## Geometric Group Theory I <br> Exercise Sheet 8

Let $T$ be a tree, we define the diameter of $T$, which takes value in $\mathbb{N} \cup\{\infty\}$, to be the supremum of the length of a reduced path in $T$. A vertex $x \in T^{0}$ is called terminal if there is only one edge $e \in T^{1}$ with $\omega(e)=x$.

Exercise 1. Let $T$ be a finite tree. Let $P$ be the set of all terminal vertices of $T$.
a) Show that the diameter of $T$ is finite and $P$ is non-empty.
b) Let $T-P$ be the graph defined by $(T-P)^{0}:=T^{0} \backslash P$ and

$$
(T-P)^{1}:=T^{1} \backslash\left\{e \in T^{1}: \alpha(e) \in P \text { or } \omega(e) \in P\right\} .
$$

Show that if $T$ has diameter $n \geq 2$, then $T-P$ is a tree of diameter $n-2$.
c) Suppose $T$ has diameter $n$. Let $S$ be the group of automorphisms of $T$. Show that if $n$ is even, then $S$ fixes a vertex (namely, there exists $x_{0} \in T^{0}$ such that $s\left(x_{0}\right)=x_{0}$ for all $s \in S$ ). And if $n$ is odd, then $S$ stabilizes a pair of edge $e, \bar{e}$ (namely, $s(e) \in\{e, \bar{e}\}$ and $s(\bar{e}) \in\{e, \bar{e}\}$ for all $s \in S)$.
Hint: Induction on the diameter $n$.

Let $T$ be a tree, and $X \subseteq T^{0}$, we define $\widetilde{X}$ be the subtree generated by $X$, i.e. the smallest subtree of $T$ which contains $X$.

## Exercise 2.

a) Let $\Gamma$ be a group acting on a tree $T$. Let $x \in T^{0}$ and $\widetilde{\Gamma x}$ be the subtree of $T$ generated by the orbit of $x$ under the action of $\Gamma$. Show that $\widetilde{\Gamma x}$ is invariant under the action of $\Gamma$. And if $\Gamma x$ is finite, then $\widetilde{\Gamma x}$ is finite.
b) Let $\Gamma \leq G:=G_{1} *_{A} G_{2}$ be a finite subgroup. Show that $\Gamma$ is contained in a conjugate of $G_{1}$ or $G_{2}$.
Hint: Let $G$ be acting on a tree $T$ such that ${ }_{G} T^{T}$ is a segment with the lift $x \xrightarrow{e} y$ such that $G_{x}=G_{1}, G_{y}=G_{2}$ and $G_{e}=A$ (see Theorem 6.5). Consider the action of $\Gamma$ on $\widetilde{\Gamma x}$ and use Exercise 1 item c) to conclude $\Gamma \in G_{a}$ for some vertex $a \in \widetilde{\Gamma x}$ (note that the action of $\Gamma$ is non-inversive).

Exercise 3. Let $G:=S_{3} *_{\mathbb{Z} / 2 \mathbb{Z}} S_{3}=: G_{1} *_{\mathbb{Z} / 2 \mathbb{Z}} G_{2}$. Sketch the tree of $G$ constructed in the Theorem 6.5 with at least 7 cosets of $G_{1}$ and 7 cosets of $G_{2}$. Indicate the action of the subgroup $\mathbb{Z} / 2 \mathbb{Z}$.
(4 Points)

Exercise 4. Describe the fundamental group of the following graph of groups

with respect to the left-hand point, where $\mathbb{Z} \stackrel{\cdot 3}{\longrightarrow} \mathbb{Z}$ is the homomorphism which sends $x$ to $3 x$, and similarly for $\mathbb{Z} \stackrel{\cdot 2}{\longrightarrow} \mathbb{Z}$.
(4 Points)

Submission by Wednesday morning 11:00, 07.12.2022, in Briefkasten 161.
The exercise sheets should be solved and submitted in pairs.
Tutorial: Fridays 12:00-14:00, in room SR1d.
If you have questions about the problem sheet, please write to Tingxiang: tingxiangzou@gmail.com.

