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Abstract 
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147-166. 

We construct a new class of K, categorical structures, disproving Zilber’s conjecture, and study 

some of their properties. 

1. Introduction 

A structure M is called &-categorical if its first-order theory has exactly one 
model of power Kr. Every X,-categorical structure admits a dimension theory, and 
in particular contains irreducible one-dimensional sets. These are called strongly 
minimal and can be characterized as follows: 

Definition. A definable subset D of a model M is called strongly minimal if every 
M-definable subset of D is finite or cofinite, uniformly in the parameters. More 
precisely: If R is a definable subset of M”+l, then there exists an integer d such 
that for every 5 E M”, one of the sets 

{x E D : (x, ii) E R} or {x E D : (x, ii) $ R} 

has at most d elements. 

The reader is referred to [l] for this and the ensuing discussion. 
A structure is called strongly minimal if it is strongly minimal as a definable 

subset of itself. If D is strongly minimal, one can define a closure relation 
(algebraic closure) on D: 

a E acl(B) iff a is in some finite B-definable set. 
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This closure relation is a pregeometry, i.e., it satisfies the Steinitz exchange 
property : 

if a E acl(B, c) - acl(B) then c E acl(B, a). 

It also enjoys a strong homogeneity property: if a,, a2 are not in acl(B), then 

there exists an automorphism of D fixing B pointwise and taking a, to a2. 
If (0, cl) is any pregeometry and X is a subset of D, one obtains the 

localization at X, (D,, clX) by letting Dx = D, cl,(A) = cl(X U A). A pre- 

geometry is called a geometry if cl({x}) = {x} for every element x. Every 

pregeometry (J, cl) has an associated geometry J” = (J-, cl-): J- = (J - cl(O))/-, 

where x - y iff cl(x) = cl(y). If (J, cl) is a geometry, the localization of J at X is 

(Jx)-. Two geometries J,, J2 are called (finitely) locally isomorphic if they have 

finite subsets X1, X2 such that (JIx,)” -L (JZx,)-. 
While an K1 categorical structure can have many strongly minimal definable 

sets, the local isomorphism class of their associated geometries is an invariant of 

the structure. Call two X1 categorical structures geometrically equivalent if their 

associated geometries are locally isomorphic. Until now there were three known 

types of X1 categorical structures, up to geometric equivalence: 

(I) (Combinatorial type) A set with no structure. 

(II)F (Linear type) A vector space (V, +, a, a~),,~ over a fixed division ring F. 

(III),,A An algebraically closed field (F, +, ., C& of characteristic p, with 

elements of a subfield 4, of transcendence degree h distinguished. 

Classes I and II admit many abstract descriptions; for example, in lattice- 

theoretic language, a structure is in class I iff its lattice of algebraically closed sets 

(in Ceq) is d’ t ‘b t’ is ri u tve, in class II iff this lattice is modular but not distributive. In 

the other direction, more concrete descriptions exist in each class. If M is in 

classes II or III, one can fully identify a O-definable structure MO interpreted in M 
(see [4,6]). There is then a theory of ‘co-ordinization’ of M over MO, involving 

groups definable over MO. See [S] for a survey. The theory is especially extensive 

in the degenerate and linear cases. 

Zilber drew attention to this trichotomy, and conjectured (in a different 

language) that every X,-categorical structure is in fact in one of three classes (‘the 

structural conjecture’, [16]). The ideology behind the conjecture was highly 

influential and turned out to be powerful in surprisingly different contexts. In 

particular this is true in the more special totally categorical context: there the 

dichotomy 1 or II was proved in [17], and yet the shadow of III is central in the 

proof. The importance of the trichotomy is also becoming increasingly clear in the 

more general superstable context; see for instance [lo]. However, we show in this 

paper that the conjecture itself is false; the class of possibilities of nonlinear X1 

categorical structures is much richer than the conjecture suggests. 

The construction is carried our in Sections 2 and 3. It makes it clear that further 

dividing lines are needed among nonlinear K1 categorical structures. With this in 

mind we isolate some of the properties of the new strongly minimal sets in 
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Section 4. (Further study is needed to determine which of these, if any, are 

decisive.) In Section 5 we mention some modifications that solve some other 

problems of interest in the subject: an Xi categorical structure without an 

acl(0)-definable strongly minimal set; and examples of symmetric almost- 

orthogonality, an issue raised in [12, 91. 

2. Finite substructures and dimension theory 

Let L be a relational language containing at least one ternary relation symbol. 

We will build a strongly minimal structure D(L, p) in this language; p is a 

specification of data concerning multiplicities that will be explained below. For 

definiteness, we will assume L consists of a single ternary relation R. (D(L, p) 

will be defined even if L is a binary language, but the strongly minimal set 

obtained will be of the degenerate type (I).) A, B, B1, etc. will denote finite 

L-structures; M, N will denote possibly infinite ones. A c M means that A is a 

substructure of M. 

Any strongly minimal structure D gives rise to theories of dimension and 

multiplicity on finite L-structures. Given a finite L-structure A = {a,, . . . , a,}, 

consider the definable set E*(A, 0) = { (ful , . . . , fu,): f an embedding of 

L-structures from A to D}. Then the dimension (Morley rank) of E*(A, D) is an 

integer depending on the isomorphism type of A, but not on the enumeration. It 

is thus reasonable to inquire, before constructing a strongly minimal structure, 

what the corresponding dimension function would be. We answer this by 

specifying directly a very simple such function. 

Similar considerations will be required for multiplicity. For example the 

dimension function may assign the value zero to certain finite structures. This 

should mean that the strongly minimal set contains only a finite number of copies 

of each such structure. Again we may ask what the number of copies should be. 

The answer will be provided in advance by a numerical function p (but the details 

are slightly more complicated). 

Definition. Let M be an L-structure, A E M finite. 

(i) n(A) is the size of A. r(A) is the number of triples E from A such that 

M k R(a). d,(A) = n(A) - r(A). d,,(A/B) = &(A U B) - d,(B). 

(ii) d(A, M) = min(d,(B): B finite, A c B c M}. d(A/B, M) = d(A U B, M) - 

4B, M). 

Definition. A substructure A of M is self-suficient in M if d(A, A) = d(A, M). 

Write A c M for this. 

