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Abstract

We present a detailed and simplified exposition of Hrushovki’s fusion

of two strongly minimal theories.

1 Introduction

A definable set whose definable subsets (in some saturated model) are ei-
ther finite or cofinite is called strongly minimal. Examples of strongly minimal
structures are the trivial one, infinite dimensional vector spaces or algebraically
closed fields. It was observed that the geometrical behaviour of these archetyp-
ical examples could be generalized to the pregeometry of algebraic closure on
strongly minimal sets, exhibiting a first example of regular types. This led B.
Zilber to conjecture that all strongly minimal sets could be classified according
to these three basic ones, motivated by his work on Zariski geometries with E.
Hrushovski. This conjectured was refuted in a genial way by E. Hrushovski [9],
which in a genial way adapted Fräıssé’s construction in order to collapse to finite
rank a candidate for the counter-example. The amalgamation procedure can be
described in the following way: the goal is to construct a countable universal
model starting from a given collection of finitely generated structures. In this
model there is a unique type of rank ω. The decisive part (or collapse) is to
modify this construction in order to algebraize types of finite rank. In order to
do so, a collection of representatives (or codes) of these types needs to be chosen
and one assigns a maximal length of an independence sequence of realisations
to each code. The structured obtained after amalgamating again has now finite
rank. Note that the prescribed maximal length must reflect any interaction be-
tween different codes, since some realizations of one code may yield realizations
for another.

Using the same procedure, E. Hrushovski also merged two strongly minimal
theories over a trivial geometry into a new one, their fusion. This answered neg-
atively a question of G. Cherlin on the existence of a maximal strongly minimal
theory. More precisely, consider two countable strongly minimal theories T1 and
T2 with the definable multiplicity property (in short, DMP) whose respective
languages L1 and L2 are disjoint. Recall that a ω-stable theory has the DMP if
Morley rank and degree are definable on the parameters of any given definable
set.

In this survey we give a detailed and slightly simplified exposition of the
following theorem proved by E. Hrushovski.
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Theorem ([8]). T1 ∪ T2 admits a strongly minimal completion T µ. Its models
satisfy the following: Let tri denote the transcendence degree in Ti. Given a
finite subset A of M , then

|A| ≤ tr1(A) + tr2(A).

Our presentation grew out of a seminar held at the Humboldt-Universität
Berlin in 2003. Several articles on this topic (among others [7] and [6]) have
been published, however we believe that this survey will be beneficial for the
mathematical community in order to become more acquainted with Hrushovski’s
fusion method. The authors used the simplified approach in three subsequent
articles: In [4] to reprove a theorem of Poizat and Baldwin–Holland ([10], [1])
about the existence of a fields of Morley rank 2 with a distinguished subset in
any characteristic, in [5] to construct fields of Morley rank 2 with a distinguished
additive subgroup, and in [3] to the fusion over a vector space over a finite field,
which had been proposed by E. Hrushovski.

The simplified technique was crucial in [2], where a bad field was constructed:
a field of Morley rank 2 with a distinguished multiplicative subgroup. This
solved a long standing open problem.

Finally our techniques were used in [11] to prove the following generalization
of Theorem 1: Let T1 and T2 be two countable complete theories in disjoint
languages of finite Morley rank and of the same Morley degree. Assume that in
T1 and T2 Morley rank and Morley degree are definable. Then T1 ∪ T2 has a
“nice” completion of any rank which is a common multiple of the ranks of T1

and T2.

2 Codes

All throughout the following sections (and until specified otherwise) T denotes
a countable strongly minimal theory with DMP.

First, let us fix some notation: tr(a/B) is the transcendence degree of a over
B1 and MR(p) denotes Morley rank of the type p. Note that

tr(a/B) = MR(tp(a/B)).

We write
φ(x) ∼k ψ(x)

or φ(x) ∼k
x ψ(x), if the symmetric difference of φ and ψ has smaller Morley rank

than k.
A formula χ(x, b) is simple if it has Morley degree 1 and the components of

a generic realization are pairwise different and not in acl(b). If a is an n–tuple
and s is some subset of {1, . . . , n}, then as is {ai | i ∈ s}.

A code c is a parameter-free formula

φc(x, y),

where |x| = nc and y lies in some sort of T eq, with the following properties.

1The maximal length of a B-independent subtuple of a.
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(i) φc(x, b) is either empty2 or simple. Furthermore, φ(x, b) implies that the
components of x are pairwise different.

