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Source This talk contains material from classical textbooks, mostly from
chapters 6,7 and 8 of Tent-Ziegler and chapter 6 and 8 from Marker.

Conventions We write lowercase letters for single elements or finite tuples.
We write “subset” for subsets – proper or not. We write “4” for symmetric
difference of formula: ϕ4ψ = (ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ). We write “t” for disjoint
unions of formulas, so ϕ t ψ is the formula ϕ ∨ ψ, but it is only defined on
disjoint formulas. We write we for many cups of coffee, the induced lack of
sleep and I.

Morley Rank
Ordinal-valued notion of dimension for formulas or definable sets.

Definition and basic properties

In a given structureM, we define by induction:

• MRM(ϕ) > 0 iff ϕ is consistent;

• MRM(ϕ) > α + 1 iff there are (ϕi)i<ω disjoint, each implying ϕ, and
each of MR > α;

• MRM(ϕ) > λ iff MR(ϕ) 6 α for all α < λ.

Note that ϕ and ϕi are allowed to have different parameters.
Given a complete theory T , we define MRT (ϕ(x, a)) to be MRM(ϕ) for

M � T ℵ0-saturated and containing a.
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Lemma 1. MRT (ϕ) is well defined, ie, it does not depend on the choice of
an ℵ0-saturated model.

Proof.

• If M is ℵ0-saturated and tpM(a) = tpM(b), then MRM(ϕ(x, a)) =
MRM(ϕ(x, b)).

– If MR=0 it’s clear, we proceed by induction.

– Anytime ϕ(x, a) = ϕ1(x, c1)t· · ·tϕn(x, cn), by saturation we can
find d1,· · ·, dn such that tpM(a, c) = tpM(b, d).

• IfM 4 N are both ℵ0-saturated, then MRM(ϕ) = MRN (ϕ).

– If MR=0 it’s clear, we proceed by induction.

– MRM(ϕ) 6 MRN (ϕ) is clear.

– In the other direction, we might have parameters from N , but we
can replace them by parameters fromM by saturation.

• LetM � T containing parameters of ϕ. Then:
N1

4 4
M N ∗

N2
4 4

.

In the following, we assume that structures are at least ℵ0-saturated –
equivalentely, we work in a monster.

It is easy to check that MR(ϕ∨ψ) = max(MR(ϕ),MR(ψ)). By definition,
we have MR(ϕ) = 0 iff ϕ(M) is finite (and non-empty). If ϕ is inconsistent,
we write MR(ϕ) = −∞. Since the Morley rank of ϕ(x, a) only depends on
tp(a) and there is no gap in the values of MR, we have:

Proposition 2. If MR(ϕ) > (2|T |)+, then MR(ϕ) > α for all α; we write
MR(ϕ) =∞.

Definition 3. We define an equivalence relation ϕ ∼α ψ by MR(ϕ4ψ) < α.
A formula of MR α is α-strongly-minimal if for any ψ, either ϕ ∧ ψ or

ϕ ∧ ¬ψ is of MR < α.
If a formula is of MR α, the maximal amount of definable subsets of ϕ(M)

of MR α is called the Morley Degree of ϕ.

Proposition 4. MD(ϕ) is well-defined (if MR(ϕ) is not ±∞): there is a
decomposition ϕ = ϕ1 t · · · t ϕd, with all ϕi α-strongly-minimal, unique up
to ∼α.
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Proof. It’s clear that if such a decomposition doesn’t exist, ϕ has MR > α.
To prove uniqueness, take ψ α-strongly-minimal implying ϕ; then there is
exactly one ϕi such that ϕi ∧ ψ is of rank α, and thus ψ ∼α ϕi.

• α-strongly-minimal ⇔ MR = α,MD = 1

• MR(ϕ) = 0⇒ MD(ϕ) = |ϕ(M)|

• 0-strongly-minimal ⇔ |ϕ(M)| = 1

• 1-strongly-minimal ⇔ strongly-minimal as usual

Definition 5. For a type p, we define:

MR(p) = min
ϕ∈p

(MR(ϕ)), and MD(p) = min
ϕ∈p,MR(ϕ)=MR(p)

(MD(ϕ))

We also write MR(A/B) = MR(tp(A/B)) and similarly for MD.

We have MR(A/B) = 0 iff A ⊂ acl(B).

