Geometric Group Theory I
 Exercise Sheet 1

Exercise 1. Consider the group $G=\mathrm{GL}_{m}(\mathbb{R}) \times \mathrm{GL}_{n}(\mathbb{R})$ and the set $X=\operatorname{Mat}_{m \times n}(\mathbb{R})$.
a) Show the following map:

$$
\begin{gathered}
G \times X \rightarrow X \\
((P, Q), A) \mapsto P \cdot A \cdot Q^{-1}
\end{gathered}
$$

is a group action of G on X.
b) Is this action transitive? Is it faithful? Please justify your answer.
c) Describe the orbit decomposition of X under this action.

Exercise 2. Consider the group G of rotations of the cube K in \mathbb{R}^{3}, i.e. the group of orientation-preserving isometries of \mathbb{R}^{3} which preserves K.
a) Show $|G|=24$ by considering the stabilizer of a vertex under the action of G on the set of vertices of K.
b) Show that $G \cong S_{4}$ where S_{4} is the symmetric group of degree 4 .

Hint: Consider the action of G on the set of 4 longest diagonals of K.
(4 Point)

Exercise 3. Let $A_{n} \leq S_{n}$ be the alternating group, i.e. the group which consists of even permutations of an n-element set.
a) Show that for $n \geq 3$, the group A_{n} is generated by 3 -cycles.
b) Show that for $n \geq 5$, the group A_{n} is generated by permutations of the form $(i j)(k l)$, namely $A_{n}=\langle(i j)(k l): i, j, k, l \leq n$ pairwise distinct \rangle.
c) Show that for $n \geq 3$, for any $\gamma \in S_{n} \backslash\{1\}$ there is a transposition in S_{n} which does not commute with γ.
d) Show that for $n \geq 5$, the group A_{n} is the only proper non-trivial normal subgroup of S_{n}.

Exercise 4. Let $n \geq 3$ and D_{n} be the dihedral group, i.e. the automorphism group of a regular n-gon.
a) Show that:
(i) $\left|D_{n}\right|=2 n$.
(ii) There are elements $d, s \in D_{n}$, such that $\langle d, s\rangle=D_{n}, d^{n}=1, s^{2}=1$ and $s d s=d^{-1}$.
(iii) $D_{n}=\langle d\rangle \rtimes\langle s\rangle$. Does $D_{n}=\langle d\rangle \times\langle s\rangle$ also hold?
b) Describe the center of D_{n}.
c) Let G be a finite group of order ≥ 6. Show that G is generated by two involutions if and only if G is a dihedral group.
Hint: Find a cyclic normal subgroup of index 2. Now use part a)(iii).