(ii) All non-empty φc(x, b) have Morley rank kc and Morley degree 1.

(iii) For each subset s of {1, . . . , nc} there exists an integer kc,s such that for
every realization a of φc(x, b)

tr(a/bas) ≤ kc,s.

Equality holds for generic a.

(iv) If both φc(x, b) and φc(x, b
′) are non-empty and φc(x, b) ∼kc φc(x, b

′), then
b = b′.

For φc(x, b) to have Morley rank kc in (ii) is equivalent to kc,∅ = kc. The
simplicity of φc(x, b) in (i) is equivalent to Morley degree 1 and kc,{i} = kc − 1
for all i.

Corollary 2.1. Let p ∈ S(b) be the unique type of Morley rank kc containing
φc(x, b). Then b is the canonical basis of p.

Proof. This follows easily from (iv).

Lemma 2.2. Let χ(x, d) be a simple formula. Then there is some code c and
some b0 ∈ dcleq(d) such that χ(x, d) ∼kc φc(x, b0).

We say that c encodes χ(x, d).

Proof. Set kc = MR(χ(x, d)) and nc = |x|. Let p be the global type of rang
kc containing χ(x, d), with canonical basis b0. We find a formula φ(x, b0) in
p of rank k and degree 1. Choose a generic realization a0 of φ(x, b0). For
each s ⊂ {1, . . . , nc} set kc,s = MR(a0/b0a0s). By strengthening φ(x, b0) ap-
propriately we may assume that φc(a, b0) implies that the components of a are
pairwise different, and that tr(a/b0as) ≤ kc,s and tr(as/b0) ≤ (kc − kc,s) for all
realizations a of φ(x, b0).

Consider now the following property E(b, b′):

• φ(x, b) implies that the components of x are pairwise disjoint.

• φ(x, b) has Morley rank kc and degree 1.

• tr(a/bas) ≤ kc,s and tr(as/b) ≤ (ks − kc,s) for all realizations a of φ(x, b).

• φ(x, b) ∼kc φ(x, b′) implies that b = b′.

E holds for all b, b′ realizing the type of b0. Moreover, E is equivalent to an
infinite disjunction of formulae ε(y, y′). Therefore, there is some θ(y) ∈ tp(b0)
such that |= θ(y) ∧ θ(y′) → E(y, y′). Set

φc(x, y) = φ(x, y) ∧ θ(y).

Let a be a generic realization of φc(x, b). Then tr(a/bas) = kc,s follows from
tr(a/bas) ≤ kc,s, tr(as/b) ≤ (kc−kc,s) and tr(a/b) = kc. By simplicity of χ(x, d)
we have kc,{i} < kc for all i, which in turn implies that all non–empty φc(x, b)
are simple.

2We assume that φc(x, b) is non-empty for some b.
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Let c be a code, φc(x, b) non-empty and p ∈ S(b) the type of rank kc de-
termined by φ(x, b). Hence, b lies in the definable closure of a sufficiently large
segment of a Morley sequence of p. Let mc be some upper bound for the length
of such a segment.

Lemma 2.3. For every code c and every integer µ ≥ mc − 1 there exists some
formula Ψc(x0, . . . , xµ, y) without parameters satisfying the following:

(v) Given a Morley sequence e0, . . . , eµ of φ(x, b), then |= Ψc(e0, . . . , eµ, b).

(vi) For all e0, . . . , eµ, b realizing Ψc the ei’s are pairwise disjoint realizations
of φc(x, b).

(vii) Let e0, . . . , eµ, b realize Ψc. Then b lies in the definable closure of any mc

many ei’s.

We say that “x0, . . . , xµ is a pseudo Morley sequence of c over y”.

Proof. The statement “(ei) is a Morley sequence of φc(x, b)” can be described by
a partial type M(e0, . . . , b). Likewise, properties (vi) and (vii) can be described
by an infinite disjunction D(e0, . . . , b). Since non-empty φc(x, b) are simple, it
follows that |= M → D. Hence we may choose a sufficiently strong formula Ψc

in M with the desired properties.

Choose now for every code (and every µ)3 a formula Ψc as above.

Let c be a code and σ some permutation of {1, . . . , nc}. Then cσ defined by

φcσ (xσ, y) = φc(x, y)

is also a code. Similarly,

Ψcσ(x̄σ, y) = Ψc(x̄, y)

defines a pseudo Morley sequence of cσ.

