If A is an abelian variety and n is prime to the characteristic,
A[n] ∼= (Z/nZ)2 dimA.

2 Manin-Mumford

Theorem (“Manin-Mumford Conjecture”; Raynaud 1983 (A abelian), Hindry 1987).

Let A be a commutative algebraic group over a number field K.
Let Γ := A[∞] be the torsion subgroup.
Let X ⊆ A be a subvariety.
Then X ∩ Γ is a finite union of cosets of subgroups of A.

Hrushovski gave (1996) a new proof of this theorem.

Very briefly, the proof proceeds as follows:

• Consider A as a definable group in a model of ACFA0.

• Let p be a suitable prime (almost all primes will be suitable).

• We find a finite rank definable subgroup B ≤ A containing A[p]′.

• Using the trichotomy for ACFA0, we show that B is a 1-based group.

• Then X ∩B is a boolean combination of cosets.

• Hence X ∩A[p]′ is a finite union of cosets.

• Considering two different primes, conclude the same for X ∩A[∞].

Here, we sketch the broad outlines of the proof of this latter result,
with a number of drastic simplifying assumptions.

Definition 2. Let A be an abelian variety.

• A is simple if it has no infinite proper algebraic (i.e. Zariski closed, equiv. ACF-definable)
subgroup.

• End(A) is the ring of algebraic endomorphisms (equiv. ACF-definable endomorphisms).
For n ∈ Z, the multiplication-by-n map [n] : x→ nx is an endomorphism,
so we consider Z ≤ End(A) embedded this way.
So End(A) = Z means there are no other algebraic endomorphisms.

We sketch Hrushovski’s strategy in the following special case:

Theorem 3. Let A be a simple abelian variety over Q with End(A) = Z.
Then for any proper subvariety X ( A,
X ∩A[∞] is finite.

3 Definable endomorphisms and subgroups

Let (L, σ) � ACFA0 be a monster model. Identify A with A(L).

Fact 2. Let G be an algebraic group over L.
Any definable subgroup H ≤ G is of finite index in a subgroup of the form

{x : (x, σx, . . . , σn−1x) ∈ S}

for some algebraic subgroup

S ≤ G×Gσ × . . .×Gσ
n−1

.

Using this and the structure of algebraic subgroups of abelian varieties,
we can understand definable subgroups of A as follows.

A is over Q, so Aσ = A,
and σ induces a group automorphism of A.
Hence any Laurent polynomial f(σ) ∈ Z[σ, σ−1] induces a group endomorphism of A;
e.g. (σ−4 + 3 + 2σ2)(x) = σ−4(x) + 3x+ 2σ2(x).

Definition.

• Let End∗(A) be the ring of definable group endomorphisms of A.

• Let E∗(A) := Q⊗ End∗(A).

Fact 3.

(I) E∗(A) is the Laurent polynomial ring Q[σ, σ−1].

(II) Any definable subgroup H ≤ A is a finite index subgroup of the kernel of a definable
endomorphism,
i.e. H ≤ ker(f) and [ker(f) : H] <∞ for some f ∈ End∗(A).

(III) Any proper definable subgroup H < A has finite rank.

(IV) Let f, g ∈ End∗(A).
Then ker(f) ∩ ker(g) has finite index in ker(f) iff f |g in E∗(A)
(and ker(f) ≤ ker(g) iff f |g in End∗(A)).

4 Good reduction

Definition. f(T ) ∈ Z[T ] has no cyclotomic factors if no cyclotomic polynomial divides f ;
equivalently, no root of unity ζ ∈ C satisfies f(ζ) = 0.

Proposition 1. For all but finitely many primes p,
there is f(T ) ∈ Z[T ] with no cyclotomic factors and σ ∈ Aut(Q̄)
such that A[p]′ ≤ ker(f(σ)).

Proof. Let p ∈ N be prime, let ψ : Z→ Fp be the reduction map.
Reducing the coefficients of the defining polynomials over Z,
we obtain a reduced variety Ap over Fp,
and a reduced “addition” +p : (Ap)

2 → Ap (possibly ill-defined).

Say p is of good reduction for A if (Ap,+p) is an abelian variety of the same dimension as A.

Fact. All but finitely many p are of good reduction.

Proof. Write above conditions as an Lring-sentence which holds in ACF0,
and hence by compactness in ACFp for all large enough p.