Let(e,={A:O~A}.IfMEceo,x~M,Xfinite,saythatcdependsonXinM 

if d(X U {c}, M) = d(X, M). 
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Definition. A is simply algebraic over B (in M) if A, B are finite subsets of M, 

BcAUB, AnB=0, do(AUB)=d,(B), and there is no proper nonempty 
subset A’ of A such that do(A’ U B) = d,(B). A is minimally simply algebraic over 
B if in addition, there is no proper subset B’ of B such that A is simply algebraic 
over B’. 

Now fix an integer-valued function v(A, B), defined when A # 0 and A is 
minimally simply algebraic over B. p is assumed to be a function of the atomic 
type of (A, B). it must also satisfy the lower bound: p(A, B) 2 d,(B). Note that 
for any A, B with A simply algebraic over B, there is a unique smallest B’ E B 
with A simply algebraic over B’. Namely, B’={bEB:forsomeaEA-B, both 
a, b are members of some tuple in R}. It is convenient to write p(A, B) for 
y(A, B’) in this situation. 

Remark. The requirement v(A, B) * d,(B) (when A is minimally simply al- 
gebraic over B) can be relaxed somewhat. However, it is shown in [7] that one 
cannot have, for example, &A, B) = 1 (or even, for fixed A, p(A, B) bounded 
with B.) It would be interesting to find the precise lower bound. 

We now define a class of finite L-structures; it will turn out to be the class of 
finite substructures of D(L, p). 

Definition. Let % be the class of finite structures M of L, such that 
(i) 0 s M. 

(ii) Let B, Ai (i = 1, . . . , n) be pairwise disjoint subsets of M (Aj #0). 
Suppose the atomic type of (Ai, B) is constant with i, and that Ai is minimally 
simply algebraic over B. Then it < ,u(Ai, B). 

Remark. It is possible to write (i) and (ii) together, by defining &A, B) even 
when A has ‘negative dimension’ over B, and letting it equal 0 in that case. 
However, this will hide the fact that there are two quite different mechanisms for 
algebraicity in the final model, one inherent in the dimension theory (so it persists 
even if we build a regular type of higher rank), the other obtained by force to get 
strong minimality. 

Lemma 1. Let A c N be L-structures. Suppose A G N. 
(i) C&,(X II A) < d,(X) whenever X s N. 

(ii) d(A’, A) = d(A’, N) whenever A’ E A. 
(iii) In particular, if A’ s A s N then A’ < N. 

Proof. (ii) is immediate from (i) and the definition of d, and (iii) from (ii). To 
prove (i), let Y = X -A. Let r’ be the size of RN n (X3 - A3). Then d(A, N) c 
d,,(A U Y) = d,(A) + (n(Y) - r’), so from d(A, N) = d,(A) we get n(Y) - r’ > 0. 
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Thus 

d,(X) = do(X n A) + (n(Y) - r’) 3 do(X II A). 0 

Definition. Let B, be substructures of an L-structure M, such that any two 

distinct Bi intersect in a given set A. Let B be the substructure whose universe is 

the union of the sets Bi. B is called a free @in of the Bi over A if whenever R(c) 

holds and c E B3, then c E B? for some i. 

Remark. (i) The isomorphism type of a free join of B1, B2 over A is uniquely 

determined. 

(ii) In general, dO(B1 U B2) < d,(B,) + d,(B,) - do(B1 n B2). Equality holds iff 

B, U B2 is a free join of B,, B2 over B, II BZ. 

Lemma 2. Let M E %$,. Let A E M, and suppose Bi is simply algebraic over A, 
and A < (A U lJi Bi) (i E I). Then: 

(i) The distinct Bi’s are disjoint. 
(ii) A U Ui Bi is a free join of the Bi over A. 

(iii) Suppose A GA GM, A GA U Bi, and Bi$A (i = 1, 2). Then any iso- 
morphism of B1 with Bz over A extends to an isomorphism over A. In fact A U Bi 
is a free join of A and Bi over A. 

Prior to proving the lemma we make the following observation: if A 6 B then 

d,(X/A) a d,(X/B). Indeed let A’ = A U (X fl B). Then 

d,(X/A) = d,(XIA’) + d,(A’lA) 3 d,(XIA’) 3 d,(XIB). 

The first inequality follows from the assumption A < B, the second from Remark 

(ii) directly above. 

Proof of Lemma 2. (i) We show that B, fl B, = 0. 

d,(A) s d,(A U B, U B2) 

c do(A U B,) + d,(A U Bz) - d,(A U (B, U B2)) 

= 2d,(A) - d,(A U (B, f7 B2)). 

So d,,(A) 2 d,(A U (B, fl B2)). As A 4 (A U B1 U BJ, equality holds. But B1 and 

Bz are simply algebraic over A, so by the minimality condition in the definition of 

simply algebraic, B1 fl B2 is empty, or else equal to both B1 and B,. 
(ii) Similar argument. 

(iii) We have 0 G d,(Bi/A) < do(Bi/A U (Bi n/i). Thus as Bi is minimally 

algebraic over A, Bi n A = 0 or Bi n A = Bi. The latter possibility is assumed not 

to hold, so Bj fl k = 0. No relations can hold between Bi and A other than those 

holding between Bi and A, or else again we would have do(Bi/A) < 0. 0 
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Lemma 3 (Algebraic amalgamation). Suppose A, B,, B, E %, A is a substructure 

of B, and B2, and B1 - A is simply algebraic over A (in B,). Assume for 
convenience that B, fl Bz = A, and let E be a free join of B, and B2 over A. Then 
E E %, unless either 

(1) B, -A is minimally simply algebraic over some F c A, and B, contains 
u(B1 - A, F) disjoint sets, each realizing the atomic type of B, - A over F; or 

(2) there exists a set X c B, such that X nA +X, and B, contains an 
isomorphic copy of X. 

Observe that (2) is a strong negation of: A s B. 

Proof. (i) If X G E, then 

r(X) = r(X rl B,) + r(X f~ B,) - r(X n A), 

n(X) = n(X n B,) + n(X tl BJ - n(X n A), 

so d,(X) = d,,(X f-7 B,) + d,,(X f7 B2) - d,,(X rl A). As A s B1, d,(X n B,) 3 
do(X fl A) by Lemma l(i). Thus d,(X) 3 0. 

