Selected topics in representation theory – Resolutions of simple modules over the polynomial ring $k[X_1, \ldots, X_n]$ – WS 2005/06

1 The exterior algebra

Definition. Let R be a commutative ring, $E \in \text{mod } R$ a finitely generated R-module. Set $T^r(E) = \bigotimes_{i=1}^r E, T^0 = R$. Then

$$T(E) = \bigoplus_{r=0}^{\infty} T^r(E)$$

is called the *tensor algebra* of E.¹

Denote by $\mathfrak{a}_r \subseteq T^r(E)$ the ideal generated by $\{x_1 \otimes \ldots \otimes x_r \mid x_i = x_j \text{ for some } i \neq j\}$. Set $\bigwedge^r(E) = T^r(E)/\mathfrak{a}_r$. Then

$$\bigwedge(E) = \bigoplus_{r=0}^{\infty} \bigwedge^{r}(E)$$

is called the *exterior algebra* of E.

The image of an element $x_1 \otimes \ldots \otimes x_r \in T^r(E)$ under the projection to $\bigwedge^r(E)$ is denoted by $x_1 \wedge \ldots \wedge x_r$.

Remark. Let *E* be a free *R*-module of dimension *n* over *R*. Then $\bigwedge(E)$ can be described as a quotient of the free algebra in *n* variables:

$$\bigwedge(E) = R\langle X_1, \dots, X_n \rangle / (X_i^2, X_i X_j + X_j X_i).$$

- If r > n, then $\bigwedge^r (E) = 0$.
- Let $\{v_1, \ldots, v_n\}$ be a basis of E over R. For $1 \le r \le n$, $\bigwedge^r(E)$ is free over R, the elements $v_{i_1} \land \ldots \land v_{i_r}, i_1 < \ldots < i_r$, form a basis of $\bigwedge^r(E)$ over R, and $\dim_R \bigwedge^r(E) = \binom{n}{r}$.

2 Tensor products of complexes

Let K^{\bullet} and L^{\bullet} be two complexes of *R*-modules, *R* a commutative ring, such that $K_m = 0$, $L_m = 0$ for all m < 0, i.e. $K^{\bullet} : \cdots \to K_n \to K_{n-1} \to \cdots \to K_0 \to 0 \to \cdots$, and similarly for L^{\bullet} .

We define a new complex $K^{\bullet} \otimes L^{\bullet}$ as follows: The module in degree n is

$$(K^{\bullet} \otimes L^{\bullet})_n = \sum_{p+q=n} K_p \otimes L_q,$$

and the differentials are defined as

$$d(u \otimes v) = du \otimes v + (-1)^p u \otimes dv.$$

One can check that this gives really a complex.

¹Tensors products are always taken over the ring R.

3 The Koszul complex

Definition. Let R be a commutative ring, $M \in \text{mod } R$. A sequence $\mathbf{x} = (x_1, \ldots, x_r)$ in R is called *M*-regular if

- x_1 is not a zero divisor for M, and
- x_i is not a zero divisor for $M/(x_1, \ldots, x_{i-1})M$ for all $2 \le i \le r$.

(Here, $(x_1, \ldots, x_{i-1})M$ denotes the ideal in M generated by $\{x_1, \ldots, x_{i-1}\}$.)

It is called *regular* if it is an *R*-regular sequence.

Definition. Let $\mathbf{x} = (x_1, \ldots, x_r)$ be a regular sequence in R. We define the Koszul complex $K(\mathbf{x})$ for R by

- $K_0(\mathbf{x}) = R$
- $K_1(\mathbf{x})$ = the free *R*-module with basis $\{e_1, \ldots, e_r\}$
- $K_p(\mathbf{x})$ = the free *R*-module with basis $\{e_{i_1} \land \ldots \land e_{i_p} \mid i_1 < \ldots < i_p\}$
- $K_r(\mathbf{x})$ = the free *R*-module with basis $\{e_1 \land \ldots \land e_r\}$

(Note that $e_{i_1} \wedge \ldots \wedge e_{i_p}$ is just a notion for the basis element and has (so far) nothing to do with the exterior algebra.)

The boundary maps are defined as follows —and this is where the sequence \mathbf{x} has an influence...—:

• $d: K_1(\mathbf{x}) \to K_0(\mathbf{x}), d(e_i) = x_i \ \forall i = 1, \dots, r$

•
$$d: K_p(\mathbf{x}) \to K_{p-1}(\mathbf{x}), d(e_{i_1} \land \ldots \land e_{i_p}) = \sum_{j=1}^p (-1)^{j-1} x_{i_j} e_{i_1} \land \ldots \land \widehat{e_{i_j}} \land \ldots \land e_{i_p}$$

This defines really a complex.

Definition. We define the *Koszul complex* for $M \in \text{mod } R$ (w.r.t. the regular sequence \mathbf{x}) by tensoring the complex for R with M: $K(\mathbf{x}) \otimes M$.

In order to calculate the Koszul complex for a regular sequence $\mathbf{x} = (x_1, \ldots, x_r)$, we can calculate the Koszul complexes for non zero divisors in R, and we obtain the Koszul complex also inductively, since there is a natural isomorphism

$$K(\mathbf{x}) \cong K(x_1) \otimes \ldots \otimes K(x_r).$$

Proof. Homework.

Notation. For $M \in \text{mod } R$ and a regular sequence **x** we denote the homology groups of the Koszul complex for M by

$$H_p(\mathbf{x}, M) = H_p(K(\mathbf{x}) \otimes M).$$

Selected topics in RT – Resolutions of simple modules over $k[X_1, \ldots, X_n]$ – WS 2005/06 – 3

The following construction is very useful. Let C^{\bullet} be a complex of *R*-modules and $x \in R$ a non zero divisor. We have a short exact sequence of complexes

$$0 \to R \to K(x) \to R[-1] \to 0. \tag{1}$$

(Here, R denotes the stalk complex concentrated in degree zero with entry R, and R[-1] the stalk complex concentrated in degree -1 with entry R.)