We consider two codes c and c′ to be equivalent if nc = nc′ , mc = mc′ , and

• For every b there is some b′ such that φc(x, b) ≡ φc′(x, b
′) and Ψc(x̄, b) ≡

Ψc′(x̄, b
′) in T .

• Similarly permuting c and c′.

Theorem 2.4. There is a collection of codes C such that:

(viii) Every simple formula can be encoded by exactly one c ∈ C.

(ix) For every c ∈ C and every permutation σ, we have that cσ is equivalent to
a code in C.4

In [8] it was stated that one could find such a set C closed under permuta-
tions, which is stronger than (ix). This is not true.

3In the proof of 2.4 this choice may be modified.
4In fact, we find a collection C such that every cσ is equivalent to some permutation of c

which lies in C.
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Proof. Work inside some countable ω–saturated modelM of T and list all simple
formulae χi, i = 1, 2, . . . , with parameters in M . We need only show that every
χi may be encoded by some c ∈ C. We build up C as the union of an increasing
sequence ∅ = C0 ⊂ C1 ⊂ · · · of finite sets. Suppose by induction on i that Ci−1

has already been constructed and satisfies (ix). If χi may be encoded by some
element in Ci−1, then set Ci = Ci+1. Otherwise, choose some code c and some
b0 with φc(x, b0) ∼kc χi. Replace φc by

φc(x, y) ∧ “φc(x, y) cannot be encoded by any element of Ci−1.”

We obtain a new code which still encodes χi. Therefore, we may assume that no
permutation of c encodes a formula which may be also encoded by some element
of Ci−1. Let G be now the group of all permutations σ ∈ Sym(nc) with

φc(x, b0) ∼
kc φcσ (x, b′0)

)

for some realization b′0 of p, the type of b0. It follows that b′0 is uniquely deter-
mined and hence given by a ∅-definable function of b0. Write b′0 = bσ0 .

After strengthening φc(x, y) with an appropriate subset5 of p, we may assume
that for all b with non-empty φc(x, b) and all σ there is a bσ with φc(x, b) ∼kc

φcσ (x, bσ) iff σ ∈ G.
It is easy to see that

φd(x, y) =
∧

σ∈G

φcσ (x, yσ)

defines a code which still encodes χi. Likewise,

Ψd(x̄, y) =
∧

σ∈G

Ψcσ(x̄, yσ)

defines pseudo Morley sequences of d.
Moreover, φd(x, y) ≡ φdσ(x, yσ) and Ψd(x̄, y) ≡ Ψdσ(x̄, yσ) for all σ ∈ G.

Hence d and dσ are equivalent. Finally, choose representatives ρ1, . . . , ρr of the
right cosets of G in Sym(nc) and set Ci = Ci−1 ∪ {dρ1 , . . . , dρr}.

3 The δ–function

From now on, T1 and T2 are two strongly minimal theories6, formulated in two
disjoint languages L1 and L2.

We assume the following

QE-Hypothesis. T1 and T2 have quantifier elimination, and L1 and L2 are
pure relational languages.

5 Choose ρ′(y) ∈ tp(b0) such that |= ¬ρ′(bσ
0
) for all σ 6∈ G. The aforementioned subset of

p is

ρ(y) =
^

σ∈G

ρ′(bσ) ∧
^

σ 6∈G

¬ρ′(bσ)

6Countability and DMP of Ti will not be used in this section.
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by considering Morleyizations of T1 and T2. We may also assume that φc and Ψc

are quantifier-free for the T1–Codes and the T2–Codes. Types tpi(a/B) in each
theory Ti are always quantifier-free types. These assumptions will be dropped
in section 7.

Let K be the class of all models of T ∀
1 ∪ T ∀

2 . We also allow ∅ to be in K. If
Ci is some monster model of Ti, we may see elements of K simultaneously as
subsets of C1 and C2.

Given a finite A ∈ K, define

δ(A) = tr1(A) + tr2(A) − |A|.

The following hold

δ(∅) = 0(1)

δ({a}) ≤ 1(2)

δ(A ∪B) + δ(A ∩B) ≤ δ(A) + δ(B)(3)

If A \B is finite, we set

δ(A/B) = tr1(A/B) + tr2(A/B) − |A \B|.

For B finite, it follows that δ(A/B) = δ(A ∪B) − δ(B).
We say that B is strong in A if B ⊂ A and δ(A′/B) ≥ 0 for all finite A′ ⊂ A.

Denote this by
B ≤ A.

An element a ∈ A is algebraic over B ⊂ A if a is algebraic over B either in
the sense of T1 or in the sense of T2. A is transcendental over B if no a ∈ A \B
is algebraic over B.