(ii) Let F, C’, . . . , C’ be pairwise disjoint subsets of E, with c’ minimally 
simply algebraic over F. We assume the sets c’ are implicitly enumerated, so that 
they all realize the same atomic type over F. We will show that if (2) fails then 
r G p(C’, F), unless F = A and one of the C’s is B1 -A. Let Ch = C’ r-7 A, 
Cl= c’n B, (Y = 1,2), and define F,, F,, F2 similarly. Let k’ = card(C’), 
k\ = card(Cl). Write r(X/Y) for r(X U Y) - r(Y). Let fik = r(Ci/F) (Y = 0, 1, 2). 
Renumber so that /3: - pi> k’, - kb iff is r,, and for i > r,, c’ = C; iff i G r, 

(rl 3 4. 

Claim 1. r. s do( FI /A). 

Proof. Let is r,. Since Br, B2 are freely joined over A, there are no relations 
between Cl - Ci) and A U F except those holding between Cf - Cb and A U F,. 
Also Ci - Cg and A U F are disjoint. Thus 

d,(C; - Ch/A U FJ = d,,(C’, - C$A U F). 

Again by the disjointness, and the definition of do, 

d,(C’, - Ch/A U F) s d,(C; - C;/Ch U F). 

Now 

d,(Cf - Ch/C; U F) = d,(C’,IF) - d&b/F) 

=(k’,-pi)-(kb-B;)<O. 

So d,(C’, - Cf,IA U F,) < 0. 
Let C* = lJ+,, Ci,; then d,(C*/A U F,) s ro. (-1) = -r,). But A S B1, so A G 

(A U C* U F,), so do(C* U F,/A) > 0. Thus d,(F,/A) 3 r,. q Claim 1 

Claim 2. Zf i > r, then C$ = 0. 
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Proof. Let i > r,. So /?I - /I; G k’, - kb. From the structure of E, and the fact that 

c’ is simply algebraic over F, it is clear that @, + pi - fib = ki + k’, - kh. Also 

F G (c’ U F) implies F 4 (Ci U F), so /?: G kl. The three relations together imply 

/?q = k;. So C? is simply algebraic over F; by minimality, Cl = 0 or Ci = 

c’. 0 Claim 2 

Case (1): FE Bz. 
Then F, c A, so by Claim 1, r,, = 0. By Claim 2, C: = 0 or C; = c’ for every i. If 

Cl = c’ for every i, then all the C’s as well as F are in B2, so the required bound 

on r is a consequence of the fact that B2 E +I?. So suppose C: = 0 for some i, i.e., 

c’ G B1 -A. Since B, and Bz are freely amalgamated over A in E, and c’ is 

simply algebraic over F = F,, it follows that c’ is imply algebraic over F II A; but 

c’ is minimally simply algebraic over F, so F E A. But now c’ E B1 -A is simply 

algebraic over F G A while B, -A is simply algebraic over A, so C’ = B1 -A. 
Hence every Ci realizes the atomic type of B1 - A over F; so if r > p(C,, F) then 

(1) holds. 0 Case (1) 

Assume from now on that F # F2. 

Claim 3. r, - q, G d,(F,/F,) - d,(FJA). 

Proof. Let r. < i s r,. Then c’ = C;; since c’ is minimally simply algebraic over 

F, and F # F2, d,(C’/F,) > d,(C’/F) = 0. It follows that a relation (an instance of 

R) holds between c’ and F on top of the relations between c’ and Fz. All 

instances of R in E take place between elements of B, or of BZ; the instance in 

question must thus involve elements of B,. Thus the relation holds between some 

elements of c’, and of F,; and at least one element of Fl - F. must be involved. 

We may thus say that Fl - F. and F. U Ch are related. Since the sets Cb are 

pairwise disjoint, and contained in A, there are r, - r, relations between Fl - F, 
and A. Thus d,,(F,lF,) - d,(F,/A) 3 (rl - ro). (W e could also deduce this from the 

general principles governing do, as in Claim 1.) Cl Claim 3 

Case (2): r > r,. 
So C; = 0, i.e., c’ E B,; and as was shown above with 2 in place of i, it follows 

that F G B1 as well. If c’ G B, for all i, then everything takes place in B,, and 

B, E %Y. Assume that c’ $ B, for some i. If c’ c B2 - A then, as C’ is minimally 

simply algebraic over F and F 5 B1, it must be that F GA, so FE BZ, 
contradicting our assumption. Thus Ci# 0. By minimality again, d,(C$F) > 0. 
so 

d,,(C; - ChlC;, U F) = d&$/F) - d,(C;/F) <d&;/F). 

But d,(Ci/F) = d,(Ci/F U Cf) because (F U Ci) E B, while C& E B,. By simple 

algebraicity, d,(C$/F U CJ s 0. Thus d,,(C; - C$Ci, U F) < 0. 
Let X = F. U Cl. Then 

d(XIX II A) = d&;/C; U F,) = d,(C; U fi) - d,(C; u F,) 

= d,(C; U F) - d,(C; U F) < 0. 
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The atomic type of X is realized in Bi, inside F U c’. Thus (2) holds. 0 Case 

(2) 

If neither of the special cases hold, then 

r = r, = (rl - rJ + r, =G (d&IF,) - d&/A)) + d&IA) 

= d,(F,IF,) c d,(F). 

By the chaise of p, d,(F) G ,u(C’, F). This proves the lemma. 0 

Lemma 4 (Self-sufficient amalgamation). Suppose A, A,, A2 E %, A G A,, A G 
AZ. Then there exists E E % and embeddings fi, f2 of AI, A2 into E, so that 
fi lA=f,IA, and&AiGE. 

Proof. We use induction on IAl - Al + (AZ - AJ. Let 

d(A, A,) = d(A, AZ) = d(A, A) = d. 

Case 1: there exists X with A c X c AI such that d,(X) = d,(A) = d. 
In this case A 6 X <A,. By induction, X can be amalgamated with A2 over A, 

and then A, can be amalgamated with XA2 over X. That gives E with AI 6 E and 

A,GXA,G E. 

Case 2: d(AI, A,) > d, and case (1) fails. 
Choose any b E A,. Then there is no X with A U {b} E X E Al and d,(X) = d. 

