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1 Definition

Let A be a finite dimensional k-algebra (k a field) of finite global dimension.1 Denote by
modA the category of finite dimensional left A-modules. Every AM ∈ modA is also a right
End(AM)-module.

Definition. A module AT ∈ modA is called a partial tilting module if

1. pdA T ≤ 1 and

2. Ext1(AT,A T ) = 0.

It is called a tilting module if, in addition, the following condition holds:

3. There exists a short exact sequence 0 →A A →A T ′ →A T ′′ → 0 with AT ′,A T ′′ ∈
add(AT ).

(Here, add(AT ) denotes the modules which are direct summands of sums of AT .)

Remark. It can be shown that, if AT is a partial tilting module and A is basic, then 3. is
equivalent to the following condition:

3.′ AT has exactly n indecomposable direct summands, where n = rkK0(A), the rank of
the Grothendieck group of A (=number of isomorphism classes of simple A-modules).

There are also generalisations of tilting modules, cf. the next chapter.

One of the aims of tilting theory is to obtain new algebras from given algebras keeping (some
of) the structure of their module categories. We can construct a new algebra B from an
algebra A by taking a tilting module AT ∈ modA and letting B = End(AT ).

2 Brenner-Butler Theorem

Let A be a finite dimensional algebra of finite global dimension, and AT be an r-tilting module,
i.e.

1. pdA T ≤ r < ∞,

1The finite global dimension is used in order to have a triangle equivalence of the bounded derived category
D

b(A) with the homotopy category K
b(AP) of bounded complexes of projective A-modules (see [4, Chapter I,

Section 3.3].
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2. Exti(AT,A T ) = 0 for all i > 0, and

3. there exists an exact sequence 0 →A A →A T (0) → · · · →A T (s) → 0 with AT (j) ∈
add(AT ) for all j = 0, . . . , s.

One can show that we can always find a coresolution with s ≤ r. (This has been only stated
in the lecture, but here I will give a proof.)

Lemma. Let AT be an r-tilting module. Then there is an exact sequence 0 →A A →A T (0) →
· · · →A T (s) → 0 with AT (j) ∈ add(AT ) for all j = 0, . . . , s and s ≤ r.

Proof. By assumption, there is an exact sequence 0 →A A →A T (0) d0

→ · · ·
ds−1

→ A T (s) → 0.
Choose s minimal, and set Ki = ker di for 0 ≤ i ≤ s − 1. We get that Extj(T, Ki+1) =
Extj+1(T, Ki) for j ≥ 1. If s > r, then Ext1(T, Ks−1) = 0, therefore ds−1 is a retraction,
contradicting the minimality of s.

Let AM ∈ modA, B = End(AM). We can consider AM as an A-B-bimodule. The dual
D(AMB) is in fact a B-A-bimodule.

We have a canonical ring homomorphism A → End(D(MB)). (For tilting modules, this is
even an isomorphism as the next lemma will show.)

Theorem. There is a pair of adjoint functors F = HomA(AT,−) and G = T ⊗B − be-
tween mod A and mod B inducing inverse triangle equivalences between the bounded derived
categories Db(A) and Db(B), see e.g. [4, Chapter III, Section 2].

The following lemma shows that we obtain a tilting module for the algebra B by considering
T over its endomorphism ring.

Lemma. If AT is an r-tilting module, then D(TB) satisfies the following conditions:

1. idD(TB) ≤ r,

2. Exti
B(D(TB), D(TB)) = 0 for all i > 0, and

3. there is an exact sequence 0 →B U (s) → · · · →B U (0) → D(BB) → 0 with BU (j) ∈
add(D(TB)) for all j = 0, . . . , s.

Moreover, A
∼
→ End(D(TB)) canonically.

Proof. 1. Let us show that pdTB ≤ r:

Using the third condition for AT being an r-tilting module, the previous lemma shows
that there is a finite coresolution of AA by modules in add(AT ) of length s ≤ r. Apply
now HomA(−,A T ) to this resolution. Note that all HomA(AT (j),A T ) are projective as
B-modules.
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2. Use

D(TB) = Homk(TB, k) ∼= Homk(A ⊗A TB, k) ∼= HomA(ATB, Homk(AA, k))

= HomA(ATB, D(AA)) = F (D(AA)).

Using the triangular equivalence of Db(A) and Db(B) via F , we obtain:

Exti
B(D(TB), D(TB)) ∼= HomDb(B)(D(TB), Σi(D(TB)))) = HomDb(A)(D(AA), Σi(D(AA)))

= Exti
A(D(AA), D(AA)) =











0 for i > 0, since D(AA) is injective, and

HomA(D(AA), Homk(AA, k)) ∼= Homk(D(AA) ⊗A A, k)
∼= Homk(D(AA), k) ∼= AA for i = 0.

3. Take a projective resolution of AT , say

0 →A P (r) → · · · →A P (0) →A T → 0,

and apply HomA(−,A T ). This leads to a finite coresolution

0 → EndA(AT ) → HomA(AP (0),A T ) → · · · → HomA(AP (r),A T ) → 0

of End(AT ) = B. The resolution stops because Exti
A(AT,A T ) = 0 for all i > 0, and

HomA(AP (0),A T ) ∈ add(TB) by the isomorphism HomA(AA,A T ) ∼= TB. Dualise the
resolution.

Let now i be a non-negative integer. We set

Ei := {AX ∈ mod A | Extj
A(AT,A X) = 0 ∀j 6= i},

and

Ti := {BY ∈ mod B | Torj
B(TB,B Y ) = 0 ∀j 6= i}.

These are full subcategories.

The functors ExtiA(AT,−) : mod A → modB and Tori
B(TB,−) : mod B → mod A are denoted

by F i, Gi resp.

Theorem (Brenner-Butler). The categories Ei and Ti are equivalent under the restrictions
of the functors F i and Gi.

Proof. We have the triangle equivalence of Db(A) and Db(B) given by the corresponding
functors F and G in the derived categories, and F |Ei

= Σ−iF i|Ei
, and G|Ti

= ΣiGi|Ti
. Consider

Ei and Ti as full subcategories of the derived categories. F i|Ei
has values in Ti, and Gi|Ti

has
values in Ei.
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3 Examples

Take the path algebra of the quiver: ◦ ◦

◦

◦

//

!!CC
C

=={{{
.

The Auslander-Reiten quiver has the following shape:

•
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◦
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•
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Take the sum of the modules corresponding to the dark dots as a tilting module.

The tilted algebra has the following quiver: ◦

◦
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____ .

As AR-quiver we get the following:
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We identify now the subcategories E0, E1 in modA
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and T0, T1 in modB
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