Selected topics in representation theory – Torsion theories and tilting modules – WS 2005/06

This lecture will be about a result of Hoshino [2] relating general torsion theories and those given by tilting modules.

1 Torsion theories

Definition. A torsion theory is a pair $(\mathcal{T}, \mathcal{F})$ consisting of subcategories of a module category mod A with the following properties:

- $\operatorname{Hom}_A(X,Y) = 0$ for all $X \in \mathcal{T}$ and all $Y \in \mathcal{F}$.
- If $\operatorname{Hom}_A(X, Y) = 0$ for all $X \in \mathcal{T}$, then $Y \in \mathcal{F}$.
- If $\operatorname{Hom}_A(X, Y) = 0$ for all $Y \in \mathcal{F}$, then $X \in \mathcal{T}$.

By t(M) we denote the maximal torsion submodule of module $M \in \text{mod } A$. Then we get the *canonical exact sequence*

$$0 \to t(M) \to M \to M/t(M) \to 0,$$

and t(M/t(M)) = 0.

Lemma. Every tilting module $T \in \text{mod } A$ gives rise to a torsion theory $(\mathcal{T}(T), \mathcal{F}(T))$ by setting $\mathcal{T}(T) := \{M \in \text{mod } A \mid M \text{ is generated by } T\}$ and $\mathcal{F}(T) := \{M \in \text{mod } A \mid \text{Hom}_A(T, Y) = 0\} = \{M \in \text{mod } A \mid M \text{ is cogenerated by } \tau T\}.$

A natural question is the following: Given a torsion theory on mod A, are there conditions such that there exists a tilting module inducing the torsion theory?

Definition. Let C be a full subcategory of mod A. A module $M \in C$ is called *Ext-projective* (resp. *Ext-injective*) (in C) if $\text{Ext}_A^1(M, C) = 0$ (resp. $\text{Ext}_A^1(C, M) = 0$) for all $C \in C$.

We are now going to prove several Lemmas which will guarantee the existence of a tilting module inducing a given torsion theory in special cases.

Here are two Lemmas characterising Ext-projective (resp. Ext-injective) modules.

Lemma A. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory on mod A. Then $M \in \mathcal{F}$ is Ext-projective if and only if $M \cong P/t(P)$ for some projective module $P \in \text{mod } A$.

Proof. First, let $P \in \text{mod } A$ be projective. Consider the canonical exact sequence

$$0 \to t(P) \to P \to P/t(P) \to 0.$$

Now take any $Y \in \mathcal{F}$ and apply $\operatorname{Hom}_A(-, Y)$ to the sequence. We get the following exact sequence in the corresponding long exact sequence:

$$\operatorname{Hom}_A(t(P), Y) \to \operatorname{Ext}_A^1(P/t(P), Y) \to \operatorname{Ext}_A^1(P, Y).$$

Both $\operatorname{Hom}_A(t(P), Y)$ and $\operatorname{Ext}_A^1(P, Y)$ are zero, because $Y \in \mathcal{F}$ and P is projective. So $\operatorname{Ext}_A^1(P/t(P), Y) = 0$, and, therefore, P/t(P) is Ext-projective.

On the other hand, take an Ext-projective module $M \in \mathcal{F}$. Consider its projective cover $\varepsilon : P \to M$. The induced map $\overline{\varepsilon} : P/t(P) \to M$ is still surjective, because $M \in \mathcal{F}$ (and, therefore, t(P) is mapped to 0 by ε).

Let

$$0 \to \overline{K} \to P/t(P) \xrightarrow{\varepsilon} M \to 0$$

be the exact sequence for $\overline{\varepsilon}$. This sequence splits, because $\overline{K} \in \mathcal{F}$, (since $P/t(P) \in \mathcal{F}$,) and $M \in \mathcal{F}$ is Ext-projective.

So, M is a direct summand of P/t(P), therefore, of the form $\tilde{P}/t(\tilde{P})$ for some projective module $\tilde{P} \in \mod A$.

Lemma B. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory on mod A. Then $M \in \mathcal{T}$ is Ext-projective if and only if $\tau M \in \mathcal{F}$, where τ denotes the Auslander-Reiten translation. (Dually, $M \in \mathcal{F}$ is Ext-injective if and only if $\tau^- M \in \mathcal{T}$.)

Proof. Let $M \in \mathcal{T}$ with $\tau M \in \mathcal{F}$, and take any $N \in \mathcal{T}$. The map $D \operatorname{Hom}_A(N, \tau M) \to \operatorname{Ext}^1_A(M, N)$ is surjective.

Since $\operatorname{Hom}_A(N, \tau M) = 0$, because $\tau M \in \mathcal{F}$ and $N \in \mathcal{T}$, $D \operatorname{Hom}_A(N, \tau M)$ and, therefore, $\operatorname{Ext}_A^1(M, N)$ are both zero. So $M \in \mathcal{T}$ is Ext-projective.