Thus d(A U {b}, A,) = d + 1. It is extremely easy to check in this case that the 

free amalgamation of A U {b} with A2 is in %‘, and satisfies the requirements. 

Since d(A U {b}, A U {b}) G d(A, A) + 1 = d + 1, it follows that A U {b} <A,. 
By induction, we can continue and amalgamate Al with A2 over A U {b}. 

Case 3: Case 1 fails, and d(A,, A,) = d. 
In this case A, -A is simply algebraic over A; say it is minimally simply 

algebraic over F GA. Case (2) of Lemma 2 cannot apply, as A CA,. If case (1) 

applies, the atomic type of Al -A/F is realized y(Al -A, F) times in AZ. As 

A GA,, each such realization is either contained in A, or else freely joined with 

A over F (Lemma 2(iii)). If the latter case occurs at all, then the realization in 

question realizes the atomic type of Al -A over F; so the amalgamation may be 

achieved by identifying A, -A with this part of AZ. In the other case A contains 

p(A, -A, F) disjoint realizations of the atomic type of A, - A over F, so AI 
contains ,u(Al - A, F) + 1 such, contradicting the fact that A, E (e. 

Finally, if neither (1) nor (2) apply, then Lemma 3 says that Al, A2 can be 

freely joined in % over A. It remains only to check that the amalgam E satisfies 

A, GE, A,< E. This is easy, and uses only A GA,, A GA,. 0 
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3. The strongly minimal set 

Consider the following description of a model M: 

(1) M is a countable L-structure. 

(2) Every finite substructure of M is in %. 

(3) Let B s M and B G C, C E %. Then there exists an embedding f : C+ M 

such that fC 4 M, and F 1 B = Ids. 

Note that in any L-structure satisfying (2), for every finite A c M, there exists a 

finite B, A E B c M, d(B, M) = d(A, M), such that B is self-sufficient. (Choose 

any B with d(A, M) = d,(B) and A G B). By a standard back-and-forth argument 

(cf. [3]), there exists a structure M satisfying (l)-(3); and it is unique up to 

isomorphism. Fix such an M for a moment. 

Let d(A) = d(A, M). Note that there exist A E M with d(A) arbitrarily large. 

Lemma 5. (i) d(C) G d(aC) G d(C) + 1. 

(ii) Zf d(aCb) = d(Cb) = d(C) then d(K) = d(C). 
(iii) Zf d(aCb) = d(O), and d(uC) > d(C), then d(uCb) = d(G). 
(iv) Zfd(Cu) = d(C) = d(Cb), then d(C) = d(aCb). 
(v) Zf d(aC) = d(C), then d(uC6) = d(Cb). 

Proof. (i), (ii) are evident. 

(iii) d(uCb) = d(Cb) G d(C) + 1 s d(K). 
(iv) Let E,, Ez be such that Cu c El, Cb E E2, d,(EJ = d(C) = d,(E,), and 

each is minimal. If a E E2 or b E El there is no problem. Let E = E, n E2. El adds 

at least as many relations as elements to E, otherwise E would show d(C) < 
d,(E,). So d,(E, U E2) c d,(E,) = d(C). 

d(C) < d(Cb) < d(uCb) s d(K) + 1 = d(C) + 1. 

So either d(C) = d(Cb) or d(Cb) = d(uC6); in the former case (iv) applies. q 

This shows that the relation ‘d(uC) = d(C)’ is a dependence relation. Further 

note that if d(uC) >d(C), E 3 C, d,(E) = d(C), then d(E) = d(C), so E is 

self-sufficient, and also UE is self-sufficient; and no relations hold between a and 

E; and so tp(uC) is fully determined by this, i.e., by tp(C) and the fact that a 

does not depend on C. 

However, (3) is not a lst-order property, so we replace it by: 

(3’) M contains an infinite set Z such that d(A) = card(A) for finite A z I. 
(3”) Suppose B c M, B G C, C E %, and C - B is simply algebraic over B. 

Supoose also that whenever X E M realizes an atomic type realized in C, 

(X II B) 6 X. Then there are p(C - B, B) distinct solutions C’ in M of the atomic 

type of C over B. 

Claim. (1, 2, 3) and (1, 2, 3’, 3”) are equivalent. 
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Proof. Assume (1,2,3). Then (3”) is clear from Lemma 3, and (3’) is trivial. 

Conversely, assume (1,2,3’, 3”); then (3) follows just as in the proof of Lemma 

4. (We may assume there is no C’ with B < C’ G C except C’ = B or C’ = C. This 

implies that C is simply algebraic over B, or else C = B U {c} and c does not 

depend on B. In the second case, let I’ G Z have more elements that card(B); then 

there is some c’ E Z such that c’ does not depend on B; c H c’ is the required 

embedding. In the algebraic case, say C - B is minimally simply algebraic over 

B’ c B. By (3”), there are r = p(C - B, B’) solutions C1, . . . , C, of tpatomic(C - 

B/B’). They are disjoint. Also since B SM, Bn(B’UCi)s(B’UCi), SO if 

Ci n B # 0 then Ci G B. If every Ci is contained in B, then in C there are r + 1 

solutions of the atomic type (including C - B), contradicting the fact that C E %. 

If one Ci is missing from B, then it is disjoint from B, and moreover it has no 

relations with B except the ones it has with B’ (as B G M.) Thus C H Ci gives the 

sought-for embedding.) 0 

Lemma 6. Let MI, Mz satisfy (1, 2, 3’, 3”). Let f :A,+A;? be an L-embedding, 

where A,, s M,,, A,Jinite. Then f extends to an isomorphism of MI with Mz. 

Proof. (1,2,3) allow back-and-forth between self-sufficient substructures. 0 

Corollary 7. M is saturated. 

Proof. M is isomorphic to every countable elementary extension of itself. It 

follows that there are only countably many types realized in elementary 

extensions of M (in each sort). Hence there exists a saturated elementary 

extension of M, to which M must be isomorphic. 0 

Corollary 8. M is strongly minimal. 

Proof. Let A G M be a finite set, and let x be any element. We already know that 

there is a unique orbit of elements that do not depend on A. Since M is saturated, 

it suffices to show that every other orbit is finite. 