In strongly minimal theories

Recall that acl is a pregeometry on strongly-minimal theories:

• A ⊂ B ⇒ acl(A) ⊂ acl(B)

• A ⊂ acl(A)

• acl(acl(A)) = acl(A)

• acl(A) =
⋃
A0⊂A finite acl(A0)

• b acl(Ac) \ acl(A)⇒ c ∈ acl(Ab)

The last property, called Exchange, might fail outside of strongly minimal
theories; the four others always hold.

Recall that a basis for A over B is a subset A′ such that acl(A′B) =
acl(AB) and for any X ( A′, acl(XB) ( acl(AB). dim(A/B) is the cardinal
of a basis of A over B; this is well defined.

We write A |̂
C
B if dim(a/C) = dim(a/BC) for all finite a ∈ A.

Theorem 6. In a strongly minimal theory, we have:∗

MR(a1,· · ·, an/B) = dim(a1,· · ·, an/B)

∗here a1 is a point, not a tuple.
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For n = 1, either dim(a/B) = 0 ⇔ a ∈ acl(B) ⇔ MR(a/B) = 0, or
dim(a/B) = 1 ⇔ a /∈ acl(B) ⇔ MR(a/B) > 1. By strong minimality, any
formula with 1 free variable is of MR6 1, so we are done.

The strategy for arbitrary n is the same: first we deal with the case
dim < n, then with the case dim = n.
Lemma 7. If b ∈ acl(Ca), MR(b/C) 6 MR(a/C).
Proof. We work by induction on α = MR(a/C). If α = 0, it is clear that
MR(b/C) = 0.

We have MR(b/Ca) = 0, let d = MD(b/Ca). We take ψ1(x) ∈ tp(a/C)
of MR α, and we take ψ2(a, y) ∈ tp(b/Ca) of MR 0 and MD d. We may
assumeM � ∀x∃6dy ψ2(x, y). Now let ϕ(x, y) = ψ1(x) ∧ ψ2(x, y). We have:

MR(∃yϕ(x, y)) = α and |ϕ(a′,M)| 6 d.

Consider χ(y) = ∃xϕ(x, y). We will proveMR(χ) 6 α; since χ ∈ tp(b/A),
this proves MR(b/A) 6 α.

Let χi be an infinite family defining disjoint subsets of χ, say with param-
eters in C ′. Let ψi(x) = ∃x(ϕ(x, y), χ(y)). ψi implies ∃yϕ(x, y), and since
any d+ 1 of the ψi are disjoint, at least one of them must have MR < α.

Take any b′ realizing χi(y). Then by definition of χ there is a′ realizing
ϕ(a′, b′). So b′ ∈ acl(C ′a′) and MR(a′/C ′) 6 MR(ψi) < α, so by induction,
MR(b′/C ′) < α. Because this is true for any b′, we conclude MR(χi) < α.

This lemma allows us to only consider the case where the ai are indepen-
dent over B, that is, dim(a1,· · ·, an/B) = n.
Proposition 8. In a strong minimal theory, the type of n independent ele-
ments over a given subset is uniquely determined.
Proof. In dim 1 it’s clear and has been done last week, prove the rest by
induction.

Thus any formula on n free variables must have MR6 n, so in particular,
MR(a1,· · ·, an/B) 6 n.

Remains to prove that if dim(a1,· · ·, an/B) = n, MR(a1,· · ·, an/B) = n.
• MR(a1,· · ·, an/Ba1) = n− 1.

• Let ψ ∈ tp(a1,· · ·, an/B). χ(x, a1) = ψ(x1,· · ·, xn) ∧ x1 = a1 has MR>
n− 1.

• If tp(a/B) = tp(a1/B), MR(χ(x, a)) = n− 1.

• {χ(x, a) | a ≡B a1} is a disjoint family of subsets of ψ, so MR(ψ) > n.

thm

4



Wanna fork?

From now on T is ω-stable; this is equivalent (in a countable language) to
saying that the Morley Rank is never ∞.

Definition 9.

• We write A |̂
C
B when MR(a/C) = MR(a/BC) for any finite a ∈ A.

• We say that tp(a/BC) forks over C when a 6 |̂
C
B.

• For A ⊂ B, p ∈ Sn(A), q ∈ Sn(B), we say that the extension p ⊂ q is
forking if MR(p) > MR(q), or equivalently if q forks over A.

• p ∈ Sn(C) is called stationary if for any C ⊂ D, p has a unique non-
forking extension to D.

One can define forking in arbitrary theories but who has time for that?
Certainly not us.

Lemma 10. If p ∈ Sn(A) has MD d and A ⊂ M, then there are exactly d
non-forking extension of p in Sn(M), and they are of MD 1.