Fact (Weil). Let p be of good reduction.
Let φp ∈ Aut(Falg

p ) be Frobenius x 7→ xp.
Then there is f(T ) ∈ Z[T ] with no cyclotomic factors such that f(φp) vanishes on Ap.

Sketch proof. Let l 6= p be prime.

Let Tl := lim←−nAp[l
n] as a Zl-module (the l-adic Tate module).

Let Vl := Ql ⊗Zl
Tl, a finite-dimensional Ql-vector space.

Then φp acts on Tl and hence on Vl as a linear endomorphism.
Let f(T ) := det(TI − φp|Vl

) be the characteristic polynomial of this action.
A priori f(T ) ∈ Ql[T ], but it turns out that f(T ) ∈ Z[T ].
Now if ζ is an nth root of unity and f(ζ) = 0,
then ζ is an eigenvalue of φp|Vl

,
and hence 1 is an eigenvalue of φnp |Vl

.
Then φnp has infinitely many fixed points in Ap[∞],
contradicting the fact that the fixed field of φnp is the finite field Fpn .

Finally, f(φp|Vl
) = 0 (Cayley-Hamilton),

so f(φp) is zero on Ap[l
∞],

and hence on Ap, since (Fact) Ap[l
∞] is Zariski dense in Ap.

Now by some valuation theory we’ll omit:

• φp lifts to an automorphism σ of Q̄.

• If m is coprime to p, any m-torsion point of Ap lifts to an m-torsion point of A.

Now
|A[m]| = m2 dimA = |Ap[m]|

for m coprime to p,
so the homomorphism

ψ : A[p]′ → Ap[p]
′

is an isomorphism.

Claim 1. A[p]′ ≤ ker(f(σ)).

Proof. Let ξ ∈ A[p]′. Then
ψ(f(σ)(ξ)) = f(φp)(ψ(ξ)) = 0,

so
f(σ)(ξ) = 0.

Proposition 1

Now embed (Q̄, σ) into a monster model (L, σ) � ACFA.
From now on, we work in (L, σ), and identify A with A(L).

Let B := ker(f(σ)) ≤ A, a definable subgroup of A.
We have

A[p]′ ≤ B ≤ A.

5 Modularity

Proposition 2. B ≤ A(L) is modular:
if a, b ∈ B<ω are tuples, then Cb(a/b) ⊆ acl(a).

Proof. Assume for now that f is irreducible in E∗(A).

B is infinite since A[p]′ is,
so there exists an SU-rank 1 type p(x) containing x ∈ B.

Suppose p is not modular.
By trichotomy, for some C,
replacing p with a non-forking extension to C,
p(L) ⊆ acl(C, k) where k = Fix(σ).

Fact (Zilber indecomposability theorem). For some n, B′ := (p(L)p(L)−1)n is a subgroup.

Hence B′ ⊆ acl(C, k).

Fact. B′ is the intersection of a countable chain of definable subgroups of B.

Lemma. Any definable infinite subgroup H of B has finite index in B.

Proof. By Fact 3(II,IV):
H has finite index in ker(g) say,
and so ker(g) ∩ ker(f) has finite index in ker(g),
so g|f in E∗(A), so by irreducibility of f also f |g,
so ker(g) ∩ ker(f) has finite index in ker(f) = B,
hence so does H.

So B/B′ is profinite, of cardinality ≤ 2ℵ0 .
Hence, enlarging C by representatives of the cosets of B′, we have B ⊆ acl(C, k).

Fact. It follows that for some finite normal K ≤ B,

B/K ⊆ dcl(C, k).

So, since k eliminate imaginaries and is stably embedded,
B/K is definably isomorphic over C to a definable group in the pseudofinite field k.

A virtual isogeny between groups G and H is a homomorphism h : G′ → H ′ where

• G′ is a finite index subgroup of G,

• H ′ is a finite index subgroup of H,

• ker(h) is finite.

Fact (Hrushovski-Pillay). Any definable group in k is definably virtually isogenous with a group
H(k) where H is an algebraic group over k.

Let H(k1) be minimal such that:

• k1 ≥ k is a finite extension of k,

• H is an algebraic group over k1, and

• there is a definable virtual isogeny h of B with a subgroup of H(k1).

Fact. H is an abelian variety.

Now the graph of h is a definable subgroup of A×H.

Lemma. An abelian variety over L has only countably many definable subgroups.