1. There exists a self-sufficient A’ =, A, algebraic over A. Choose A’ minimal 

so that A’ ?A and d,(A’) = d(A). Let A” by any conjugage of A’ over A. I claim 

that A” =A’. If not, call the intersection A”‘. Then d”(A”‘) > d(A), so d,(A’/ 
A”‘) < 0; hence d”(A’/A”) < 0; so do(A’ U A”) < d,,(A”) = d(A). This contradicts 

the definition of d(A) = d(A, M). 
2. If x depends on A then x is algebraic over A. d({x} U A) = d(A). Find 

B ?A U {x} with d,(B) = d({x} UA) = d(A). Clearly A’ (can be chosen to be) 

sB. Let Bo=A’, and choose B1, . . . , B, so that Bi+1- Bi is nonempty and 

simply algebraic over B;, and B, = B. Clearly Bi+l/Bi is algebraic for each i; since 

A’/A is algebraic and x E B, we are done. Cl 
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Proposition 9. M has quantifier elimination to the level of Boolean combinations 
of formulas of the form (3Z)(R(x, y)), where R is a conjunction of atomic 

formulas and inequalities. 

The proof is left to the reader. We note that such formulas are not necessarily 

equations in the sense of Srour. We will show in Section 4.1 that the definable 

subsets of M are also Boolean combinations of equational sets, but we have not 

determined these explicitly. 

4. Geometrical properties 

4.1. Strong equationality and CM-triviality 

We define a property of stable theories stating in some sense that the 

fundamental order is algebraically trivial. We show that the new structures have 

this property. We also define ‘strong equationality’ and show that it follows. In 

[ll] it is shown that strong equationality implies equationality. We refer the 

reader to [14], [15] for the notions of 1-basedness, equationality, pseudo-plane; 

however these will only serve as a background, and aside from one or two 

isolated remarks, the section is self-contained. 

To further motivate the definition of CM-triviality, recall that a theory is 

l-based if it does not interpret a pseudo-plane; this is a structure modeled on the 

incidence between points and lines in a plane, over an infinite field. Intuitively, 

CM-triviality forbids the existence of a richer structure, modeled on the incidence 

relations between points, lines, and planes in 3-space. The critical properties: the 

intersection of two distinct lines is finite; the intersection of two distinct planes is 

contained in the union of finitely many lines; given a point and a plane, there are 

infinitely many lines passing through the point, and contained in the plane. 

Proposition 10. For a stable structure M, the following conditions are equivalent: 
(CMTl) Suppose B,, B, are independent over E = acl(E); and acl(B,, B2) fl 

acl(E, B;) = Bi, and Bi n E = A. Then B,, B, are independent over A. 
(CMT2) If E is algebraically closed, C, IL C2 1 E, then C, CL C2 1 (acl(Ci, C,) tl 

E). 
(CMT3) Let C, A, B be algebraically closed. Assume acl(A U C) rl acl(A U 

B) = A. Then Cb(C/A U B) 2 Cb(C/A). 

Proof. (l)+ (2) Let C,, Cz, E be as in (CMT2). Let Bi = acl(C,, C,) n 
acl(E, C,). Then Ci 5 Bi E acl(Ci, C,), SO acl(B,, B2) = acl(C,, CJ. Similarly 

Ci c Bj 5 acl(E, Ci) implies that acl(E, B;) = acl(E, Ci). Thus acl(B,, B2) n 
acl(E, Bi) = B;. Also B, fl E = acl(C,, C,) fl E = B, n E ‘Z‘A. SO (CMTl) ap- 

plies, and B, CL B2 1 A. 
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(2)-t(3) Let C, A, B be as in (CMT3); we may assume A G B. Let 

Y = Cb(CIB). So C& B ) Y, and in particular CCL A ( Y. By (CMT2), CCL 

A 1 (Y fl acl(C U A)). But B fl acl(C U A) = A by assumption, so Y fl acl(C n 
A)sYfIA. Thus C&A 1 YfIA, so Cb(C/A)zY. 

(3)+ (1) Let B1, B2, E, A be as in (CMTl). Let A’ = B2, B’ = acl(B, U E), 
C’ = B1. Then acl(A’ U C’) fl acl(A’ U B’) = A’. Hence by (CMT3), Cb(C’/A’ U 
B’) 2 Cb(C’/A’), i.e., Cb(B,/B2 U E) 2 Cb(B,/B*). But Cb(B1/B2 U E) c E. 
Thus Cb(BIIB2) E E. Since also Cb(B,/B,) c B2 and B2fl E =A, we get 

Cb(B1/B,) GA, so B1 CL B2 1 A. Cl 

Definition. If T is a stable theory all of whose models satisfy (CMTl), we say that 

T is CM-trivial. A structure is CM-trivial if its theory is. 

Definition. Let M be a saturated structure of finite Morley rank. M is called 

strongly equational if whenever E is algebraically closed in Meq, C1 CL C2 ( E, and 

aj : Ci-+ M is elementary over E, then rk(C, C,) 3 rk(alC,cuzC,); and moreover, 

if equality holds, then (Y~ U cu, is elementary. 

Proposition 11. A CM-trivial structure of the finite Morley rank is strongly 

equational. 

Proof. Let Ci, C2, E, a, be as in the definition of strong equationality; extend ai 

to an elementary map (fixing E) defined on acl(E U C,), and let (Y = (pi U a2. Let 

A = acl(C,, C,) fl E. Then by (CMT2), Ci, C2 are independent over A. Since cu, 

fixes A, we have: 

rk(C,, C,) = rk(CIC,/A) + rk(A) = rk(Ci/A) + rk(C,/A) + rk(A) 

= rk( a1 C,/A) + rk( azC2/A) + rk(A) 2 rk( dlaC,/A) + rk(A) 

= rk( aC1 aC2). 

If equality holds, then &i, aC, must be independent over A; since A is 

algebraically closed in Meq, (Y is elementary on ACIC2 (Shelah’s finite equiv- 

alence relation theorem). 0 

Remark 12. A l-based structure satisfies (CMTl). For 1-basedness implies that 

Bi CL E 1 Bi ({i, j} = 1, 2), so Cb(E/B,B2) G C1 n B2 and thus E & (B1B2) ) (B, n 
B2);butE&B,IA;soE~(B1B2)IA, and thus E, B,, B2 are independent over 

A. 

Lemma 13. D(L, p) is CM-trivial. 