By construction, the complex K(x) is concentrated in degrees 1 and 0:

$$K(x):\ldots \to 0 \to \underbrace{K_1(x)}_{\cong R} \xrightarrow{x} \underbrace{K_0(x)}_{\cong R} \to 0 \to \ldots,$$

where x denotes the multiplication by x.

We apply $-\otimes C^{\bullet}$ to the sequence (1), which gives us

$$(K(x) \otimes C^{\bullet})_p = (K_0(x) \otimes C_p) \oplus (K_1(x) \otimes C_{p-1}) \cong C_p \oplus C_{p-1}.$$

The boundary maps are, by definition, given by

$$d(v, w) = (dv + (-1)^{p-1}xw, dw)$$

for $(v, w) \in C_p \oplus C_{p-1}$.

Now take its homology. This leads to the long exact sequence

$$\cdots \longrightarrow \underbrace{H_{p+1}(C^{\bullet}[-1])}_{\cong H_p(C^{\bullet})}$$

$$\xrightarrow{\delta_p} H_p(C^{\bullet}) \longrightarrow H_p(K(x) \otimes C^{\bullet}) \longrightarrow \underbrace{H_p(C^{\bullet}[-1])}_{\cong H_{p-1}(C^{\bullet})}$$

$$\xrightarrow{\delta_{p-1}} H_{p-1}(C^{\bullet}) \longrightarrow H_{p-1}(K(x) \otimes C^{\bullet}) \longrightarrow \underbrace{H_{p-1}(C^{\bullet}[-1])}_{\cong H_{p-2}(C^{\bullet})}$$

$$\cdots$$

$$\xrightarrow{\delta_1} H_1(C^{\bullet}) \longrightarrow H_1(K(x) \otimes C^{\bullet}) \longrightarrow \underbrace{H_1(C^{\bullet}[-1])}_{\cong H_0(C^{\bullet})}$$

$$\xrightarrow{\delta_0} H_0(C^{\bullet}),$$

where each δ_p is induced by the multiplication by $(-1)^{p-1}x$.

Lemma. If $\mathbf{x} = (x_1, \ldots, x_r)$ is an *M*-regular sequence in *R* for $M \in \text{mod } R$, then $H_p(\mathbf{x}, M) = 0$ for all $p \neq 0$, and $H_0(\mathbf{x}, M) = M/(x_1, \ldots, x_r)M$.

Proof. If r = 1, then we can choose in the above construction $C^{\bullet} = M$, the stalk complex with M concentrated in degree 0. Then $H_p(C^{\bullet}) = 0$ for all $p \neq 0$ and $H_0(C^{\bullet}) = M$.

The complex K(x) is given by $0 \to R \xrightarrow{x} R \to 0$, and $K(x) \otimes M$ is $0 \to M \xrightarrow{x} M \to 0$.

So all $H_p(K(x) \otimes M) = 0$ for all $p \ge 2$ (by the long exact homology sequence above). Since x is a non zero divisor on M, the multiplication by x is injective. Furthermore, $H_1(C^{\bullet}) = 0$, so $H_1(K(x) \otimes M) = 0$. And $H_0(K(x) \otimes M) = M/(x)M$.

Let now $r \geq 2$.

Denote by **y** the *M*-regular sequence (x_1, \ldots, x_{r-1}) , and let $C^{\bullet} = K(\mathbf{y}) \otimes M$. As stated above, we have an isomorphism $K(\mathbf{x}) \cong K(x_r) \otimes K(\mathbf{y})$.

By induction, $H_p(K(\mathbf{y}) \otimes M) = 0$ for all $p \neq 0$. Therefore, all $H_p(K(\mathbf{x}) \otimes M) \cong H_p(K(x_r) \otimes C^{\bullet}) = 0$ for all $p \geq 2$ (by the long exact homology sequence above). And x_r is a non zero divisor on $M/(x_1, \ldots, x_{r-1})M \cong H_0(C^{\bullet})$, therefore, the multiplication by x_r is injective. Furthermore, $H_1(C^{\bullet}) = 0$, and hence $H_1(K(\mathbf{x}) \otimes M) \cong H_1(K(x_r) \otimes C^{\bullet}) = 0$. By definition, $H_0(K(\mathbf{x}) \otimes M) \cong H_0(K(x_r) \otimes C^{\bullet}) = M/(x_1, \ldots, x_r)M$.

Corollary. If $\mathbf{x} = (x_1, \ldots, x_r)$ is an *M*-regular sequence in *R* for $M \in \text{mod } R$, then $K(\mathbf{x}) \otimes M$ is a free resolution of $M/(x_1, \ldots, x_r)M$, i.e. the Koszul complex is exact.

Now apply the construction to $M = R = k[X_1, \ldots, X_n]$, with regular sequence $\mathbf{x} = (X_1 - a_1, \ldots, X_n - a_n)$. We have $k[X_1, \ldots, X_n]/(X_1 - a_1, \ldots, X_n - a_n)k[X_1, \ldots, X_n] \cong k_{a_1, \ldots, a_n}$, the simple module for $k[X_1, \ldots, X_n]$ defined by $(a_1, \ldots, a_n) \in \mathbb{R}^n$.

References

- S. Lang, Algebra. Revised third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002. xvi+914 pp.
- [2] D. G. Northcott, Lessons on rings, modules and multiplicities. Cambridge University Press, London, 1968. xiv+444 pp.
- [3] C. A. Weibel, An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994. xiv+450 pp.