B � A is minimal if B ≤ A′ ≤ A for no A′ properly contained between B
and A.

Lemma 3.1. A proper strong extension B ≤ A is minimal if and only if
δ(A/A′) < 0 for all A′ properly contained between B and A.

Proof. One direction is clear, since A′ ≤ A implies that δ(A/A′) ≥ 0. On the
other hand, if δ(A/A′) ≥ 0 for some A′, we may choose A′ such that δ(A/A′) is
maximal. Hence A′ ≤ A, which implies that A is not minimal over B.

Note that A \B is finite for minimal extensions.

Lemma 3.2. Let B ≤ A be a minimal extension of elements in K. Then one
of the following hold:

(I) δ(A/B) = 0 and A = B ∪ {a} for some element a ∈ A \B algebraic over
B. (algebraic minimal extension)

(II) δ(A/B) = 0 and A is transcendental over B. (prealgebraic minimal
extension)

(III) δ(A/B) = 1 and A = B ∪ {a} for some a in A transcendental over B.
(transcendental minimal extension)
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Note that |A \B| ≥ 2 in the prealgebraic case.

Proof. If A \ B contains some algebraic element a, then δ(a/B) = 0. Hence
B ∪ {a} = A.

Otherwise, two cases apply: if δ(A/B) = 0, then the extension is prealgebraic
minimal. Otherwise, δ(A′/B) ≥ 1 for each B ( A′ ⊂ A. Given any a ∈ A \ B,
we have that B ∪ {a} ≤ A and hence B ∪ {a} = A.

Define K0 ⊂ K as the subclass

K0 = {M ∈ K | ∅ ≤M}.

It is easy to see that K0 may be described by a collection of universal L1 ∪L2–
sentences. The following lemmas follow easily from (1), (2) and (3).

Lemma 3.3. Let M in K0 and A a finite subset of M . Set

d(A) = min
A⊂A′⊂M

δ(A′).

Then d is the dimension function a pregeometry, i.e. d satisfies (1), (2), (3)
and

d(A) ≥ 0(4)

A ⊂ B ⇒ d(A) ≤ d(B)(5)

Lemma 3.4. Let M ∈ K0 and A a finite subset of M . Take a minimal superset
A′ of A with δ(A′) = d(A). Then A′ is the smallest strong subset cl(A) of M
containing A, called the closure of A.

4 Prealgebraic codes

From now on, T1 and T2 are two countable strongly minimal theories with DMP
as in Theorem 1. The QE-Hypothesis from section 3 holds all throughout this
and the next sections (5,6).

Fix for each Ti a collection Ci of codes as in Theorem 2.4. A prealgebraic
code c = (c1, c2) consists of a code c1 ∈ C1 and a code c2 ∈ C2 with the following
properties:

• nc := nc1
= nc2

= kc1
+ kc2

• For each proper non-empty subset s of {1, . . . , nc},

kc1,s + kc2,s − (nc − |s|) < 0
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Set mc = max(mc1
,mc2

). Note that simplicity of φci
(x, b) implies that

nc ≥ 2.

For each permutation σ, the code

cσ = (cσ1 , c
σ
2 )

is also prealgebraic.

Some explanatory remarks: T eq
1 and T eq

2 share only their home sort. An
element b ∈ dcleq(B) is a pair b = (b1, b2) with bi ∈ dcleqi(B) for i = 1, 2.
Likewise for acleq(B). A generic realization of φc(x, b) (over B) is a generic
realization of φci

(x, bi) (over B) in Ti for i = 1, 2. A Morley sequence of
φc(x, b) is a Morley sequence both of φc1

(x, b1) and φc2
(x, b2). A pseudo Morley

sequence of c over b is a realization of both Ψc1
(x̄, b1) and Ψc2

(x̄, b2). We say
that M is independent from A over B if M is independent from A over B both
in T1 and T2.

Lemma 4.1. Let B ≤ B∪{a1, . . . , an} be a prealgebraic minimal extension and
a = (a1, . . . , an). Then there is some prealgebraic code c and b ∈ acleq(B) such
that a is a generic realization of φc(a, b).

Proof. Fix i ∈ {1, 2} and choose di ∈ acleqi(B) such that tpi(a/Bdi) is sta-
tionary, and χi(x, di) ∈ tpi(a/Bdi) with Morley rank MRi(a/Bdi) and degree
1. Since A/B is transcendental, the formula χi(x, di) is simple. Choose some
Ti–code ci ∈ Ci and some bi ∈ dcleqi(di) with χi(x, di) ∼kci φci

(x, bi). It follows
from δ(A/B) = 0 that kc1

+ kc2
= n. Moreover, kc1,s + kc2,s − (n − |s|) < 0

holds by 3.1.