Proof. We will show (CMTl) holds. Let B, = acl(B, U E). Then B = B, U &S 
M. By assumption, acl(B, U B2) n & = &, so acl(B, U B2) n (B, U &) = 
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(B, U &), and hence (B, U B,) C I?, U B2. So B1 U B2 s M. Clearly B1 fl B2 = A, 

and (as Bi, B, are freely joined over E) there are no explicit relations between 

B,-A=B1-EandB,-A=B*-E. ThisshowsB,&B,IA. Cl 

Putting together Lemmas 10, 11 and 13, we see that each of the strongly 

minimal sets D(L, p) is strongly equational. It would be worthwhile to show (or 

contradict) the existence of a structure of finite Morley rank, not CM-trivial, and 

not interpreting an infinite field. 

4.2. Flatness 

Since CM-triviality follows from 1-basedness, it is consistent with the existence 

of an infinite definable group. We consider a second geometrical property, that 

forbits any ‘relations among the relations of the strongly minimal set’ (such as an 

associative law.) When Ei (i E I) are sets and s is a nonempty subset of I, let ES 

denote niss Ei; and let E, = Ui Ei. 

A combinatorial geometry is just a pregeometry (as defined in the introduc- 

tion), in which no singleton point depends on any other. 

Definition. A combinatorial geometry J is jZat if whenever Ei (i E I) are a finite 

number of finite-dimensional closed subsets of J, s ranges over the subsets of I, 

then C, (-l)c”‘d’“‘d(E,) < 0. 

Lemma 14. Let D be a saturated strongly minimal set whose geometry is flat. Then 

D does not interpret an infinite group. 

Proof. Suppose G is a group interpreted in D, of dimension g. Let a,, a2, a3 be 

generic elements of G. For i = 1, 2, 3 let Ei = cl{aj: i Zj}), and let E4 = 

cl(a;‘az, a;‘a,). Then d(E,) = 3g, d(Ei) = 2g, d(E,) = g, and the intersection of 

any three of the Ei’S equals cl(O). Thus the formula predicts: 3g - 4(2g) + 6(g) 6 

0, so g =o. 0 

Lemma 15. D(L, p) is flat. 

Proof. We may view Ei as a closed, finite-dimensional subset of D = D(L, u). 

For s z Z let F, be a finite subset of D such that cl(E) = ES. Let Gi be a finite 

self-sufficient subset of Ei containing lJ {FS: i E s c I}. Then ES = cl(G,), and 

d(E,) = d(G,) = d,(G,). Thus 

7 (-l)‘“‘d(E,) = T (-l)‘“‘d,(G,) = 7 (-l)‘“‘n(Gs) -c (-l)‘“‘r(G,). 
s 

Now the first summand equals 0 (as can be seen for example by expanding the 

product rli (1 - l,,) = 0 in the ring Q”). For the same reason, if r is the 

cardinality of lJ {R(G,): i}, then r = ,&e (-l)‘“‘r(G,); so the second summand 

equals r - r(lJi Gi), and the difference r(Ui Gi)-r is non-positive. q 
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Remark. Cm-triviality follows from flatness. Let B,, BZ, E be as in (CMTl); 

then any two of these three sets intersect in A. Let bi = rk(Bi U E), a = rk(A), 

e = rk(E). Then rk(B, U B2 U E) = b, + b2 - e. Applying the definition of flatness 

to the sets cl(B, U B2), cl(B1 U E), cl(B, U E), we get: 

(b, + b2- e) - (rk(B, U B2) + bI + b2) + (rk(B,) + rk(B,) + e) - rk(A) < 0. 

In other words, rk(B1 U B,) 2 rk(B,) + rk(B,) - rk(A), as required. 

Flatness can be defined, by the same formula, for structures of finite Morley 

rank. It is natural then to use the formula in Me9 rather than M. We note 

however, for later use, that if M itself is flat, then it essentially (for geometric 

purposes) has elimination of imaginaries. 

Proposition 16. Let M be of finite Morley rank, and flat. For any e E Me9 there 
exists a finite A E M with acl(e) = acl(A). 

Proof. Let E = acl(e) n M. Choose Ai = acl(A,) n M of finite rank, Ai containing 

E, with e E dCl(Ai). Let Ai (i = 1, 2, . . . , n) by a Morley sequence over acl(e). 

Let I* = {(i, j): 1 G i <j c n}, and for (i, j) E Z* let A, = acl(AiAj) fl M. Note that 

A, n A, =Ai, since Aj & Ak 1 Ai, and for distinct i, j, k, 1, A, n Aik = E. For 

convenience we work over E. After some computation flatness gives: 

rk(A1 U. . * U A,) - 2 rk(A,) + C rk(Ai) . n s 0. 
i<j 1 

(Indeed for each subset s of I*, Is(a2, n,,,A, is either some Ai or E; and each 

Ai occurs (” ; ‘) - (” ; ‘) + (” 4 ‘) - . * - = n times as such an intersection.) Letting 

d = rk(A,), d* = rk(Ai/e) we get: 

rk(e) + nd* - (n(n - 1)/2)(2d* - rk(e)) + n*d s 0. 

Consider the last expression as a polynomial in n ; the quadratic coefficient is 

(d + irk(e) - d*). S ince the polynomial is negative for large n, we have 

d + &k(e) G d*. But clearly d* G d. This forces d* = d and rk(e) = 0. 0 

5. Variations 

5.1. Strictly minimal sets 

Recall that a strongly minimal set is called strictly minimal if any two elements 

are independent generics. 

Proposition 17. Let k be a fixed integer. There exists a strongly minimal set D with 
the property that any two k-tuples of distinct elements have the same type, i.e., that 
any set of size k has rank k, while not every k + l-set has rank k + 1. 
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Proof. We choose a language with one (k + l)-ary relation. We choose ,U and 

define Ce as in Section 2. We then let %’ = (e fl c& where 

CA = {A E %$: for any B 5 A, d,(B) > min(card(B), k)}. 

It is easy to verify that if E is the free amalgam of B1, B2 over A, where A c B1 
and A c B2 and each Bi is in %;, then E is in %& Moreover, the condition A c Bi 
may be replaced by the first-order approximation: 

(A II X) s X for every X < Bi with card(X) s k. 

