Dr. M. Bays Dr. T. Zou

Geometric Group Theory I Exercise Sheet 10

Exercise 1. Let C be a countable group with $(c_i)_{i\geq 1}$ an enumeration of elements in C. Let $F(\{a, b\})$ be the free group with generators $\{a, b\}$ and let $H := C * F(\{a, b\})$ be the free product.

- a) Show that $A_0 := \{a, a^b, \ldots, a^{b^n}, \ldots\}$ and $B_0 := \{b, c_1 b^a, \ldots, c_n b^{a^n}, \ldots\}$ generate free subgroups A and B in H respectively. Find an isomorphism $\phi : A \to B$. *Hint:* You only need to show B is free, since we have already shown A is free in Exercise Sheet 3, Exercise 4.
- b) Let ι_A, ι_B be the inclusions of A and B into H respectively. Then

$$\eta := \iota_B \circ \phi : A \to H$$

defines an embedding of A into H. Consider the HNN-extension $G := \text{HNN}(H, A, \iota_A, \eta)$. Show that G is generated by two elements. Conclude that any countable group embeds into a group generated by two elements.

Hint: Consider the presentation $G = \langle H, t | \cdots \rangle$, show that G is generated by $\{a, t\}$

(6 Points)

Exercise 2. Let (\mathcal{G}, Y) be a graph of groups with G_x trivial for all $x \in Y^0$.

In this exercise we will show that the universal cover of (\mathcal{G}, Y) is the universal cover of the graph Y, which gives an alternative proof of the existence of universal covers for connected non-empty graphs.

Let $T \subseteq Y$ be a maximal subtree. Let $G := \pi_1(Y, T)$. Recall that the universal cover of (\mathcal{G}, Y) with trivial vertex groups is defined as the oriented graph \tilde{Y} :

$$\begin{split} \dot{Y}^0 &:= \{(g, x) : g \in G, x \in Y^0\};\\ \tilde{Y}^+ &:= \{(g, e) : g \in G, e \in Y^+\};\\ \alpha((g, e)) &= (g, \alpha(e));\\ \omega((g, e)) &= (ge, \omega(e)). \end{split}$$

Let $p: \tilde{Y} \to Y$ be the map defined as p((g, x)) := x and p((g, e)) := e.

- a) Show that p is locally bijective.
- b) Show that \tilde{Y} is connected. You could copy the proof of connectedness in Theorem 7.32.
- c) Show that Y is acyclic.
 You cannot copy the proof of acylicity in Theorem 7.32, since it uses the existence of universal covers. You should find a direct proof instead.

(6 Points)

Exercise 3. Let G be a non-inversive group action on a tree X. We denote X^G to be the fixed subgraph of G, namely $(X^G)^0 := \{x \in X^0 : g(x) = x, \text{ for all } g \in G\}$ and $(X^G)^1 := \{e \in X^1 : g(e) = e, \text{ for all } g \in G\}$. We say a group G has property *(FA)* if whenever G acts non-inversively on a non-empty tree X, then $X^G \neq \emptyset$.

- a) Let $G = \pi_1(\mathcal{G}, Y, x)$ where (\mathcal{G}, Y) is a graph of groups. Suppose G has property (FA). Show that $G = G_y$ for some $y \in Y^0$.
- b) Let G be a group which has property (FA). Show that G is not isomorphic to any HNN-extension.

(4 Points)

Exercise 4. Deduce/verify the normal forms of the following groups from the normal form of $\pi_1(\mathcal{G}, Y, x)$ for a graph of groups (\mathcal{G}, Y) (see Corollary 3.34 (ii) in the lecture notes).

- a) The amalgamated free product $G_1 *_A G_2$;
- b) The HNN-extension $\text{HNN}(G, A, \phi_1, \phi_2)$;
- c) The fundamental group $\pi_1(Y, x)$ where Y is a connected graph and $x \in Y^0$. Hint: $\pi_1(Y, x)$ is a special case of $\pi_1(\mathcal{G}, Y, x)$ where \mathcal{G} contains only trivial groups.

(4 Points)

Exercise 5. Let G be a group acting non-inversively on a tree X. Let $Y := _{G} \setminus ^{X}$ be the quotient graph. For $x \in X^{0}$, define G_{x} to be the stabilizer of the vertex x, namely $G_{x} := \{g \in G : g(x) = x\}$. Let (\mathcal{G}, Y) be the quotient graph of groups (see Definition 7.36 in the lecture notes).

Show that the following are equivalent:

- a) Y is a tree;
- b) G is generated by $\{G_x : x \in X^0\};$
- c) G is generated by $\{G_y \in \mathcal{G} : y \in Y^0\}$.

(4 Points)

Submission by **Wednesday** morning 11:00, **11.01.2023**, in Briefkasten 161. The exercise sheets should be solved and submitted in pairs. Tutorial: Fridays 12:00-14:00, in room SR1d. If you have questions about the problem sheet, please write to Tingxiang: tingxiangzou@gmail.com.