Geometric Group Theory I Exercise Sheet 11

Let G be a free group. An element $g \in G$ is called a *primitive* element in G, if g is contained in a set $X \subseteq G$ such that G is free with basis X.

Exercise 1. Let G be a free group and g a primitive element in G. Let $H \leq G$ be a subgroup containing g. Show that g is a primitive element in H. Hint: Use the proof of the Kurosh Theorem (Theorem 7.52 in the lecture notes).

(4 Points)

Exercise 2. Show the following:

- a) A finitely generated torsion group is FA.
- b) If G is FA, then any quotient of G is also FA.
- c) Let H be a normal subgroup of G. Suppose H and G/H are FA, then G is FA.
- d) Let H be a subgroup of G of finite index. Suppose H is FA, then G is FA.¹

(8 Points)

Exercise 3. Let σ be an automorphism of a tree X with no fixed points. Let $m := \inf\{d(x, \sigma(x)) : x \in X^0\}$ where $d(x, \sigma(x))$ is the length of the geodesic from x to $\sigma(x)$ in X. Let Γ be the group generated by σ . Show that Γ acts freely on X and the quotient graph $\Gamma \setminus X$ contains exactly one circuit, and this circuit is of length m.

(4 Points)

Exercise 4. (Bonus exercise, 4 bonus points) Let G be a group acts non-inversively on a connected non-empty graph X. Let (\mathcal{G}, Y) be the quotient graph of groups with T a maximal subtree of Y. Let \tilde{Y} be the universal cover of (\mathcal{G}, Y) . Show that the map $\psi : \tilde{Y} \to X$ (defined on page 43 of the lecture notes) is locally surjective. Conclude that \tilde{Y} is the universal cover of X.

Hint: First show that it is enough to show that ψ is surjective from the star of \tilde{x} in \tilde{Y} to the star of \hat{x} in X for all $x \in T^0$.

Submission by **Wednesday** morning 11:00, **25.01.2023**, in Briefkasten 161. The exercise sheets should be solved and submitted in pairs. Tutorial: Fridays 12:00-14:00, in room SR1d. If you have questions about the problem sheet, please write to Tingxiang: tingxiangzou@gmail.com.

¹Remark: The converse of this statement is not true.