The following lemma is proved similarly.

Lemma 4.2. Let B ∈ K, c a prealgebraic code and b ∈ acleq(B). Take a
generic realization a = (a1, . . . , anc

) of φc(x, b) over B. Then B ∪ {a1, . . . , anc
}

is a prealgebraic minimal extension of B.

Note that the isomorphism type of a over B is uniquely determined.

Lemma 4.3. Let B ⊂ A in K, c a prealgebraic Code, b in acleq(B) and a ∈ A
a realization of φc(x, b) which does not lie completely in B. Then

1. δ(a/B) ≤ 0.

2. If δ(a/B) = 0, then a is a generic realization of φc(x, b) over B.

Proof. Let s = {i | ai ∈ B}. Since a is not completely contained in B, then s is
a proper subset of {1, . . . , nc}. Therefore

δ(a/B) = tr1(a/B) + tr2(a/B) − (n− |s|) ≤ kc1,s + kc2,s − (n− |s|)

If s 6= ∅, then the right-hand side is negative. If s = ∅, we have that

δ(a/B) = tr1(a/B) + tr2(a/B) − n ≤ kc1
+ kc2

− n = 0

So, δ(a/B) = 0 implies that tri(a/B) = kci
.

8



Lemma 4.4. Let M ≤ N be a strong extension of structures in K and e0, . . . , eµ

a pseudo Morley sequence of c in N over b. Then one of the following hold:

• b ∈ dcleq(M)

• At least µ− ncmc + 1 many ei’s lie in N \M .

Proof. Permute the ei’s so that e0, . . . , er0−1 are in M and er1 , . . . , eµ(c) lie in
M ′ \ M . Hence 0 ≤ r0 ≤ r1 ≤ µ(c) + 1. Possibly the ei’s do not form a
pseudo Morley sequence of c after permutation, however they are still disjoint
realizations of φc(x, b). Assume b 6∈ dcleq(M). Then (vii) implies r0 < mc. We
need only to show that r1 ≤ mcnc. Suppose that mc ≤ r1.

Define δ(i) = δ(ei/Me0 · · · ei−1). For i < r1 the following upper bound
holds7 δ(i) ≤ (nc−1). If mc ≤ i < r1, then δ(i) < 0 since b ∈ dcleq(Me0 · · · ei−1)
by 4.3. Therefore

0 ≤ δ(e0 · · · er1−1/M) =
∑

i<r1

δ(i) =
∑

i<mc

δ(i) +
∑

mc≤i<r1

δ(i)

≤ mc(nc − 1) − (r1 −mc).

The above inequality proves the claim.

5 The class Kµ

Let µ∗ be a function that assigns to each prealgebraic code c some natural
number µ∗(c). We suppose that

• µ∗(c) ≥ mc − 1

• For all triples l,m, n with m > 0 there are only finitely many c’s with
µ∗(c) = l, mc = m and nc = n for each m > 0 and n. (Such µ∗ exist since
there are only countably many codes.)

• µ∗(c) = µ∗(d) if c is equivalent to some permutation of d8.

Define
µ(c) = mcnc + µ∗(c).

Note that µ(c) ≥ mc.

From now on, a pseudo Morley sequence denotes a pseudo Morley sequence
of length µ(c) + 1 for a prealgebraic code c. Given such a pseudo Morley se-
quence (ei), so is every (eσ

i ) for every permutation σ by (ix).

The class Kµ consists of the elements M ∈ K0 which do not contain any
pseudo Morley sequence.

Lemma 5.1. Let B be a finite strong subset of M ∈ Kµ and B/A a prealgebraic
minimal extension. Then there are only finitely many B–isomorphic copies of
A in M .

7Note that δ(A/B) ≤ |A/B| in general.
8Note that each permutation is equivalent to at most one prealgebraic code.
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Proof. Let A = B ∪ {a} for some tuple a and choose d ∈ acleq(B) with
tpi(a/Bdi) stationary. We need only show that tp1(a/Bdi) ∪ tp2(a/Bdi) has
only finitely many realizations in M . Choose a prealgebraic code c by 4.1 and
b ∈ acleq(B) with |= φc(a, b). We show that φc(x, b) cannot be infinitely often
realized in M . Otherwise, we obtain at least (µ(c)+1) many such realizations
ei with ei 6∈ B ∪ {e0, . . . , ei−1}. It follows from 4.3 that the ei’s form a Morley
sequence of φc(x, b) over B and hence a pseudo Morley sequence of c over b by
(v), which contradicts that M is in Kµ.