Thus the amalgamation lemmas for ?Z hold also for %‘, and there exists M’ 
defined by conditions (l)-(3) of Section 3, with respect to the class (e’. Clearly 

M’ is strongly minimal, with dimension function d, and we have: 

d(A) = card(A) whenever (A( c k. 

5.2. The number of geometries 

Proposition 18. There is a continuum of strongly minimal sets with pairwise 
non-isomorphic geometries. 

One constructs strongly minimal sets in a language with a single ternary 

relation R, and with the property that R(x,x2x,) holds if, and only if, x1x2x3 are 

dependent. Thus the model-theoretic structure can be read off from the 

geometry. By modifying ~1 one easily gets a continuum of distinct theories, hence 

distinct geometries. 

To achieve the requirement, we consider only finite structures A on which R is 

symmetric (under permutations of the three variables) and applies to triples of 

distinct points only. We can thus consider R as a set of unordered triples. Define 

the dimension function d, = n - r, where r is the number of unordered triples of 

which R holds. We let 

c,={A:foranyBcA withJBIG3, BcA} 

We then proceed as in Sections 2 and 3. This yields a strongly minimal set with 

the desired property. 

It is less clear, however, whether the geometries we obtain are locally 

isomorphic, or even whether there is more than one local isomorphism type of 

nontrivial geometries of flat strongly minimal sets. 

5.3. Symmetric almost+vthogonality 

Let D1, D2 be two strongly minimal sets, defined without parameters in a single 

structure. Let pi”’ denote the type of an independent generic n-tuple of elements 

of 0,. We write p ‘1”) _L”p$) if for any 5 kp;1 ( ) and 6 kpy’, 5, 6 are independent. 
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Until now the only known examples of almost-orthogonality (even of regular 
types) were asymmetric: either p1 I”&’ for all n, or p2 ~“p$“’ for all n. In the 
locally modular context, this is equivalent to the ‘uniqueness of parallel lines’, 
and is the geometric fact underlying the existence of Zilber envelopes [2]. See 
also [12]. It is now easy to construct an example of symmetric non-orthogonality: 

Pl I”P$*‘> p2 lap’:‘, Pl l”P2. 

We simply take a language with a single ternary predicate R, and two unary 
predicates D1, D2; we consider only finite L-structures in which D1, D2 partition 
the universe, and we use the dimension function do of Section 2 (ignoring the 
unary predicates.) The construction will now yield a structure of Morley rank 1, 
degree 2, consisting of a pair of strongly minimal sets. These strongly minimal 
sets are non-orthogonal: there exist a,, a,, b such that R(a,, u2, b) (and hence 
b E acl(a,, a*)) while a,, u2 are independent elements of D1. Similarly p1 ,Ppi2). 
This remains true if one imposes the constraint of 5.1, so that any pair of 
elements is independent. This implies in particular that p1 _L”p,. 

In the above example, D, and D2 are strictly minimal. This is not accidental; 
see [9, Corollary 71. 

We can also construct a flat example where p2 ,Pq, p la q*. This cannot be 
improved to: 

p2Yq, p l”q3 

since in [9] it was shown that this can only occur in the presence of a definable 
group. 

Certain patterns of non-orthogonality were ruled out in [9]; for instance 
p+ ,Pq, p4 laq3 is impossible. At the time the set of possibilities ruled out 
seemed arbitrary; it now seems likely that it was in fact best possible, and that all 
other patterns can in fact be constructed using the present technique. It would be 
good to determine whether this is so. 

5.4. An X,-categorical structure with no acl(0)-definable strongly minimal set’ 

The fact that a saturated X,-categorical structure contains a definable strongly 
minimal set was contained in Morley’s [13]. It was shown in [l] that the 
parameter for such a set can be found in the prime model, and the dependence on 
the parameter was analyzed. For structures satisfying Zilber’s conjecture, one can 
find a strongly minimal set with algebraic parameters, removing the need for this 
analysis (the strongly minimal set and the parameters may be in imaginary sorts). 
We construct an &-categorical structure with no such strongly minimal set. 

Evidently, we need to build a structure of finite Morley rank higher than one. 
The method of Section 2 can easily be adapted for this purpose. Let L be a 
many-sorted relational language; let d*(S) be a nonnegative integer for each sort 
S of L, and let d*(R) be a positive integer for each relation R of L. (d*(S) will be 

1 Similar constructions were independently obtained by Baldwin, following an early version of this 

paper. 
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the dimension of the sort S, and d*(R) the codimension of R.) Given a finite 

L-structure A, define 

d,(A) = c d*(S) ISAl - c d*(R) IRA1 
S R 

where S ranges over the sorts of L, R over the relations. The rest of the 

definitions remain unchanged; a function y is defined satisfying the same 

constraints, ‘simply algebraic’, ‘c’, and the class %(L, u) are defined as before; 

and the structure M is again defined by the properties (l)-(3) of Section 3. One 

needs to show that M exists and is saturated of finite Morley rank. Principally, 

one needs to prove the amalgamation lemmas. The algebraic amalgamation 

lemma can be deduced from the strongly minimal case, by thinking of M, roughly 

speaking, as a reduct of D” for some strongly minimal D. For example, if L has a 

single sort of weight n, and a single r-ary relation of weight k, let L’ be the 

language with k relations of arity II . r. If A is an L-structure, let 

L’-structure with universe A x n, and let 

Rf’ = {((al, 0), . . . , (a,, II- l), . . . , (a,, 0), . . . , (a,, n- 1)): (al, . 

Then, if p’ extends ~1 in the obvious sense, then the amalgamation 

A’ be the 

. , ar)~R). 

lemma for 

‘%(L’, p’) pulls back to the same for ‘%(L, p). The other details are left to the 

reader. 

We note that the Morley rank of M will not be n but n/gcd(n, k). 

Proposition 19. There exists an almost strongly minimal structure of Morley rank 
2, without an acl(0)-definable strongly minimal set; equivalently, with no 
O-definable sets of Morley rank 1. 

This includes, of course, imaginary sorts. 

Proof. The structure will be a graph of rank 2. Let R be a binary relation, 

L2 = {R}. We consider only L,-structures on which R is irreflexive and 

symmetric. We let d,,(A) = 2n(A) - r(A), w h ere n(A) is the size of A, and r(A) is 

the number of edges in the graph determined by R. We further restrict the class 

of structures %,, by demanding, as in 5.3, that {a} <B for any B E %$, and any 

a E B. We choose any appropriate function p, and consider the resulting class Ce 

and the amalgam M. We need to show that for any (imaginary) e, rk(e/@) # 1. 