Proof. An abelian variety has only countably many algebraic subgroups.
So by Fact 2, every definable subgroup has finite index in one of countably many definable
subgroups.
So STS: a definable subgroup H has only finitely many subgroups H ′ of index n.
But indeed, [n] : H → H has finite kernel, so SU(nH) = SU(H),
so [H : nH] <∞.
But nH ≤ H ′ since n(H/H ′) = 0,
so H ′ is a union of cosets of nH.

Hence h has only finitely many conjugates over k1.
So say τ := σt is a power of σ such that hτ = h and k1 ⊆ Fix(τ).
Then for x ∈ B,

h(τ(x)) = τ(h(x)) = h(x),

so
ζx := τ(x)− x ∈ kerh.

Now kerh is finite and preserved by τ ,
so say N is such that τN |kerh = id,
and say M kerh = 0.

Then for x ∈ dom(h),

τNM (x)− x =
∑
i<NM

τ i+1(x)− τ(x) =
∑
i<NM

τ i(ζx) = M
∑
i<N

τ i(ζx) = 0.

Let n := tNM .
Then dom(h) ≤ ker(f(σ)) ∩ ker(σn − 1),
so ker(f(σ)) ∩ ker(σn − 1) has finite index in ker(f(σ)) = B,
so by Fact 3(IV), f(σ)|(σn − 1) in E∗(A),
contradicting f having no cyclotomic factors.

So X is modular.
Hence B′ = (XX−1)n is modular.

Hence also B is modular.
Indeed: let C be representatives of the cosets of B′ in B;
adding parameters for C, any a ∈ Bn is interalgebraic with some a+c ∈ (B′)n, so B is modular,
hence B is modular also without C,
since (as in Addick’s talk) modularity is preserved by “deleting parameters”.

This concludes the case that f is irreducible.
The general case proceeds roughly as follows:
If f = gh, then h(σ) induces a short exact sequence

0→ ker(h(σ))→ ker(f(σ))→ ker(g(σ))→ 0.

Now the CBP can be read as saying:
a finite-rank set B is modular iff it is orthogonal to k,
i.e. b |̂

E
c for any b ∈ B, c ∈ k, and small E.

So if ker(f(σ)) is non-modular,
then ker(f(σ)) is non-orthogonal to k,
hence either ker(h(σ)) or ker(g(σ)) is non-orthogonal to k and hence non-modular.
So we conclude inductively from the irreducible case.

Proposition 2

6 V ∩ A[p]′

By an argument analagous to the case of stable 1-based groups [Cha00, Proposition 4.7],
qf-definable subsets of B are boolean combinations of cosets of definable subgroups.

(In fact, by the trichotomy result of Chatzidakis-Hrushovski, B is stable stably embedded,
so any definable subset is a boolean combination of cosets of acleq(∅)-definable subgroups.
But I don’t know how to obtain this from the jet spaces approach.)

Now let V ( A be a proper subvariety.

We want to show that V ∩A[p]′ is finite.

Fact. The Zariski closure of a boolean combination of cosets of subgroups of A is a finite union
of cosets.

Let V ′ := V ∩A[p]′
Zar

.

Then V ′ = V ′ ∩BZar
is, by the above, a finite union of cosets of algebraic subgroups.

Since A is simple, those algebraic subgroups are finite,
so V ′ and hence V ∩A[p′] is finite.

7 V ∩ A[∞]

Finally, we sketch how to deduce that V ∩A[∞] is finite,
following an approach of Pillay.

• We may assume that V ∩A[∞] is dense in V ,
hence V is over a number field K.

• Now A[∞] = A[p]′ +A[p∞].

• Let D :=
⋃
{(V − t) ∩A[p]′ : t ∈ A[p∞]}.

• Then D is finite:
By compactness we obtain a uniform in x bound on |(V − x) ∩B|,
hence on |(V − t) ∩A[p]′|,
hence on the degree over K(A[p∞]) of elements of D,
hence (Fact) on the order of elements of D,
hence on |D|.

• By considering another prime p′ 6= p of good reduction,
(V − x) ∩A[p∞] ⊆ (V − x) ∩A[p′]′ is finite for any x ∈ A.

• If t+ t′ ∈ V ∩A[∞] where t ∈ A[p∞] and t′ ∈ A[p]′,
then t′ ∈ D,
and so t ∈ E :=

⋃
s∈D(V − s) ∩A[p∞],

which is finite.

• So V ∩A[∞] ⊆ D + E is finite.
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