Corollary 5.2. Let B ≤ M ∈ Kµ, B ⊂ A finite with δ(A/B) = 0. Then there
are only finitely many B ≤ A′ ⊂M which are B-isomorphic to A.

Note that A′ ≤M automatically.

Proof. Decompose the extension A/B into a finite sequence of minimal ones.

Corollary 5.3. Let B be a finite subset of M ∈ Kµ. Then the d–closure of B:

cld(B) = {x ∈M | d(Bx) = d(B)}

is countable.

Proof. Recall that cld(B) is the union of all finite A′ ⊂M with cl(B) ⊂ A′ and
δ(A′/ cl(B)) = 0.

Lemma 5.4. If M ∈ Kµ, M ≤ N and |N \M | = 1, then N is also in Kµ.

Proof. Let (ei) be a pseudo Morley sequence of c over b in N . There is at most
one ei not in M . Now b ∈ dcleq(M) since µ(c) ≥ mc. It follows that every ei is
either in M or in N \M by 4.3. The latter cannot hold, since nc ≥ 2. Hence
(ei) is completely contained in M . Contradiction.

Theorem 5.5. Kµ (and hence the class of all finite structures in Kµ) has the
amalgamation property with respect to strong embeddings.

Proof. Let B ≤ M and B ≤ A be structures in Kµ. We need to find a strong
extension M ′ ∈ Kµ of M and some B ≤ A′ ≤ M ′ isomorphic to A over B.
We may assume that both A/B and M/B are minimal. We will show that
either a “free amalgam” M ′ of M and A over B is in Kµ or that M and A are
B–isomorphic.

Case 1: A/B is an algebraic minimal extension. Suppose that A = B ∪ {a} for
some a algebraic over B in T1 and transcendental over B in T2. Two possible
(non-exclusive) cases may arise.

Subcase 1.1: tp1(a/B) is realized in M by some a′. Then a′/B is transcendental
in T2. Hence B ∪ {a′} is B–isomorphic to A and strong in M . By minimality,
M = B ∪ {a′}.

Subcase 1.2: There is some a′ 6∈ M realizing tp1(a/B). Define M ′ = M ∪ {a}
by letting a have the type of a′ over M in the sense of T1 and be transcendental
over M in the sense of T2. Then M ′ is a free amalgam of M and A over B,
i.e. M ∩ A = B and M is independent from A over B. It is easy to see that
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M ≤M ′ and A ≤M ′ for such amalgams. Now, M ′ ∈ Kµ by 5.4.

Case 2: A/B is transcendental. Then there is a free amalgam M ′ of M and A
as above. Suppose that M ′ is not in Kµ. Then M ′ contains a pseudo Morley
sequence (ei) of c over b. Apply Lemma 4.4 to the extension M ′/M to obtain
one of the following cases.

Subcase 2.1: b ∈ dcleq(M). Since M is in Kµ, not all members of the pseudo
Morley sequence lie in M . Let ei 6∈ M . By 4.3 ei is a generic realization of
φc(x, b) over M . Independence of M and ei over B yields that b in acleq(B) by
2.1. Since B ∈ Kµ, there is some ej not completely contained in B. Again, ej

is a generic realization of φc(x, b) over B. It follows that M = B ∪ {ej} and
A = B ∪ {ei} are isomorphic over B.

Subcase 2.2: More than µ∗(c) many ei’s lie in M ′ \M . Since µ∗(c) + 1 ≥ mc,
we have that b ∈ dcleq(A). Proceed now as in subcase 2.1.

A structure M ∈ Kµ is rich if for every finite B ≤ M and every finite
B ≤ A ∈ Kµ there is some B-isomorphic copy of A in M . We will show in the
next section that rich structures are models of T1 ∪ T2.

Corollary 5.6. There is a unique (up to isomorphism) countable rich structure
Kµ. Any two rich structures are (L1 ∪ L2)∞,ω–equivalent.

6 The theory T µ

Lemma 6.1. Let M ∈ Kµ, b ∈ dcleq(M), a |= φc(x, b) generic over B and M ′

the prealgebraic minimal extension M ∪ {a1, · · ·anc
}. If M ′ is not in Kµ, then

one of the following hold.