Proof. If ϕ ∈ p realizes MR and MD of ϕ and ϕ = ϕ1t· · ·tϕd, then complete
types overM containing p ∪ {ϕi} are exactly the non-forking extensions of
p.

Proposition 11. IfM is κ-saturated and κ-homogeneous, any type forking
over a subset A smaller than κ has at least κ many conjugates over A.

No proof given.

Theorem 12 (Characterization of non-forking). T is stable if and only if
there is a special class of extensions of n-types, which we denote by p @ q,
with the following properties:

1. (Invariance) @ is invariant under Aut(M),

2. (Local character) There is a cardinal κ such that for q ∈ Sn(M) there
is C0 ⊂ C of cardinality at most κ such that q|C0 @ q.

3. (Weak Boundedness) For all p ∈ Sn(A) there is a cardinal µ such that
p has, for any A ⊂ B, at most µ extensions q ∈ Sn(B) with p @ q.

If @ satisfies in addition:
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4. (Existence) For all p ∈ Sn(A) and A ⊂ B, there is q ∈ Sn(B) such that
p @ q,

5. (Transitivity) p @ q @ r implies p @ r,

6. (Weak Monotonicity) p @ r and p ⊂ q ⊂ r implies p @ q,

then @ coincides with the non-forking relation.

If we have time, we will prove that in stable theories, those conditions
characterize non-forking.

Canonical bases

Definition 13.

• a ∈ M is called a canonical parameter for a definable set D ⊂ M if
for any σ ∈ Aut(M), σ(a) = a iff D is invariant under σ.

• A ∈M is called a canonical base for a type p if any σ ∈ Aut(M) fixes
A pointwise iff p is invariant under σ.

Lemma 14. Any definable set has an imaginary canonical parameter, that
is, a canonical parameter inMeq.

Proof. Write X = ϕ(M,a). Define x ∼ y by ϕ(M,x) = ϕ(M, y). (a/ ∼) ∈
Meq is a canonical parameter for X.

Note that the canonical parameter lies in dcleq(a), also, EI is equivalent
to saying each set has a (real) canonical parameter.

Lemma 15. Any definable type has an imaginary canonical base.

Proof.

• Bϕ = {b ∈M | ϕ(x, b) ∈ p} is definable by assumption

• σp = p iff σ(Bϕ) = Bϕ for all ϕ

• Since Bϕ is definable, it has a canonical parameter aϕ ∈Meq

• A = {aϕ | ϕ ∈ L} is an imaginary canonical base for p.

Proposition 16. In an ω-stable theory, for any formulas ϕ(x, a) of MR α
and ψ(x, y), the set {b ∈M | MR(ϕ(x, a) ∧ ψ(x, b)) = α} is a-definable.
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Proof. Write χ(x, b) for ϕ(x, a) ∧ ψ(x, b).

• We might assume MD(ϕ) = 1.

• If MR(χ(x, c)) = α, there is a finite Xc ⊂ χ(M, c) such that if Xc ⊂
ψ(M, b), MR(χ(x, b)) = α.

– Chose a0 ∈ χ(M, c). If we can’t find b0 such that a0 ∈ ψ(M, b0)
and MR(χ(x, b0)) < α, then we can take Xc = a0. Otherwise we
take such a b0 and continue by induction.

– We have MR(χ(x, c) ∧
∧
i6n ¬ψ(x, bi)) = α, so we can take an+1

in there. Once again, if Xc = {a0,· · ·, an} works, we’re done;
otherwise there is bn+1 such that {a0,· · ·, an+1} ⊂ ψ(x, bn+1) and
MR(χ(x, bn+1)) < α.

– It has to stop because ψ(ai, bj) holds iff i 6 j.

• Let Y = {X ⊂ ϕ(M, a) finite | X ⊂ ψ(M, b)⇒ MR(χ(x, b)) = α} and
let θX(y) =

∧
x∈X ψ(x, y). Now MR(χ(x, b)) = α iff

∨
X∈Y θX(b).

• We have the same result for ¬ψ.

• We move to a pair (M,M∗) whereM 4M∗ andM∗ isM-saturated.
We consider ϕ onM and ψ onM∗.

• By saturation we can finitize the disjunction, thus we have definability.

• If σ(a) = a, MR(χ(x, b)) = MR(χ(x, σ(b))); thus we have a-definability.

Let ϕ ∈ p realize MR and MD of p, then p = {ψ | MR(ϕ ∧ ψ) = α}, thus:

Corollary 17. In an ω-stable theory, any p ∈ Sn(A) is definable over a finite
A0 ⊂ A, and thus has a finite imaginary canonical base in dcleq(A0).

