Universität Münster Wintersemester 2022/23

Geometric Group Theory I Exercise Sheet 1

Exercise 1. Consider the group $G = \operatorname{GL}_m(\mathbb{R}) \times \operatorname{GL}_n(\mathbb{R})$ and the set $X = \operatorname{Mat}_{m \times n}(\mathbb{R})$.

a) Show the following map:

$$G \times X \to X$$

 $((P,Q), A) \mapsto P \cdot A \cdot Q^{-1}$

is a group action of G on X.

- b) Is this action transitive? Is it faithful? Please justify your answer.
- c) Describe the orbit decomposition of X under this action.

(4 Point)

Exercise 2. Consider the group G of rotations of the cube K in \mathbb{R}^3 , i.e. the group of orientation-preserving isometries of \mathbb{R}^3 which preserves K.

- a) Show |G| = 24 by considering the stabilizer of a vertex under the action of G on the set of vertices of K.
- b) Show that $G \cong S_4$ where S_4 is the symmetric group of degree 4. Hint: Consider the action of G on the set of 4 longest diagonals of K.

(4 Point)

Exercise 3. Let $A_n \leq S_n$ be the alternating group, i.e. the group which consists of even permutations of an *n*-element set.

- a) Show that for $n \ge 3$, the group A_n is generated by 3-cycles.
- b) Show that for $n \ge 5$, the group A_n is generated by permutations of the form $(i \ j)(k \ l)$, namely $A_n = \langle (i \ j)(k \ l) : i, j, k, l \le n$ pairwise distinct \rangle .
- c) Show that for $n \ge 3$, for any $\gamma \in S_n \setminus \{1\}$ there is a transposition in S_n which does not commute with γ .
- d) Show that for $n \ge 5$, the group A_n is the only proper non-trivial normal subgroup of S_n .

(4 Point)

Exercise 4. Let $n \ge 3$ and D_n be the *dihedral group*, i.e. the automorphism group of a regular *n*-gon.

- a) Show that:
 - (i) $|D_n| = 2n$.
 - (ii) There are elements $d, s \in D_n$, such that $\langle d, s \rangle = D_n$, $d^n = 1$, $s^2 = 1$ and $sds = d^{-1}$.
 - (iii) $D_n = \langle d \rangle \rtimes \langle s \rangle$. Does $D_n = \langle d \rangle \times \langle s \rangle$ also hold?
- b) Describe the center of D_n .
- c) Let G be a finite group of order ≥ 6 . Show that G is generated by two involutions if and only if G is a dihedral group. Hint: Find a cyclic normal subgroup of index 2. Now use part a)(iii).

(4 Point)