This is evident for M itself. The question is therefore one of elmination of 

imaginaries; it is settled by Lemma 16. 0 

5.5. The LM-SR dichotomy requires NOTOP 

In [lo] it was shown that in a superstable structure with NOTOP, every regular 

type is non-orthogonal either to a strongly regular type, or to a locally modular 

one. We show here that NOTOP is needed in the hypotheses: we construct a 

superstable structure with a type p orthogonal to every strongly regular type and 

to every locally modular regular type. 
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Let L consist of a single ternary predicate R, and let %a be the class defined in 

Section 2. Let L+ = L U {En : n E w}, E,, a binary predicate. Let %e,’ be the class 

of all finite Z-,+-structures whose L-reduct is in ‘%‘,,, and such that E,, is an 

equivalence relation, E,+1 c E,, and E,,, refines each E,, class into at most 2 

classes. Define do, d, < as in Section 2, ignoring the E,‘s. Let ZD = {(A, B): A is 

simply algebraic over B}. (The word ‘algebraic’ is no longer appropriate, 

however; zero-dimensional would be correct.) If A, AI, Az are in %e,‘, 

A =A, fl A,, and G = A, UA2, call G a free amalgam of AI, A, over A if 

RG = RA’ U R$. Observe that here there are many free amalgams, since the 

equivalence classes of the E, may be identified in different ways. We assume 

however that the E, remain equivalence relations on G, and that Enfl refines 

each E,, class into at most 2 classes. 

Lemma 20. Suppose A, AI, A2 E %+, A <A,. Let G be a free amalgam of A,, A2 
over A. Then G E %,‘, and A2 s G. 

Proof. By Section 2, Lemma l(i). 0 

Lemma 21. There exists a first-order theory T whose models are precisely the 
L-structures M satisfying: 

(1) Every finite substructure of M is in %‘,‘. 
(2) Zf A G M is finite, B E %“,, A s B, and some E, separates all the points of B, 

then there exists an embedding of B into M over A. 
Zf M is an X,-saturated model of T, then 
(3) Zf A EM is finite, B E %+, and A =S B, then there exists an embedding of B 

into M over A. 
(4) In (3), if A c M then the image of B can be chosen self-sufJicient in M. 

Proof. For (1) it suffices to state (la) that every finite substructure of M is in %, 

and (lb) the Ei are equivalence relations, and each E,-class is refined into at most 

two classes of E,+l. 
For (2) observe that if E,, separates points on B, then the reduct of B to the 

language L, = L U {Ei: i =S n} determines the structure of B completely. Thus the 

instance of (2) for the pair (A, B) can be stated with a single V3 sentence (given 

(la)). 
(3) By compactness, it suffices to find an L,-embedding of B into M with the 

required properties, for each m. For this limited purpose we may modify the 

structure of B, not touching the L,-structure, but ensuring that any two points of 

B are L,-inequivalent for an appropriately large n (say n = m + log,(jBj) + 1). 

Then the existence of the embedding is guaranteed by (2). 

(4) Using induction on IBI, we reduce the two cases: (a) B = A U {b} (b) 

(B -A, A) is in ZD. In case (b) the embedding of (3) is automatically good, 

using the arguments of Lemma 2. In case (a) we use compactness and saturation 
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again. We must find b’ E M inside a certain &-class (say the class of b”) such that 

d(b’/A) = 1. In other words, 6’ must satisfy, for each integer m: 

(#m) for all m-element subsets C of M containing b’, d,(C/A) > 1. 

By compactness, it suffices to find 6, satisfying (ffm) for m s M, where M is a 

given integer. We do this by embedding into M a larger set B,,,. BM can be taken 

to be a free join of Bh with A over 0, where Bh is a fixed element of %Z,’ 

containing b and enjoying the following property: 

do(B,,, - A) = 0, but d,(Y) 2 1 for every Y 5 Bh with 1 G ) YI < M. 

The construction of Ba is left to the reader. 

Now consider B, as embedded in M, and let C be an m-element subset of M, 
m s M, b E C. Then d,,(C/B,) 3 0. Further do(C n B,,,/A) 3 1. Thus d,(C/B,) 2 

1, as required. q 

Lemma 22. T is complete, consistent, and superstable. 

Proof. Existence of a model of T is easy from Lemma 20. For completenesss, 

suppose (using absoluteness) that MI, M2 are two &-saturated models of T of 

power Xi. Build an isomorphism f : MI + n/l, as follows. Suppose f is given on a 

countableA,<M,,fA,6M,. LetcEMi-Ai. FindafiniteCsM,, CEC, such 

that d,(C/C II A,) is least possible. Then A i=%A,UCcM,. By Lemma 21(4) 

and saturation, one can extend f2 to an atomic map on AI U C, whose image is 

self-sufficient in M2. Thus a back-and-forth construction can continue. 

Let NE @ be an X,-saturated model of T. If c E C, we can find a finite C as 

above such that c E C and d,(C) - do(C fl N) is least possible. Further we may 

require that for each c E C there is c’ E C II N such that c E, c’ for each IZ. Then 

C U N < @, and C U N is a free amalgam of C and N over C fl N. tp(C/N) is 

determined by tp(C/C fl N) and the above information. So there are at most 

2’“. INI types over N. Thus T is superstable. 0 

Lemma 23. T has in$nity -rank o ; all types of rank w are non-orthogonal, 
non-locally-modular. The rank 1 types are trivial. T has no strongly regular types 
(in any sort.) 

Proof. Note first that if (A, B) E ZD, A U B s M, then tp(A/B) has rank 1. 

Indeed for any model N containing B, either A 5 N, or else A U N is a free 

amalgam of C and N over B. In the latter case the type of A over N is determined 

by the En-type of A over N for each n; there are at most 2’O possibilities. Thus 

tp(A/B) has rank 1. Further, by Lemma 2, if Aj realizes tp(A/B) and Ai, Aj have 

distinct universes for i #j, then {Ai: i E Z} is independent over B. This shows that 

rank 1 types are trivial. The rest of the proof is left to the reader. q 
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