Geometric Group Theory I

Exercise Sheet 9

Exercise 1.

Let $\phi_{1}: \mathbb{Z} \rightarrow \mathbb{Z}$ be the homomorphism mapping z to $3 z$, and let ϕ_{2} be the identity map on \mathbb{Z}. Describe the HNN-extension $\operatorname{HNN}\left(\mathbb{Z}, \mathbb{Z}, \phi_{1}, \phi_{2}\right)$ as a semi-direct product $A \rtimes \mathbb{Z}$ where $A \leq \mathbb{Q}$.
Hint: Use the presentation of HNN extensions and the presentation of a semi-direct product we saw on Exercise Sheet 4, Exercise 4.
(4 Points)

Exercise 2.

Let $A \leq G, B \leq H$ and $\phi: A \rightarrow B$ be an isomorphism. Show that the homomorphism from $G *_{A=B} H$ to the HNN-extension $\left\langle G * H, t \mid t^{-1} a t=\phi(a), a \in A\right\rangle$ induced by $g \mapsto t^{-1} g t$, $h \rightarrow h, g \in G, h \in H$, is an embedding.
(4 Points)

Exercise 3.

a) Let (\mathcal{G}, T) be a graph of groups, where T is a tree. Let $\mathcal{D}(\mathcal{G}, T)$ be the diagram of groups consisting groups $\left\{G_{x}: x \in T^{0}\right\} \cup\left\{G_{e}: e \in T^{+}\right\}$and embeddings $\phi_{e}: G_{e} \rightarrow$ $G_{\omega(e)}$ and $\phi_{\bar{e}}: G_{e} \rightarrow G_{\alpha(e)}$, for $e \in T^{+}$. Show that $\pi_{1}(\mathcal{G}, T, T)$ is isomorphic to the colimit of $\mathcal{D}(\mathcal{G}, T)$.
Hint: Use the presentations.
b) Let (\mathcal{G}, Y) be a graph of groups and T be a maximal subtree of Y. Let $\left(\left.\mathcal{G}\right|_{T}, T\right)$ be the restriction of (\mathcal{G}, Y) on T. Let $G^{\prime}:=\pi_{1}\left(\left.\mathcal{G}\right|_{T}, T, T\right)$. For any edge $e \in Y^{1} \backslash T^{1}$, denote $\phi_{e}^{\prime}: G_{e} \rightarrow G^{\prime}$ the embedding $\eta_{G_{\omega(e)}} \circ \phi_{e}$ where $\phi_{e}: G_{e} \rightarrow G_{\omega(e)}$ is the embedding given by (\mathcal{G}, T) and $\eta_{G_{\omega(e)}}: G_{\omega(e)} \rightarrow G^{\prime}$ is the natural embedding. Recall that Y / T is the graph obtained by contracting T in Y. Let $\left(\mathcal{G}^{\prime}, Y / T\right)$ be the graph of groups consisting G^{\prime} as the vertex group (note that Y / T has only one vertex $x:=T / \sim$), and for each $e \in Y^{1} \backslash T^{1}$, the embedding $\phi_{e}^{\prime}: G_{e} \rightarrow G^{\prime}$. Prove that

$$
\pi_{1}(\mathcal{G}, Y, T) \cong \pi_{1}\left(\mathcal{G}^{\prime}, Y / T, x\right) \text { 刁 }
$$

(4 Points)

[^0]
Exercise 4.

Let X be a connected non-empty graph and $x \in X^{0}$, and let $q: \widehat{X} \rightarrow X$ be a universal cover.
a) Show that there is an action of $\pi_{1}(X, x)$ on \widehat{X} which respects q, i.e. $q(g * \hat{x})=q(\hat{x})$ for all $\hat{x} \in \widehat{X}^{0}$ and $q(g * \hat{e})=q(\hat{e})$ for all $\hat{e} \in \widehat{X}^{1}$.
Hint: Use the construction of the universal cover.
b) Let $H \leq \pi_{1}(X, x)$ be a subgroup, then H acts on \widehat{X} by item a). Let X_{H} be the quotient graph ${ }_{H} \hat{X}^{\hat{X}}$ and $x_{H}:=H \hat{x} \in\left(X_{H}\right)^{0}$, where $q(\hat{x})=x$.
Show that q induces a natural morphism of graphs $q_{H}: X_{H} \rightarrow X$ such that $q_{H}\left(x_{H}\right)=x$. Let $\left(q_{H}\right)_{*}: \pi_{1}\left(X_{H}, x_{H}\right) \rightarrow \pi_{1}(X, x)$ be the pushforward of q_{H} as defined in Exercise 4 in Exercise Sheet 5. Show that $\left(q_{H}\right)_{*}\left(\pi_{1}\left(X_{H}, x_{H}\right)\right)=H$. Conclude that $\pi_{1}\left(X_{H}, x_{H}\right) \cong H$.
Hint: Use Exercise 4 b) in Exercise Sheet 5.

Submission by Wednesday morning 11:00, 14.12.2022, in Briefkasten 161.
The exercise sheets should be solved and submitted in pairs.
Tutorial: Fridays 12:00-14:00, in room SR1d.
If you have questions about the problem sheet, please write to Tingxiang: tingxiangzou@gmail.com.

[^0]: ${ }^{1}$ Combining a) and b) we see that the fundamental group of any graph of groups can be seen as an iterated HNN-extensions of some colimits of groups.