(a) M ′ contains a pseudo Morley sequence of c over b, all whose elements but
possibly one are contained in M

(b) M ′ contains a pseudo Morley sequence for some code c′ with more than
µ∗(c′) many elements in M ′ \M . Moreover, mc′ > 0.

Proof. Let (e′i) be a pseudo Morley sequence of c′ over b′. If (b) does not
hold, it follows that b ∈ dcleq(M) by 4.4. There must be some ei not completely
contained in M , which is a B–generic realization of φc′(x, b

′) by 4.3. Minimality
of M ′/M yields that ei is some permutation of a. After permutation of the
pseudo Morley sequences, we may assume that ei = a. Hence φc′(x, b

′) ∼kc

φc(x, b), so c = c′ and b = b′.

Corollary 6.2.

1. Let c be a prealgebraic code. The statement “M contains no pseudo Morley
sequence for c” can be expressed by a universal L1 ∪ L2–sentence.

2. Let c be as above, M ∈ Kµ a model of T1 ∪ T2. The statement “For no
b ∈ dcleq(M) and generic realization a of φc(x, b) is M ∪ {a1, . . . , anc

} in
Kµ” can be expressed by an inductive L1 ∪ L2–sentence.
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Proof. 1. Let Ψi(x̄) be quantifier-free and Ti–equivalent to ∃yΨci
(x̄, y). Hence,

the desired sentence is
¬∃x̄ (Ψ1(x̄) ∧ Ψ2(x̄))

2. Let i ∈ {1, 2} and M be some elementary substructure of Ci. Take m ∈ M
and φ(x,m) be some Li–formula of rank k and degree 1. Pick some M–generic
realization a ∈ Ci of φ(x,m). Then every quantifier-free property ψ(a,m) of
a,m is equivalent to some quantifier-free property ψ∗(m) of m: Set

ψ∗(y) = MRx

(

φ(x, y) ∧ ψ(x, y)
) .

= k.

The above shows that for all M ∈ K and for all M–generic realization a of
φc(x, b) every L1 ∪ L2–sentence over M ∪ {a1 . . . , anc

} can be transformed into
one L1 ∪ L2–sentence over M, b.

The claim follows now by 6.1, since only finitely many codes c′ need to be
considered in case (b), namely those with mc′ > 0 and

(µ∗(c′) + 1)nc′ ≤ |M ′ \M | = nc.

Models M of the L1 ∪ L2–theory T µ will be described by the following
properties. Lemmas 4.1 and 4.2 and the above show that the axioms can be
first-order described.

Axioms of T µ.

(a) M ∈ Kµ

(b) T1 ∪ T2

(c) No prealgebraic minimal extension of M lies in Kµ.

It is easy to see that M is a model of (b) if and only if M is infinite and
has no algebraic minimal extensions. Hence, M is a model of (b) and (c) if and
only if M is infinite and has no minimal (or proper) extensions M ′ ∈ Kµ with
δ(M ′/M) = 0.

Theorem 6.3. An L1 ∪ L2 structure is rich if and only if it is an ω–saturated
model of T µ.

Proof. Let M |= T µ be ω–saturated. To show that M is rich, we need only
consider a finite strong subset B of M and a minimal strong extension A of B
in Kµ. We aim to show that M contains a B-isomorphic copy of A.

Case (I/II): A/B is algebraic or prealgebraic. We can amalgam M and A in Kµ,
however M has no proper algebraic or prealgebraic extensions in Kµ. Therefore
there must be a B–copy of A in M .

Case (III): A = B ∪{a} is transcendental. We want some a′ ∈M transcenden-
tal over B with B∪{a′} ≤M . By saturation of M (note that a′ satisfies a given
partial type over B), it suffices to find a′ in some elementary extension M ′ of

12



M . If M ′ is uncountable, there is some a′ ∈ M ′ \ cld(B) by 5.3. Equivalently,
B ∪ {a′} ≤M ′.

Let M be now a rich structure.

Axiom (b): Let a be some element in acl1(M) transcendental over M in T2.
There is some finite subset B of M witnessing 1–algebraicity of a. We may
assume that B ≤ M . By lemma 5.4, B ≤ B ∪ {a} ∈ Kµ, so there exists some
copy of a over B in M . It follows that M is acl1–closed. Since M is infinite9 it
is a model of T1. Likewise for T2.