Theorem 18. In an ω-stable theory, if p ∈ Sn(A) and MD(p) = 1, then any
non-forking extension q of p is A-definable.

If MD(p) > 1, there is a ∈ acleq(A) such that q is Aa-definable.

Proof. In degree 1, we have q = {ψ(x, b) | MR(ϕ ∧ ψ) = α, b ∈ B} ∈ Sn(B),
so we might use the same definition than for p, needing only parameters
appearing in ϕ.

In degree d > 1:
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• FixM containing B, q (hence p) has a non-forking extension q∗ toM.
q∗ is of MD 1.

• Take ϕ(x) ∈ p and ψ(x, b) ∈ q∗ realizing MR and MD of p and q∗. We
can assume ψ implies ϕ.

• X = {c | MR(ψ(x, c)) = α and ∀d, if MR(ψ(x, d)) = α, then either
MR(ψ(x, c) ∧ ψ(x, d)) < α or MR(ψ(x, c) ∧ ¬ψ(x, d)) < α} is A-
definable.

• c ∼ c′: MR(ψ(x, c) ∧ ψ(x, c′)) = α is a definable equivalence relation
on X.

• |X/ ∼| 6 d.

• For any c ∼ b, q = {χ | MR(χ ∧ ψ(x, c) = α)}, and q is Ac-definable.

• Because∼ has finitely many classes and is A-def, a = (b/ ∼) ∈ acleq(A),
and q is Aa-def.

Corollary 19. In an ω-stable theory, if p ∈ Sn(M) doesn’t fork over A, then
p has a canonical base in acleq(A). If p|A is stationary, p has a canonical
base in dcleq(A).

Proof. Fix ϕ(x, a) realizing MR(p), let X = {b | ϕ(x, b) ∈ p}. X is acl(A)eq
(resp. A)- definable and σp = p iff σ(X) = X. Now X has a canonical
parameter in dcleq(acleq(A)) (resp. dcleq(A)).

If p has a canonical base A, we write cb(p) = dcleq(A). This is well-
defined.

Corollary 20. In an ω-stable theory, p ∈ Sn(M) doesn’t fork over A iff
cb(p) ⊂ acleq(A).

Reformulating, a |̂
C
B iff p = tp(a/BC) doesn’t fork over C iff cb(p) ⊂

acleq(C).

Corollary 21. If A = acleq(A), p ∈ Sn(A) is stationary.

Proof. Let ϕ realise MR and MD of p. If MD=1, we’re done. If not, I can
write ϕ(x) = ϕ1(x, b1) t · · · t ϕd(x, bd). Let qi ∈ Sn(M) be the non-forking
extension of p containing ϕi. cb(qi) ⊆ acleq(A) = A, so we might assume
bi ∈ acleq(A). But then ϕ(x, bi) or ¬ϕ(x, bi) must be in p already; so we must
have d = 1.
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Proving non-forking characterization

Let @ check the conditions of theorem 12 and take p ∈ Sn(A), q ∈ Sn(B),
p ⊂ q. If p @ q:

• By 3 (Boundedness) there is µ such that p has at most µ @-extensions
to Sn(B).

• By proposition 11 we can take B ⊂ M such that any r ∈ Sn(M)
forking over A has at least µ conjugates over A.

• By 4 (Existence) and 5 (Transitivity) we can find p @ r ∈ Sn(M).

• By 1 (Invariance) p @ r′ for any conjugate; since there can only be < µ,
they are non-forking.

The other direction needs the full power or canonical bases.

Lemma 22. In an ω-stable theory, for p ∈ Sn(A) and κ > max(|T | , |A|),
in anyM strongly κ-homogeneous, all non-forking extensions of p toM are
conjugate.

Proof. Let q1, q2 be extensions of p.

• InMeq, there is an A-automorphism of acleq(A) sending q1| acleq(A) to
q2| acleq(A).

• By strong homogeneity, the reduct of this to the base sort extends
to an A-automorphism σ of M, which in turns corresponds to an A-
automorphism σeq ofMeq.

• Now σeqq1 is a non-forking extension of q2| acleq(A); but by stationarity
this must be q2.

Now we take p ⊂ q non-forking:

• Take M strongly κ-homogeneous for a large enough κ, take q ⊂ r ∈
Sn(M) non-forking and p @ r′ ∈ Sn(M).

• We know p ⊂ r′ is non-forking.

• By the previous lemma r and r′ are conjugate, so p @ r.

• By 6 (Monotonicity) we have p @ q.
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