Let now $M \in \mathcal{T}$ be Ext-projective. If M is projective, then $\tau M = 0 \in \mathcal{F}$. Otherwise, consider the canonical sequence for τM :

$$0 \to t(\tau M) \to \tau M \to \tau M/t(\tau M) \to 0.$$

Apply $\operatorname{Hom}_A(M, -)$ to this sequence. We obtain the following exact sequence in the corresponding long exact sequence:

$$\operatorname{Ext}_{A}^{1}(M, t(\tau M)) \to \operatorname{Ext}_{A}^{1}(M, \tau M) \to \operatorname{Ext}_{A}^{1}(M, \tau M/t(\tau M)).$$

Since $M \in \mathcal{T}$ is Ext-projective, $\operatorname{Ext}^{1}_{A}(M, t(\tau M)) = 0$. But $\operatorname{Ext}^{1}_{A}(M, \tau M) \neq 0$, because the AR-sequence

 $0 \to \tau M \to E \to M \to 0$

does not split. Since $\operatorname{Ext}^1_A(M, \tau M) \to \operatorname{Ext}^1_A(M, \tau M/t(\tau M))$ is injective, the AR-sequence

$$0 \to \tau M \to E \to M \to 0$$

is mapped to a non split exact sequence. We get the following commutative diagram:

But if $t(\tau M) \neq 0$, the map $\tau M \to \tau M/t(\tau M)$ would not be a split monomorphism, and the sequence

$$0 \to \tau M/t(\tau M) \to E \to M \to 0$$

would split. So, $t(\tau M) = 0$, and $\tau M \in \mathcal{F}$.

Lemma C. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory on mod A such that $D(A_A) \in \mathcal{T}$. If $M \in \mathcal{T}$ is *Ext-projective*, then $pd M \leq 1$.

Proof. If M is projective, then, clearly, $pd M \leq 1$.

So assume that M be not projective. We are going to construct a projective resolution of M.

Let $0 \to \tau M \to I_0 \to I_1$ be the minimal injective resolution of τM . By definition of τ^- , we obtain a projective resolution ending with

 $\operatorname{Hom}_{A}(D(I_{0}), A) \xrightarrow{p_{1}} \operatorname{Hom}_{A}(D(I_{1}), A) \to M \to 0.$

Now, $\tau M \in \mathcal{F}$ and $D(A_A) \in \mathcal{T}$, and we get

$$\ker p_1 \cong \operatorname{Hom}_A(D(\tau M), A) \cong \operatorname{Hom}_A(D(A), \tau M) = 0.$$

Therefore, $\operatorname{pd} M \leq 1$.

Corollary. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory on mod A such that $D(A_A) \in \mathcal{T}$. Let M be the sum of all Ext-projective modules belonging to \mathcal{T} . Then M is a partial tilting module, i. e. pd $M \leq 1$ and $\operatorname{Ext}^1_A(M, M) = 0$.

Remark. A partial tilting module $M \in \text{mod } A$ is a tilting module if and only if the number of indecomposable direct summands of M equals the number of simple modules in mod A.

Lemma D. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory on mod A.

- Let $M \in \mathcal{T}$ be not Ext-projective and $g: E \to M$ be a sink map in \mathcal{T} , then ker $g \in \mathcal{T}$.
- Let $M \in \mathcal{F}$ be not Ext-injective and $f: M \to E$ be a source map in \mathcal{F} , then $\operatorname{cok} f \in \mathcal{F}$.

Proof. The proof can be found (for example) in [1], Chapter III, Section 4.

Now, we can prove the following Theorem:

Theorem. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory on mod A such that $D(A_A) \in \mathcal{T}$ and either \mathcal{T} or \mathcal{F} contain only finitely many isomorphism classes of indecomposable A-modules. Let T be the sum of all Ext-projectives belonging to \mathcal{T} . Then T is a tilting module such that $(\mathcal{T}(T), \mathcal{F}(T)) = (\mathcal{T}, \mathcal{F})$.

Proof. By the remark and the corollary above, we only have to show that T contains the correct number of indecomposable direct summands.

First of all, let us note that \mathcal{F} and \mathcal{T} are both KRS-categories. Since finite KRS-categories have sink and source maps (see e.g. [3], Section 2.2, Lemma 2), we can apply the lemmas above.

Let n be the number of non isomorphic simple modules in mod A.

Case 1. \mathcal{T} is finite.

Since $D(A_A) \in \mathcal{T}$, we have *n* indecomposable non isomorphic injective modules in \mathcal{T} . Now, we apply the AR-translation several times to each of the indecomposable injective modules, and using Lemma D, we reach a sink map whose kernel is contained in \mathcal{F} . (This is possible, since \mathcal{T} is finite.) So we get *n* non isomorphic indecomposable Ext-projective modules in \mathcal{T} (by Lemma B).

Case 2. \mathcal{F} is finite.

Let s be the number of indecomposable projective modules in \mathcal{T} . Then \mathcal{F} has n-s indecomposable projective modules. We apply τ^- to these modules, and we obtain n-s non isomorphic indecomposable Ext-injective modules in \mathcal{F} (using Lemma D, again). (This is possible, since \mathcal{F} is finite.) These n-s indecomposable Ext-injective modules give rise to n-s non isomorphic indecomposable Ext-projective modules in \mathcal{T} (by Lemma B). Since the s non isomorphic indecomposable projective modules from \mathcal{T} are, in particular, Ext-projective (and not isomorphic to any of the other Ext-projective modules constructed as above), we obtain n-s+s non isomorphic indecomposable Ext-projective modules in \mathcal{T} .

And T induces the torsion theory, we wanted to have.

References

- D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. x+208 pp.
- [2] M. Hoshino, Tilting modules and torsion theories, Bull. London Math. Soc. 14 (1982), 334–336
- C.M. Ringel, Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, 1099. Springer-Verlag, Berlin, 1984. xiii+376 pp.