Axiom (c): Let a be a generic realization of φc(x, b) over M such that M ∪ {a}
is in Kµ. Choose some finite strong subset C of M with b ∈ dcleq(C). Then
C ≤ C ∪{a}, so there is a copy a′ of a in M over C with C′ = C ∪{a′} ≤M by
richness of M . Iterate to obtain a sufficiently large Morley sequence a′, a′′, . . .
of φc(x, b) in M . This contradicts that M ∈ Kµ.

Choose now some ω–saturated M ′ ≡M . The first part of the proof yields that
M ′ is rich. So M ′ ≡∞,ω M . So M is also ω–saturated.

7 Proof of the Main Theorem

In this section we drop the QE-Hypothesis of section 3. Hence in our class K
we replace isomorphic embeddings by bi-elementary maps, i.e. maps which are
both T1 and T2 elementary.

Corollary 7.1. T µ is complete. Two tuples a and a′ in models M and M ′ have
the same type if and only if there is some bi-elementary bijection

f : cl(a) → cl(a′)

with f(a) = a′.

Proof. The structure Kµ is a model of T µ, so T µ is consistent. Let M be any
model of T µ. By 6.3 there is some rich M ′ ≡ M . Since M ′ ≡∞,ω K

µ, we have
that T µ is complete.

Let M ≺ N and M ′ ≺ N ′ be two ω–saturated elementary extensions. It
is easy to see10 that M ≤ N and M ′ ≤ N ′, i.e. closure does not change. An
isomorphism f : cl(a) → cl(a′) belongs to some back-and-forth system of partial
isomorphisms between finite strong subsets ofM ′ andN ′. Hence f is elementary.

For the other direction, suppose that a and a′ have the same type. Then
there is some isomorphic embedding f : cl(a) → M ′ mapping a to a′. Write
A′ = f(cl(a)). Then d(a) = δ(cl(a)) = δ(A′). Therefore d(a′) ≤ d(a) and by
symmetry d(a′) = d(a). Note that A′ has no proper subset A′′ containing a′

with δ(A′′) = d(a′) since cl(a) does not. Hence A′ = cl(a′).

9This follows also from 5.4.
10If M 6≤ N , there is some a ∈ N with δ(a/M) < 0. Find some finite B ≤ M with

δ(a/B) < 0. a realizes some L1 ∪ L2–formula witnessing this fact. However φ(x, b) is not
realized in M , so M 6≺ N .
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Theorem 7.2. T µ is strongly minimal and d is the dimension function of the
natural pregeometry on models of T µ. In particular

MR(ā/B) = d(ā/B)

.

Proof. All types tp(a/B) with d(a/B) = 0 are algebraic by 5.2. It follows from
7.1 that there is only one type with d(a/B) = 111. Therefore T is strongly
minimal. The rest follows easily since d describes the algebraic closure.

The above proves Theorem 1.

8 Remarks

It is easy to prove that T µ has the following properties:

• T µ has the DMP.

• For each i = 1, 2 every Li–formula φ(x, b) preserves its Morley rank and
degree from Ti in T µ.

• ([7]) Let M be a model of T µ which is an elementary substructure of N
according to both T1 and T2. Then M is an elementary substructure of
N .

We prove the last property. LetM andN be models of T µ withM � Li ≺ N � Li

for i = 1, 2. We show that M ≤ N . It follows then from 7.1 that N ≺M .
Recall that M has no extension M ′ in N with δ(M ′/M) = 0. If M is not

strong, there is some a ∈ N with δ(a/M) = −1 which is algebraic over M in
both T1 and T2. Contradiction.
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In preparation, 2006.

[3] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. Fusion over a vector space.
Submitted, 2005.

[4] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. On fields and colors.
Algebra i Logika, 2005. To appear.

[5] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. Red fields. Submitted,
2005.

[6] Assaf Hasson and Martin Hils. Fusion over sublanguages. J. Symbolic
Logic, 2005. to appear.

11This type has a unique extension to cl(B) hence cl(B) ∪ {a} is strong in the model we
work in.

14



[7] Kitty L. Holland. Model completeness of the new strongly minimal sets. J.
Symbolic Logic, 64(3):946–962, 1999.

[8] Ehud Hrushovski. Strongly minimal expansions of algebraically closed
fields. Israel J. Math., 79:129–151, 1992.

[9] Ehud Hrushovski. A new strongly minimal set. Annals Pure Appl. Logic,
62:147–166, 1993.

[10] Bruno Poizat. Le carré de l’egalité. J. Symbolic Logic, 64(3):1338–1355,
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